Economic Forecasting - Time Series Analysis PDF
Document Details
Uploaded by VisionaryLife
Université Djillali Liabès de Sidi Bel-Abbès
Tags
Summary
This document introduces economic forecasting using time series analysis. It details the concept of time series, examining their properties and components such as trends, seasonality, and cycles, and explains how to use these analyses to predict future economic phenomena. The goal is to define changes in the phenomenon and determine its direction to use it in future prediction.
Full Transcript
ﻤﻘﺩﻤﺔ ﺍﻝﺩﺭﺱ : ﺍﻝﺘﻨﺒﺅ ﺍﻻﻗﺘﺼﺎﺩﻱ economic forecastingﻋﻤﻠﻴﺔ ﺘﻘﺩﻴﺭ ﻝﻠﺘﻁﻭﺭ ﺍﻝﻤﺴﺘﻘﺒﻠﻲ ﻝﻘﻴﻡ ﺍﻝﻅـﻭﺍﻫﺭ ﺍﻻﻗﺘﺼﺎﺩﻴﺔ ﺍﺴﺘﻨﺎﺩﹰﺍ ﺇﻝﻰ ﺍﻝﻭﻀﻊ ﺍﻝﺭﺍﻫﻥ ﻭﺇﻝﻰ ﺍﻝﻌﻭﺍﻤل ﺍﻝﻤﺅﺜﺭﺓ ﻓﻲ ﺘﻁﻭﺭ ﺘﻠﻙ ﺍﻝﻅﻭﺍﻫﺭ.ﻭﻴﻘﺩﻡ ﺍﻝﺘﻨﺒـﺅ ﺒﻬﺫﺍ ﺍﻝﻤﻌﻨﻰ ﺘﻘﺩﻴﺭﺍﺕ ﻜﻤﻴﺔ ﻭﻨﻭﻋﻴﺔ ﻝﻠﻅﻭﺍﻫﺭ ﻭﺍﻝﻤﺅﺸﺭﺍﺕ ﺍﻻﻗﺘﺼﺎﺩﻴﺔ ﻓﻲ ﻝﺤﻅﺔ ﻤﺤﺩﺩﺓ ﺃﻭ ﻝﻤﺩﺩ ﺯﻤﻨﻴﺔ...
ﻤﻘﺩﻤﺔ ﺍﻝﺩﺭﺱ : ﺍﻝﺘﻨﺒﺅ ﺍﻻﻗﺘﺼﺎﺩﻱ economic forecastingﻋﻤﻠﻴﺔ ﺘﻘﺩﻴﺭ ﻝﻠﺘﻁﻭﺭ ﺍﻝﻤﺴﺘﻘﺒﻠﻲ ﻝﻘﻴﻡ ﺍﻝﻅـﻭﺍﻫﺭ ﺍﻻﻗﺘﺼﺎﺩﻴﺔ ﺍﺴﺘﻨﺎﺩﹰﺍ ﺇﻝﻰ ﺍﻝﻭﻀﻊ ﺍﻝﺭﺍﻫﻥ ﻭﺇﻝﻰ ﺍﻝﻌﻭﺍﻤل ﺍﻝﻤﺅﺜﺭﺓ ﻓﻲ ﺘﻁﻭﺭ ﺘﻠﻙ ﺍﻝﻅﻭﺍﻫﺭ.ﻭﻴﻘﺩﻡ ﺍﻝﺘﻨﺒـﺅ ﺒﻬﺫﺍ ﺍﻝﻤﻌﻨﻰ ﺘﻘﺩﻴﺭﺍﺕ ﻜﻤﻴﺔ ﻭﻨﻭﻋﻴﺔ ﻝﻠﻅﻭﺍﻫﺭ ﻭﺍﻝﻤﺅﺸﺭﺍﺕ ﺍﻻﻗﺘﺼﺎﺩﻴﺔ ﻓﻲ ﻝﺤﻅﺔ ﻤﺤﺩﺩﺓ ﺃﻭ ﻝﻤﺩﺩ ﺯﻤﻨﻴﺔ ﺃﻁﻭل. ﻭﻴﻌﺘﻤﺩ ﺍﻝﺘﻨﺒﺅ ﺍﻻﻗﺘﺼﺎﺩﻱ ﺒﺼﻭﺭﺓ ﺃﺴﺎﺴﻴﺔ ﻋﻠﻰ ﺍﻝﺴﻼﺴل ﺍﻝﺯﻤﻨﻴﺔ time seriesﻤـﻥ ﺨـﻼل ﻼ ﻴﻅﻬﺭ ﺤﺎﺼل ﺘﺄﺜﻴﺭ ﺠﻤﻴﻊ ﺍﻝﻌﻭﺍﻤل ﺍﻝﻤﺅﺜﺭﺓ ﻓﻲ ﻫـﺫﻩ ﺩﺭﺍﺴﺔ ﺘﻁﻭﺭ ﺍﻝﻅﺎﻫﺭﺓ ﻤﻊ ﺍﻝﺯﻤﻥ ﺒﻭﺼﻔﻪ ﻋﺎﻤ ﹰ ﺍﻝﻅﺎﻫﺭﺓ.ﻓﺎﻝﻅﻭﺍﻫﺭ ﺘﺘﻐﻴﺭ ﻤﻊ ﺍﻝﺯﻤﻥ ﻤﻥ ﺸﻬﺭ ﺇﻝﻰ ﺁﺨﺭ ﻭﻤﻥ ﺴﻨﺔ ﺇﻝﻰ ﺃﺨﺭﻯ ،ﻭﻻ ﻴﻌﺩ ﺍﻝﺯﻤﻥ ﺫﺍﺘـﻪ ﻼ ﻋﻥ ﻓﻌل ﺍﻹﻨﺴﺎﻥ.ﺇﻻ ﻼ ﻤﺅﺜﺭﹰﺍ ﻓﻲ ﺘﻁﻭﺭ ﺍﻝﻅﻭﺍﻫﺭ ﺍﻻﻗﺘﺼﺎﺩﻴﺔ ﺒﺼﻔﺘﻪ ﻤﺅﺸﺭﹰﺍ ﻤﻭﻀﻭﻋﻴﹰﺎ ﻤﺴﺘﻘ ﹰ ﻋﺎﻤ ﹰ ﺃﻥ ﺍﻝﺯﻤﻥ ﻤﻼﺯﻡ ﻝﺘﻁﻭﺭ ﺍﻝﻅﻭﺍﻫﺭ ﺍﻻﻗﺘﺼﺎﺩﻴﺔ ﻭﻤﻥ ﺜﻡ ﻴﻤﻜﻥ ﺍﻝﺭﺒﻁ ﺒﻴﻥ ﺤﺎﻝﺔ ﺍﻝﻅﺎﻫﺭﺓ ﻭﺍﻝﻠﺤﻅﺔ ﺍﻝﺘـﻲ ﺘﻘﺎﺒل ﻫﺫﻩ ﺍﻝﺤﺎﻝﺔ ،ﺃﻭ ﺒﻴﻥ ﺘﻁﻭﺭﺍﺕ ﺍﻝﻅﺎﻫﺭﺓ ﻭﺍﻝﻤﺩﺓ ﺍﻝﺯﻤﻨﻴﺔ ﺍﻝﺘﻲ ﺠـﺭﺕ ﺃﻭ ﺴـﺘﺠﺭﻱ ﻓﻴﻬـﺎ ﺘﻠـﻙ ﺍﻝﺘﻁﻭﺭﺍﺕ ﺍﻝﻨﺎﺠﻤﺔ ﻋﻥ ﻋﻭﺍﻤل ﺃﺨﺭﻯ ﻏﻴﺭ ﺍﻝﺯﻤﻥ ﺘﺅﺜﺭ ﻓﻲ ﺍﻝﻅﺎﻫﺭﺓ ﻭﺘﺅﺩﻱ ﺇﻝﻰ ﺘﻐﻴﺭﻫﺎ ﻜﻤﹰﺎ ﻭﻨﻭﻋﹰﺎ. ﻭﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﻫﻲ ﺴﻠﺴﻠﺔ ﻤﻥ ﺍﻝﻘﻴﻡ ﺍﻝﻌﺩﺩﻴﺔ ﻝﻤﺅﺸﺭ ﺇﺤﺼﺎﺌﻲ ﻴﻌﻜﺱ ﺘﻐﻴﺭ ﺍﻝﻅﺎﻫﺭﺓ ﺒﺎﻝﻨﺴـﺒﺔ ﺇﻝﻰ ﺍﻝﺯﻤﻥ.