DAT320 Forecasting - Seasonal ARIMA - PDF

Document Details

WittyAloe

Uploaded by WittyAloe

Norwegian University of Life Sciences

2024

Kristian Hovde Liland

Tags

forecasting time series analysis seasonal arima model statistics

Summary

These notes cover the topic of forecasting using Seasonal ARIMA models. They detail the methodology and practical applications, specifically focusing on analyzing time series data.

Full Transcript

DAT320: Forecasting Seasonal ARIMA Kristian Hovde Liland [email protected] Autumn 2024 Norwegian University of Life Sciences Extensions of ARIMA Seasonal ARIMA Model Advanced ARIMA models 1 Norwegian University of Life Sciences Extension...

DAT320: Forecasting Seasonal ARIMA Kristian Hovde Liland [email protected] Autumn 2024 Norwegian University of Life Sciences Extensions of ARIMA Seasonal ARIMA Model Advanced ARIMA models 1 Norwegian University of Life Sciences Extensions of ARIMA AR MA ARMA ARIMA ARIMAX & SARIMA FARIMA VARIMA dynamic regr. seasonal data exogenous inputs long-term dependencies multivariate data 2 Norwegian University of Life Sciences Seasonal ARIMA model (SARIMA) I SARIM A(k, d, q)(K, D, Q)p allows both seasonal and non-seasonal components: I Non-seasonal ARIM A(k, d, q) I Seasonal part with parameters K (autoregressive), D (seasonal differencing) and Q (moving average) I Seasonal period p I Special cases: I SAR(K) seasonal AR I SM A(Q) seasonal MA 3 Norwegian University of Life Sciences Seasonal ARIMA model (SARIMA) SARIM A(1, 1, 1)(1, 1, 1)p Multiplicative combination of terms: (1 − ϕ1 B)(1 − Φ1 B p )(1 − B)(1 − B p )xt = (1 + θ1 B)(1 + Θ1 B p )εt I (1 − ϕ1 B − · · · − ϕk B k )... AR(k) terms I (1 − Φ1 B p − · · · − ΦK B kp )... SAR(K) terms I (1 − B)d... differencing terms I (1 − B p )D... seasonal differencing terms I (1 + θ1 B + · · · + θq B q )... M A(q) terms I (1 + Θ1 B p + · · · + ΘQ B Qp )... SM A(Q) terms 4 Norwegian University of Life Sciences Seasonal ARIMA model (SARIMA) SARIM A(2, A(0, 0, 1)(2, A(1, 0)(1, 0, 1)p 1)(1, εt−2p... εt−p... εt−3 εt−2 εt−1 εt xt−2p... xt−p... xt−3 xt−2 xt−1 xt SM SAR(1) SAR(2) M A(1)pp A(2) AR(1) A(1) t 5 Norwegian University of Life Sciences Seasonal unit root test I Check for trends via KPSS or (Augmented) Dickey-Fuller test ("unit root tests") I How to determine whether data have seasonalities to determine the number of seasonal differences? I "seasonal unit root tests" I Hylleberg-Engle-Granger-Yoo test (HEGY) library ( datasets ) library ( tseries ) library ( uroot ) data ( " AirPassengers " ) kpss. test ( AirPassengers ) hegy. test ( AirPassengers ) 6 Norwegian University of Life Sciences Hyperparameter selection Rule of thumb for SARIMA models I Determine order of differencing d and seasonal differencing D via KPSS and HEGY tests I Plot ACF and PACF I Estimate AR or MA parameters from ACF and PACF as in ARIMA models I Estimate SAR or SMA parameters from seasonal spikes in ACF and PACF 7 Norwegian University of Life Sciences SARIMA model I SARIM A(2, 1, 1)(0, 1, 0)12 model Figure 1: Fitted values & residuals 8 Norwegian University of Life Sciences SARIMA model (a) Point prediction (b) Prediction interval 9 Norwegian University of Life Sciences SARIMA model library ( forecast ) library ( datasets ) library ( tseries ) library ( uroot ) data ( " AirPassengers " ) acf ( AirPassengers , lag. max = 36) pacf ( AirPassengers , lag. max = 36) ndiffs ( AirPassengers ) nsdiffs ( AirPassengers ) mod _ sar

Use Quizgecko on...
Browser
Browser