ﻭﻜل ﻗﻴﻤﺔ ﻋﺩﺩﻴﺔ ﻓﻲ ﺍﻝﺴﻠﺴﻠﺔ ﺘﻘﺎﺒل ﻝﺤﻅﺔ ﺯﻤﻨﻴﺔ ﺃﻭ ﻤﺩﺓ ﺯﻤﻨﻴﺔ ﻤﺤﺩﺩﺓ.ﻭﻴﻤﻜﻥ ﺃﻥ ﺘﻜـﻭﻥ ﺍﻝﻤﺩﺓ ﺃﻴﺎﻤﹰﺎ ﺃﻭ ﺸﻬﻭﺭﹰﺍ ﺃﻭ ﺴﻨﻭﺍﺕ.ﻭﺘﹸﻨﺸﹶﺄ ﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﻋﻥ ﻁﺭﻴﻕ ﻤﺭﺍﻗﺒﺔ ﺍﻝﻅﺎﻫﺭﺓ ﺍﻝﻤﺩﺭﻭﺴﺔ ﻤﺩﺓ ﻤﻥ ﺍﻝﺯﻤﻥ ﻭﻗﻴﺎﺴﻬﺎ ﻓﻲ ﻤﺩﺩ ﺯﻤﻨﻴﺔ ﻤﺘﺴﺎﻭﻴﺔ ﺒﻬﺩﻑ ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﻗﻴﻤﻬﺎ. ﻭﺍﻝﻬﺩﻑ ﻤﻥ ﺩﺭﺍﺴﺔ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﻭﺘﺤﻠﻴﻠﻬﺎ ﻫﻭ ﺘﻌﺭﻑ ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﺘﻲ ﻁﺭﺃﺕ ﻋﻠﻰ ﺍﻝﻅـﺎﻫﺭﺓ ﺍﻝﺘﻲ ﺘﻤﺜﻠﻬﺎ ﻓﻲ ﻤﺩﺓ ﻤﻥ ﺍﻝﺯﻤﻥ.ﺜﻡ ﺘﺤﻠﻴل ﺃﺴﺒﺎﺒﻬﺎ ﻭﻨﺘﺎﺌﺠﻬﺎ ﻭﺘﺤﺩﻴﺩ ﺍﺘﺠﺎﻫﻬﺎ ﺤﺘﻰ ﻴﻤﻜﻥ ﺍﺴـﺘﺨﺩﺍﻤﻬﺎ ﻝﻠﺘﻘﺩﻴﺭ ﻭﺍﻝﺘﻨﺒﺅ ﺒﺎﻝﻤﺴﺘﻘﺒل.ﻭﺘﹸﺴﺘﺨﺩﻡ ﻤﺅﺸﺭﺍﺕ ﺍﻝﺯﻴﺎﺩﺓ ﺍﻝﻤﻁﻠﻘﺔ ﻭﻤﺅﺸﺭﺍﺕ ﺍﻝﺯﻴﺎﺩﺓ ﺍﻝﻨﺴﺒﻴﺔ ﻝﺘﺤﺩﻴﺩ ﻤﻘﺩﺍﺭ ﺘﻐﻴﺭ ﺍﻝﻅﺎﻫﺭﺓ ﺍﻝﻤﺩﺭﻭﺴﺔ ﻭﺍﺘﺠﺎﻫﻬﺎ ﻭﺴﺭﻋﺘﻬﺎ.ﻭﻫﻲ ﻨﻭﻋﺎﻥ ﺴﻼﺴل ﺯﻤﻨﻴﺔ ﺁﻨﻴﺔ ﻭﺴﻼﺴل ﺯﻤﻨﻴﺔ ﻤﺩﻴﺩﺓ. ﻭﻷﻥ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻝﻠﺴﻼﺴل ﺍﻝﺯﻤﻨﻴﺔ ﻴﻌﻜﺱ ﺘﻐﻴﺭﺍﺕ ﺃﺴﺎﺴﻴﺔ ﻁﻭﻴﻠﺔ ﺍﻷﻤﺩ ﻭﺘﺄﺨﺫ ﺸﻜﻠﻬﺎ ﺒﺼﻭﺭﺓ ﺘﺩﺭﻴﺠﻴﺔ ،ﻭﺘﺴﺘﻤﺭ ﻓﻲ ﺍﺘﺠﺎﻩ ﻭﺍﺤﺩ ﻤﺩﺓ ﻁﻭﻴﻠﺔ ﻤﻥ ﺍﻝﺯﻤﻥ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻝﻠﺘﻨﺒﺅ ﺒﺎﻝﻤﺴﺘﻘﺒل. ﻴﺤﺘﻭﻱ ﻫﺫﺍ ﺍﻝﺩﺭﺱ ﻋﻠﻰ ﺃﺭﺒﻊ ﻤﻘﺎﻁﻊ ،ﺍﻷﻭل ﻤﻨﻬﺎ ﻴﻀﻡ ﺍﻷﺴﺱ ﺍﻝﻨﻅﺭﻴﺔ ﻝﻠﺴﻼﺴل ﺍﻝﺯﻤﻨﻴﺔ، ﻭﺍﻷﺨﺭﻯ ﺘﻌﺒﺭ ﻋﻥ ﺃﻫﻡ ﻁﺭﻕ ﺍﻝﺘﻘﺩﻴﺭ ﺍﻝﻤﺴﺘﺨﺩﻤﺔ. -1- ﺍﻝﻤﻘﻁﻊ ﺍﻷﻭل :ﻤﻔﺎﻫﻴﻡ ﺃﺴﺎﺴﻴﺔ ﺤﻭل ﺍﻝﺴﻼﺴل ﺍﻝﺯﻤﻨﻴﺔ ﺘﻤﻬﻴـﺩ ﻝﻘﺩ ﺃﺼﺒﺢ ﺍﻻﻗﺘﺼﺎﺩ ﺍﻝﻴﻭﻡ ﺃﻜﺜﺭ ﺘﻌﻘﻴﺩﺍ ﻤﻤﺎ ﻜﺎﻥ ﻋﻠﻴﻪ ﻓﻲ ﺍﻝﻘﺩﻴﻡ ﺤﻴﺙ ﺒﺘﻁﻭﺭ ﺍﻝﻤﺠﺘﻤﻌﺎﺕ ﺯﺍﺩﺕ ﻤﺘﺎﻋﺏ ﺍﻝﺤﻴﺎﺓ ﻭﻝﻬﺫﺍ ﺃﺼﺒﺢ ﺍﻝﻌﻠﻤﺎﺀ ﻴﺒﺤﺜﻭﻥ ﻋﻥ ﺍﻝﺤﻠﻭل ﻝﻠﻅﻭﺍﻫﺭ ﺍﻻﻗﺘﺼﺎﺩﻴﺔ ،ﻓﺈﻥ ﺍﻝﻤﺴﻴﺭﻴﻥ ﻴﺒﺤﺜﻭﻥ ﺩﻭﻤﺎ ﻋﻥ ﻁﺭﻕ ﻝﺘﻁﻭﻴﺭ ﻨﻭﻋﻴﺔ ﺍﻝﻤﻌﻠﻭﻤﺎﺕ ﻭﺍﻝﻘﺭﺍﺭﺍﺕ ﺍﻝﻤﺘﺨﺫﺓ. ﻓﻲ ﻫﺫﺍ ﺍﻝﻤﺠﺎل ﻓﺈﻥ ﻁﺭﻕ ﺍﻝﺘﻨﺒﺅ ﻻﺯﺍﻝﺕ ﻓﻲ ﺘﻁﻭﺭ ﻤﺴﺘﻤﺭ ﻋﺒﺭ ﺍﻝﺯﻤﻥ ،ﻭﻫﻲ ﻋﺩﻴﺩﺓ ﻭﻤﺘﻨﻭﻋـﺔ ﻭﺘﺨﺘﻠﻑ ﺒﺎﺨﺘﻼﻑ ﻤﺠﺎل ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ،ﻓﻨﺠﺩ ﻤﺜﻼ ﻁﺭﻕ ﺍﻝﺘﻨﺒﺅ ﺍﻝﻜﻤﻴﺔ ﺒﻨﻭﻋﻴﻬﺎ ﺍﻝﺨﻁﻴﺔ ﻭﻏﻴـﺭ ﺍﻝﺨﻁﻴـﺔ ﻭﻁﺭﻕ ﺍﻝﺘﻨﺒﺅ ﺍﻝﻜﻴﻔﻴﺔ. ﺇﻥ ﺩﺭﺍﺴﺔ ﻁﺭﻕ ﺍﻝﺘﻨﺒﺅ ﺘﺘﻁﻠﺏ ﻤﻨﺎ ﺩﺭﺍﺴﺔ ﺘﺤﻠﻴﻠﻴﺔ ﻝﻠﺴﻼﺴل ﺍﻝﺯﻤﻨﻴﺔ ﻭﻤﺭﻜﺒﺎﺘﻬﺎ ﻭﺃﺸـﻜﺎﻝﻬﺎ ﺒﻌـﺩ ﺍﻝﺘﻁﺭﻕ ﺇﻝﻰ ﺒﻌﺽ ﺍﻝﻤﻔﺎﻫﻴﻡ ﺍﻷﺴﺎﺴﻴﺔ ﺤﻭل ﺍﻝﺘﻨﺒﺅ.ﻭﻻﺨﺘﻴﺎﺭ ﺃﺤﺩ ﻫﺫﻩ ﺍﻝﻁﺭﻕ ﻓﺈﻨﻪ ﺘﻭﺠﺩ ﻋﺩﺓ ﻤﻌـﺎﻴﻴﺭ ﺘﺅﺨﺫ ﺒﻌﻴﻥ ﺍﻹﻋﺘﺒﺎﺭ ﺒﻌﺩ ﺘﺤﺩﻴﺩ ﺍﻷﻫﺩﺍﻑ ﺍﻝﻤﺘﻭﺨﺎﺓ ﻤﻥ ﻋﻤﻠﻴﺔ ﺍﻝﺘﻭﻗﻊ. :1-1ﺘﻌﺭﻴﻑ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ:1 ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﻤﻥ ﺍﻝﻤﺸﺎﻫﺩﺍﺕ ﻤﺭﺘﺒﺔ ﻭﻓﻕ ﺤﺩﻭﺜﻬﺎ ﻓﻲ ﺍﻝﺯﻤﻥ ﻜﺎﻝﺴﻨﻴﻥ ﺃﻭ ﺍﻝﻔﺼﻭل ﺃﻭ ﺍﻷﺸﻬﺭ ﺃﻭ ﺍﻷﻴﺎﻡ ﺃﻭ ﺃﻴﺔ ﻭﺤﺩﺓ ﺯﻤﻨﻴﺔ.ﻓﻬﻲ ﺒﺫﻝﻙ ﻋﺒﺎﺭﺓ ﻋﻥ ﺴﺠل ﺘﺎﺭﻴﺨﻲ ﻴﺘﻡ ﺍﻋﺘﻤﺎﺩﻩ ﻝﺒﻨﺎﺀ ﺍﻝﺘﻭﻗﻌﺎﺕ ﺍﻝﻤﺴﺘﻘﺒﻠﻴﺔ . :2-1ﺭﺴﻡ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ: ﻝﻤﺎ ﻜﺎﻨﺕ ﻤﺠﻤﻭﻋﺔ ﺍﻝﻤﺸﺎﻫﺩﺍﺕ ﻝﻠﺴﻠﺴﻠﺔ ﺃﺯﻭﺍﺠﹰﺎ ﻤﺭﺘﺒﺔ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺘﻤﺜﻴﻠﻬﺎ ﺒﻴﺎﻨﻴﹰﺎ ﺒﻨﻘﻁ ﻓﻲ ﺍﻝﻤﺴﺘﻭﻯ ﺍﻝﺒﻴﺎﻨﻲ ﺒﺤﻴﺙ ﻴﻤﺜل ﺍﻝﻤﺤﻭﺭ ﺍﻷﻓﻘﻲ ﺍﻝﺯﻤﻥ ﻭﺍﻝﻤﺤﻭﺭ ﺍﻝﺭﺃﺴﻲ ﻴﻤﺜل ﻗﻴﻡ ﺍﻝﻤﺸﺎﻫﺩﺍﺕ ﺍﻝﺘﻲ ﻭﻗﻌﺕ ﺨﻼل ﺍﻝﺯﻤﻥ . ﻤﺜﺎل:1 ﺍﻝﺠﺩﻭل ﺍﻝﺘﺎﻝﻲ ﻴﻤﺜل ﺃﺭﺒﺎﺡ ﺇﺤﺩﻯ ﺍﻝﺸﺭﻜﺎﺕ ﺒﺂﻻﻑ ﺍﻝﺩﻴﻨﺎﺭﺍﺕ : ﺍﻝﺴﻨﺔ 1996 1995 1994 1993 1992 ﺍﻷﺭﺒﺎﺡ 13.53 13.29 12.82 12.12 11.87 ﺍﻝﺴﻨﺔ 2001 2000 1999 1998 1997 ﺍﻷﺭﺒﺎﺡ 14.86 14.84 14.22 14.48 14.07 ﺍﻝﻤﻁﻠﻭﺏ :ﻤﺜل ﻫﺫﻩ ﺍﻝﺴﻠﺴﺔ ﺒﻴﺎﻨﻴﹰﺎ . ا :ﻴﻜﻭﻥ ﺍﻝﺭﺴﻡ ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﻓﻲ ﺍﻝﺸﻜل ﺍﻝﺘﺎﻝﻲ: 1 G.bresson et A. pirrotte".économétrie des séries temporelles".PUF.1995.p :13. - Bexnard M – « Statistique dès criptive » ed économisa 1990. -2- 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 :3-1ﻤﻜﻭﻨﺎﺕ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ : ﺘﺘﻌﺭﺽ ﺃﻱ ﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﻝﻨﻭﻋﻴﻥ ﻤﻥ ﺍﻝﺘﻐﻴﺭﺍﺕ ﻭﻫﺫﻩ.ﺍﻝﺘﻐﻴﺭﺍﺕ ﻴﻁﻠﻕ ﻋﻠﻴﻬﺎ ﻋﻨﺎﺼﺭ ﺍﻝﺴﻠﺴﻠﺔ. ﺃﻭ ﹰﻻ :ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﻤﻨﺘﻅﻤﺔ: ﻫﻲ ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﺘﻲ ﻴﺘﻜﺭﺭ ﻅﻬﻭﺭﻫﺎ ﻓﻲ ﺍﻝﺴﻠﺴﻠﺔ ﻓﻲ ﻤﻭﺍﻀﻊ ﺫﺍﺕ ﺼﻔﺎﺕ ﻤﺤﺩﺩﺓ ﻭﺘﺸﻤل ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻭﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﻤﻭﺴﻤﻴﺔ ﻭﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﻭﺭﻴﺔ. :1ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ: ﻭﻫﻭ ﺍﻝﻌﻨﺼﺭ ﺍﻝﺫﻱ ﻴﻘﺼﺩ ﺒﻪ ﺍﻝﺤﺭﻜﺔ ﺍﻝﻤﻨﺘﻅﻤﺔ ﻝﻠﺴﻠﺴﻠﺔ ﻋﺒﺭ ﻓﺘﺭﺓ ﺯﻤﻨﻴﺔ ﻁﻭﻴﻠﺔ ﻨﺴﺒﻴﹰﺎ.ﻭﻴﻘـﺎل ﺇﻥ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻝﻠﺴﻠﺴﻠﺔ ﻤﻭﺠﺏ ﺇﺫﺍ ﻜﺎﻥ ﺍﻻﺘﺠﺎﻩ ﻨﺤﻭ ﺍﻝﺘﺯﺍﻴﺩ ﺒﻤﺭﻭﺭ ﺍﻝﺯﻤﻥ ﻭﻴﻘﺎل ﺇﻥ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﺴﺎﻝﺏ ﺇﺫﺍ ﺍﺘﺠﻬﺕ ﻨﺤﻭ ﺍﻝﺘﻨﺎﻗﺹ ﺒﻤﺭﻭﺭ ﺍﻝﺯﻤﻥ. ز ذات ا م 17 16 15 14 13 12 11 1988 1990 1992 1994 1996 1998 2000 1989 1991 1993 1995 1997 1999 2001 ز ذات ا م -3- 22 20 18 16 14 12 10 8 6 1988 1990 1992 1994 1996 1998 2000 1989 1991 1993 1995 1997 1999 2001 :2ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﻤﻭﺴﻤﻴﺔ∗: ﻫﻲ ﺍﻝﺘﻰ ﺘﻤﺜل ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﻤﻨﺘﻅﻤﺔ ﺍﻝﻘﺼﻴﺭﺓ ﺍﻷﺠل ﻭﺍﻝﺘﻲ ﺘﺤﺩﺙ ﺨﻼل ﺍﻝﻔﺘﺭﺓ ﺍﻝﺯﻤﻨﻴﺔ ﺍﻝﻭﺍﺤﺩﺓ ﺍﻝﺘﻲ ﻻ ﻴﺯﻴﺩ ﻁﻭﻝﻬﺎ ﻋﻥ ﺍﻝﺴﻨﺔ ،ﻓﻘﺩ ﺘﻜﻭﻥ ﺃﺴﺒﻭﻋﻴﺔ ﺃﻭ ﺸﻬﺭﻴﺔ ﺃﻭ ﻓﺼﻠﻴﺔ . ز ! ا ات ا 500 400 300 200 100 1998q1 1998q3 1999q1 1999q3 2000q1 2000q3 1998q2 1988q4 1999q2 1999q4 2000q2 2000q4 :3ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﻭﺭﻴﺔ: ﻫﻲ ﺍﻝﺘﻰ ﺘﻤﺜل ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﺘﻲ ﺘﻁﺭﺃ ﻋﻠﻰ ﻗﻴﻡ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﺒﺼﻭﺭﺓ ﻤﻨﺘﻅﻤﺔ ﻭﻴﺯﻴﺩ ﺃﻤﺩﻫﺎ ﻋـﻥ ﺍﻝﺴﻨﺔ .ﻭﺘﺘﻜﻭﻥ ﻤﻥ ﺩﻭﺍل ﺘﺸﺒﻪ ﺩﻭﺍل ﺍﻝﺠﻴﺏ ﻭﺠﻴﺏ ﺍﻝﺘﻤﺎﻡ ﻭﻝﻜﻥ ﺒﺄﻁﻭﺍل ﻭﺴﻌﺎﺕ ﻤﺨﺘﻠﻔﺔ . ∗ أ: ﺤﻠﻤﻲ ﻓﻀل ﻜﺘﺎﻨﺔ ) . (1999ﺍﻹﺤﺼﺎﺀ ﺍﻝﺘﻁﺒﻴﻘﻲ ﺍﻝﺤﺩﻴﺙ ﻭﺍﻻﺤﺘﻤﺎﻻﺕ.ﺍﻝﻤﻁﺒﻌﺔ ﺍﻷﻫﻠﻴﺔ ،ﺍﻝﺩﻭﺤﺔ ،ﻗﻁﺭ. - ﺭﻤﻀﺎﻥ ﺤﺎﻤﺩ ﻤﺤﻤﺩ .ﺒﺭﻨﺎﻤﺞ ﺍﻹﺸﺭﺍﻑ ﺍﻝﻔﻨﻲ ﻝﻺﺤﺼﺎﺌﻴﻴﻥ.ﻤﻌﻬﺩ ﺍﻹﺩﺍﺭﺓ ﺍﻝﻌﺎﻤﺔ ،ﺍﻝﺭﻴﺎﺽ. - ﻋﺒﺩ ﺍﻝﺤﻤﻴﺩ ﺍﻝﺒﻠﺩﺍﻭﻱ ) . ( 1997ﺍﻹﺤﺼﺎﺀ ﻝﻠﻌﻠﻭﻡ ﺍﻹﺩﺍﺭﻴﺔ ﻭﺍﻝﺘﻁﺒﻴﻘﻴﺔ.ﺩﺍﺭ ﺍﻝﺸﺭﻭﻕ -ﻋﻤﺎﻥ – ﺍﻷﺭﺩﻥ. - ﻋﺩﻨﺎﻥ ﻋﻭﺽ -ﻤﻔﻴﺩ ﻋﺯﺍﻡ ). ( 1998ﻁﺭﻕ ﺍﻹﺤﺼﺎﺀ ﺒﺎﻝﺤﺎﺴﻭﺏ .ﺠﺎﻤﻌﺔ ﺍﻝﻘﺩﺱ ﺍﻝﻤﻔﺘﻭﺤﺔ . - -4- ز ! ا ات ا%ور" 120 100 80 60 40 20 0 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 ﺜﺎﻨﻴ ﹰﺎ :ﺍﻝﺘﻐﻴﺭﺍﺕ ﻏﻴﺭ ﻝﻤﻨﺘﻅﻤﺔ ) ﺍﻝﻌﺭﻀﻴﺔ ( : ﺘﺸﻤل ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﻌﺭﻀﻴﺔ ﺃﻭ ﺍﻝﻔﺠﺎﺌﻴﺔ ﺍﻝﺘﻲ ﺘﺤﺩﺙ ﻓﺠﺎﺌﻴﺔ ﻻ ﻴﻤﻜﻥ ﺍﻝﺘﻨﺒﺅ ﺒﻬﺎ.ﻭﻤﻥ ﺃﻤﺜﻠﺘﻬﺎ ﻤﺎ ﻴﺤﺩﺙ ﻝﻠﻨﺸﺎﻁ ﺍﻻﻗﺘﺼﺎﺩﻱ ﻓﻲ ﺒﻠﺩ ﻤﺎ ﺒﺴﺒﺏ ﺍﻝﺯﻻﺯل ﺃﻭ ﺍﻝﺤﺭﻭﺏ ﻏﻴﺭ ﺍﻝﻤﺘﻭﻗﻌﺔ. ﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﺘﻐﻴﺭﺍﺕ ﻓﺠﺎﺌﻴﺔ 17 16 15 14 13 12 11 10 9 1980 1982 1984 1986 1988 1990 1992 1981 1983 1985 1987 1989 1991 1993 1 :4-1ﺘﺤﻠﻴل ﺍﻝﺴﻠﺴﻠﺔ ﺇﻝﻰ ﻤﻜﻭﻨﺎﺘﻬﺎ ﺍﻝﺭﺌﻴﺴﻴﺔ 1 Regis bourbonnis et michel tirraza," analyse des séries temporelle en économiques ", PUF ,1998 , p18. ا اوم '" ،ا ا&"#$ %ر ا ل ا ا ا اد "، ا - & )"& ا( #د ،م '(% ،14ا&#$%د ارا" ،آ ارا ،ا د ،اض ،ص ص-175: ,190 -5- ﻴﺘﻁﻠﺏ ﺘﺤﻠﻴل ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﺼﻴﺎﻏﺔ ﻨﻤﻭﺫﺝ ﺭﻴﺎﻀﻲ ﻴﻤﺜل ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﻤﻌﻁـﺎﺓ.ﻭﻗـﺩ ﻁـﻭﺭ ﺍﻷﺨﺼﺎﺌﻴﻭﻥ ﻋﺩﺓ ﻨﻤﺎﺫﺝ ﺭﻴﺎﻀﻴﺔ ﺘﺭﺒﻁ ﺒﻴﻥ ﻗﻴﻡ ﺍﻝﻤﺸﺎﻫﺩﺍﺕ ،ﻭﻗﻴﻡ ﺍﻝﻤﺭﻜﺒﺎﺕ ﺍﻝﻤﺨﺘﻠﻔﺔ ﻝﻠﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ. ﻭﻗﺒل ﺃﻥ ﻨﺫﻜﺭ ﺒﻌﺽ ﻫﺫﻩ ﺍﻝﻨﻤﺎﺫﺝ ﺴﻨﺘﻔﻕ ﻋﻠﻰ ﺍﺴﺘﺨﺩﺍﻡ ﺍﻝﺭﻤﻭﺯ ﺍﻝﺘﺎﻝﻴﺔ ﻓﻲ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ.ﻴﺴـﺘﺨﺩﻡ ﺍﻝﺭﻤﺯ Tﻝﻴﺩل ﻋﻠﻰ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ،ﻭﺍﻝﺭﻤﺯ Sﻝﻴﺩل ﻋﻠﻰ ﺍﻝﻤﺭﻜﺒﺔ ﺍﻝﻔﺼﻠﻴﺔ ) ﺍﻝﻤﻭﺴﻤﻴﺔ ( ،ﻭﺍﻝﺭﻤﺯ C ﻝﻴﺩل ﻋﻠﻰ ﺍﻝﻤﺭﻜﺒﺔ ﺍﻝﺩﻭﺭﻴﺔ ،ﻭﺍﻝﺭﻤﺯ Iﻝﻴﺩل ﻋﻠﻰ ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﻌﺭﻀﻴﺔ.ﻭﻤﻥ ﺃﺒﺭﺯ ﺍﻝﻨﻤﺎﺫﺝ ﺍﻝﺭﻴﺎﻀﻴﺔ ﺍﻝﺘﻲ ﺘﺼﻑ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﻫﻲ ﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﻀﺭﺒﻲ ﻭﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﺠﻤﻌﻲ. :1-4-1ﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﻀﺭﺒﻲ ﻭﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﺠﻤﻌﻲ ﺃﻭﻻ:ﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﻀﺭﺒﻲ ﻫﻭ ﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﺫﻱ ﻴﻔﺘﺭﺽ ﺃﻥ ﻗﻴﻤﺔ ﺍﻝﻅﺎﻫﺭﺓ ) ﺍﻝﻤﺸﺎﻫﺩﺓ ( ﻋﻨﺩ ﺃﻱ ﻨﻘﻁﺔ ﺯﻤﻨﻴﺔ ﻴﺴﺎﻭﻱ ﺤﺎﺼل ﻀﺭﺏ ﺍﻝﻤﺭﻜﺒﺎﺕ ﺍﻷﺭﺒﻌﺔ ﺃﻱ ﺃﻥ: Y= T. S. C. I ﻭﻴﺴﺘﻌﻤل ﻫﺫﺍ ﺍﻝﻨﻤﻭﺫﺝ ﻏﺎﻝﺒﹰﺎ ﻓﻲ ﺍﻝﺤﺎﻻﺕ ﺍﻝﺘﻲ ﺘﻜﻭﻥ ﻓﻴﻬﺎ ﺍﻝﻤﺭﻜﺒﺎﺕ S, C, Iﻤﻌﻁﺎﺓ ﺃﻭ ﻤﻁﻠﻭﺒﺔ ﻋﻠﻰ ﺼﻭﺭﺓ ﻨﺴﺏ ﻤﺌﻭﻴﺔ ،ﻭﺫﻝﻙ ﻤﻥ ﺃﺠل ﺃﻥ ﺘﻜﻭﻥ ﻭﺤﺩﺍﺕ ﻗﻴﺎﺱ Tﻫﻲ ﻨﻔﺱ ﻭﺤﺩﺍﺕ ﻗﻴﺎﺱ.Y ﻭﻤﻥ ﺼﻔﺎﺕ ﺍﻝﻨﻤﻭﺫﺝ ﺃﻨﻪ ﻴﺴﺘﺨﺩﻡ ﻓﻲ ﺍﻝﺤﺎﻻﺕ ﺍﻝﺘﻲ ﻴﻤﻜﻥ ﺃﻥ ﻨﻔﺭﺽ ﻓﻴﻬﺎ ﺃﻥ ﺍﻝﻤﺭﻜﺒﺎﺕ ﺍﻷﺭﺒﻊ ﻴﺅﺜﺭ ﺒﻌﻀﻬﺎ ﻓﻲ ﺒﻌﺽ ﻋﻠﻰ ﺍﻝﺭﻏﻡ ﻤﻥ ﺃﻥ ﻤﺼﺎﺩﺭ ﺤﺩﻭﺜﻬﺎ ﺘﻜﻭﻥ ﻤﺨﺘﻠﻔﺔ. ﻭﻤﻥ ﺃﻤﺜﻠﺔ ﺍﻝﺴﻼﺴل ﺍﻝﺘﻲ ﻴﺼﻠﺢ ﻝﻬﺎ ﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﻀﺭﺒﻲ ﺴﻠﺴﻠﺔ ﻜﻤﻴﺎﺕ ﺍﻝﻤﺒﻴﻌﺎﺕ ﻤﻥ ﺴﻠﻌﺔ ﻤﻌﻴﻨﺔ، ﻷﻨﻪ ﻴﺒﺩﻭ ﺃﻥ ﻫﻨﺎﻙ ﺘﺄﺜﻴﺭﺍ ﻭﺍﻀﺤﹰﺎ ﻝﻠﻤﺭﻜﺒﺎﺕ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ . ﺜﺎﻨﻴ ﹰﺎ :ﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﺠﻤﻌﻲ ﺤﻴﺙ ﻴﻔﺘﺭﺽ ﺃﻥ ﻗﻴﻤﺔ ﺍﻝﻅﺎﻫﺭﺓ ) ﺍﻝﻤﺸﺎﻫﺩﺓ ( ﻓﻲ ﺃﻱ ﻨﻘﻁﺔ ﺯﻤﻨﻴﺔ ﻫﻲ ﺤﺎﺼل ﺠﻤﻊ ﺍﻝﻤﺭﻜﺒـﺎﺕ ﺍﻷﺭﺒﻌﺔ ﺃﻱ ﺃﻥ: Y = T+ S + C + I ﻭﻴﺴﺘﻌﻤل ﻫﺫﺍ ﺍﻝﻨﻤﻭﺫﺝ ﺇﺫﺍ ﻓﺭﻀﻨﺎ ﺃﻥ ﻭﺤﺩﺓ ﻗﻴﺎﺱ ﺠﻤﻴﻊ ﺍﻝﻤﺭﻜﺒﺎﺕ ﻤﺘﺸﺎﺒﻬﺔ ﻭﺘﺸﺎﺒﻪ ﻭﺤﺩﺓ ﻗﻴـﺎﺱ ﺍﻝﻤﺸﺎﻫﺩﺍﺕ ،Yﻭﻴﺤﺩﺙ ﺫﻝﻙ ﺃﻴﻀﹰﺎ ﻋﻨﺩﻤﺎ ﻨﺭﻴﺩ ﺃﻥ ﻨﻘﺩﺭ ﻗﻴﻡ ﺍﻝﻤﺭﻜﺒﺎﺕ ﻻ ﻨﺴﺒﻬﺎ. ﻭﻋﻨﺩ ﺍﺴﺘﻌﻤﺎل ﻫﺫﺍ ﺍﻝﻨﻤﻭﺫﺝ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﺒﺎﻹﻤﻜﺎﻥ ﻓﺭﺽ ﺃﻥ ﺠﻤﻴﻊ ﺍﻝﻤﺭﻜﺒﺎﺕ ﻤﺴﺘﻘل ﺒﻌﻀـﻬﺎ ﻋﻥ ﺒﻌﺽ ،ﺒﻤﻌﻨﻰ ﺃﻥ ﺤﺩﻭﺙ ﺇﺤﺩﺍﻫﺎ ﻻ ﻴﺅﺜﺭ ﻓﻲ ﺤﺩﻭﺙ ﺍﻝﻤﺭﻜﺒﺎﺕ ﺍﻷﺨﺭﻯ .ﻭﻓﻲ ﻫـﺫﺍ ﺍﻝﻨﻤـﻭﺫﺝ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻤﺠﻤﻭﻉ ﻗﻴﻡ ﺍﻝﻤﺭﻜﺒﺔ ﺍﻝﻔﺼﻠﻴﺔ ﻋﻠﻰ ﻤﺩﺍﺭ ﺍﻝﺴﻨﺔ ﻤﺴﺎﻭﻴﺎ ﺼﻔﺭﹰﺍ. ﻤﺜﺎل :2ﺍﻝﺠﺩﻭل ﺍﻝﺘﺎﻝﻲ ﻴﻤﺜل ﺃﻋﺩﺍﺩ ﺍﻝﺤﺠﺎﺝ ﻓﻲ ﺍﻝﻔﺘﺭﺓ ﻤﻥ 1407ﺇﻝﻰ 1420ﺒﺎﻷﻝﻑ 1414 1413 1412 1411 1410 1409 1408 1407 ا 2012 1943 1950 2080 1899 1628 1456 1558 ا(%د 1421 1420 1419 1418 1417 1416 1415 ا 1467 1380 1619 1601 1590 1665 2502 ا(%د -6- ا* ب :ﺤﻠل ﻫﺫﻩ ﺍﻝﺴﻠﺴﻠﺔ ﺤﺴﺏ ﺍﻝﻤﺭﻜﺒﺎﺕ ﺍﻝﻤﺅﺜﺭﺓ ﻓﻴﻬﺎ. ﺍﻝﺤل :ﻨﻤﺜل ﺍﻝﺴﻠﺴﻠﺔ ﺒﻴﺎﻨﻴﺎ ﻜﻤﺎ ﺒﺎﻝﺭﺴﻡ ﺍﻝﺘﺎﻝﻲ: 2600 2400 2200 2000 1800 1600 1400 1200 1407 1409 1422 1413 1415 1417 1419 1421 1408 1410 1412 1414 1416 1418 1420 ﻴﺘﻀﺢ ﻤﻥ ﻤﻼﺤﻅﺔ ﺍﻝﻤﺸﺎﻫﺩﺍﺕ ﻭﺍﻝﺸﻜل ﺍﻝﺒﻴﺎﻨﻲ ﺃﻥ ﻫﺫﻩ ﺍﻝﺴﻠﺴـﻠﺔ ﺘﺘﻌـﺭﺽ ﻝﻼﺘﺠـﺎﻩ ﺍﻝﻌـﺎﻡ ﻭﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﻭﺭﻴﺔ ﻭﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﻌﺭﻀﻴﺔ. ﻜﻤﺎ ﺃﻨﻨﺎ ﻨﻼﺤﻅ ﺃﻥ ﺍﻝﻤﺭﻜﺒﺔ ﺍﻝﻔﺼﻠﻴﺔ ﻏﻴﺭ ﻤﻭﺠﻭﺩﺓ ﺤﻴﺙ ﺃﻥ ﺃﻋﺩﺍﺩ ﺍﻝﺤﺠـﺎﺝ ﺘﻌﻁـﻰ ﺴـﻨﻭﻴﺎ. ﻭﻤﻌﻨﻰ ﻫﺫﺍ ﺃﻥ ﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﺫﻱ ﻴﻤﺜل ﻫﺫﻩ ﺍﻝﺴﻠﺴﻠﺔ ﻻ ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﺍﻝﻤﺭﻜﺒﺔ .S :5-1ﺘﺤﻠﻴل ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻷﻱ ﻅﺎﻫﺭﺓ ﺒﻁﺭﻕ ﻜﺜﻴﺭﺓ ،ﻭﻤﻥ ﺃﻫﻡ ﺍﻝﻁﺭﻕ ﺍﻝﺘﻲ ﻨﺴﺘﺨﺩﻤﻬﺎ ﻓـﻲ ﻫـﺫﺍ ﺍﻝﻤﺠﺎل ﻫﻲ: /"0ا(.ت ا-ى : ﻴﻤﻜﻥ ﺘﻘﺩﻴﺭ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻝﻠﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﺒﻁﺭﻴﻘﺔ ﺍﻝﻤﺭﺒﻌﺎﺕ ﺍﻝﺼﻐﺭﻯ ،ﺒﺤﻴﺙ ﻨﺴﺘﺨﺩﻡ ﺍﻝـﺯﻤﻥ ﻜﻤﺘﻐﻴﺭ ﻤﺴﺘﻘل Xﻭﻗﻴﻡ ﺍﻝﺴﻠﺴﻠﺔ Yﻜﻤﺘﻐﻴﺭ ﺘﺎﺒﻊ ،ﻭﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻝﺔ ﺍﻻﻨﺤﺩﺍﺭ ﻝﻠﺘﻨﺒـﺅ ﻋـﻥ ﻗـﻴﻡ ﻤﺴﺘﻘﺒﻠﻴﺔ ﻝﻬﺫﻩ ﺍﻝﺴﻠﺴﻠﺔ.ﻭﻫﻨﺎﻙ ﺃﻨﻭﺍﻉ ﻋﺩﻴﺩﺓ ﻤﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻤﻨﻬﺎ . 1 ﺃﻭ ﹰﻻ :ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﺍﻝﺨﻁﻲ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻝﻅﺎﻫﺭﺓ ﺘﺯﻴﺩ ﺃﻭ ) ﺘﻨﻘﺹ( ﺒﻤﻘﺩﺍﺭ ﺜﺎﺒﺕ ﻜل ﻓﺘﺭﺓ ﺯﻤﻨﻴﺔ ﻓﺈﻥ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠـﺎﻩ ﺍﻝﻌـﺎﻡ ﺘﻜﻭﻥ ﻋﻠﻰ ﺼﻭﺭﺓ ﺨﻁ ﻤﺴﺘﻘﻴﻡ ﺃﻱ ﺃﻥ ﻤﻌﺎﺩﻝﺘﻪ ﻫﻲ: yˆ = aˆ + bˆ x ﺤﻴﺙ ̂ : aﻫﻭ ﺍﻝﺠﺯﺀ ﺍﻝﻤﻘﻁﻭﻉ ﻤﻥ ﺍﻝﻤﺤﻭﺭ ﺍﻝﺭﺃﺴﻲ ̂ : bﻤﻴل ﺨﻁ ﺍﻻﺘﺠﺎﻩ ̂ : yﻗﻴﻤﺔ ﺍﻝﻅﺎﻫﺭﺓ ﺍﻻﺘﺠﺎﻫﻴﺔ : xﺩﻝﻴل ﺍﻝﺯﻤﻥ ) ﺘﺒﺩﺃ ﺒﺎﻝﻭﺍﺤﺩ ﻷﻭل ﻓﺘﺭﺓ ﺜﻡ ﺍﺜﻨﻴﻥ ﻝﻠﻔﺘﺭﺓ ﺍﻝﺜﺎﻨﻴﺔ ﻭﻫﻜﺫﺍ(.......... 1 Regis bourbonnis et michel tirraza, ibid, p :21 -7- ﻤﻼﺤﻅﺔ:ﺇﻥ ﺇﻋﻁﺎﺀ ﺘﺭﻗﻴﻡ ﻤﺘﺴﻠﺴل ﻝﻠﺯﻤﻥ ﻋﻠﻰ ﺍﻝﻨﺤﻭ 1,2,3ﻝﻴﺱ ﻤﻠﺯﻤﹰﺎ ﺇﺫ ﻴﻤﻜﻥ ﺍﻻﺒﺘﺩﺍﺀ ﻤﻥ ﺼﻔﺭ ﺜﻡ ﻭﺍﺤﺩ ﻭﻫﻜﺫﺍ . ﻭﺘﻜﻭﻥ = ˆb ∑ xy − n x y ∑ x 2 − nx 2 و aˆ = y − bˆ x ﺒﻌﺩ ﺘﻘﺩﻴﺭ ̂ b̂ ، aﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻓﻲ ﺍﻝﺘﻨﺒﺅ ﺒﺎﻝﻘﻴﻡ ﺍﻝﻤﺴـﺘﻘﺒﻠﻴﺔ ﻝﻠﻅـﺎﻫﺭﺓ ﻭﺫﻝﻙ ﺒﺎﻝﺘﻌﻭﻴﺽ ﻋﻥ ﻗﻴﻡ Xﻓﻲ ﺍﻝﻤﻌﺎﺩﻝﺔ: yˆ = aˆ + bˆ x !ل :3 ﺍﻝﺠﺩﻭل ﺍﻝﺘﺎﻝﻲ ﻴﻭﻀﺢ ﻋﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ ﺍﻝﺘﻲ ﻨﻘﻠﺕ ﺍﻝﺤﺠﺎﺝ ﻓﻲ ﺍﻝﺴﻨﻭﺍﺕ ﻤﻥ 1416 – 1407ﻫـ 1411 1410 1409 1408 1407 ﺍﻝﺴﻨﺔ 94355 124108 92234 88460 98017 ﻋﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ 1416 1415 1414 1413 1412 ﺍﻝﺴﻨﺔ 122991 145973 117724 114732 122521 ﻋﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ ﺍﻝﻤﻁﻠﻭﺏ :ﺇﻴﺠﺎﺩ ﻤﻌﺎﺩﻝﺔ ﺨﻁ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ. ﺍﻝﺤل :ﻹﻴﺠﺎﺩ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻨﺤﺴﺏ ̂ b̂ ، aﺤﻴﺙ ﻨﻌﺭﻑ ﺍﻝﺯﻤﻥ Xﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺍﻝﻌﺩﺩ ﻭﺍﺤﺩ ﺒﺸﻜل ﻤﺘﺴﻠﺴل ﻭﺒﺯﻴﺎﺩﺓ ﻭﺍﺤﺩ ﻓﻲ ﻜل ﻤﺭﺓ ﻭﺒﺎﻝﺘﻁﺒﻴﻕ ﻨﺤﺼل ﻋﻠﻰ: ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻫﻲ: yˆ = 86950 + 4574. 818 x !ل:4 ﻤﻥ ﺍﻝﺘﻁﺒﻴﻕ ﺍﻝﺜﺎﻝﺙ ﻤﺎ ﻫﻲ ﻋﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ ﺍﻝﻤﻘﺩﺭﺓ ﻝﻌﺎﻡ 1420؟ ﺍﻝﺤل :ﻹﻴﺠﺎﺩ ﻋﺩﺩ ﺍﻝﺴﻴﺎﺭﺍﺕ ﺍﻝﻤﻘﺩﺭﺓ ﻝﻌﺎﻡ 1420ﻨﻌﻭﺽ ﻋﻥ x = 14ﻓﻲ ﺍﻝﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻫﻴﺔ ﻓﺘﻜﻭﻥ: ﺜﺎﻨﻴ ﹰﺎ :ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻏﻴﺭ ﺍﻝﺨﻁﻲ ﻗﺩ ﻨﻭﺍﺠﻪ ﺤﺎﻻﺕ ﻤﻐﺎﻴﺭﺓ ﻝﻼﺘﺠﺎﻩ ﺍﻝﺨﻁﻲ ﻋﻨﺩ ﻭﺼﻑ ﺍﻝﺘﻐﻴﺭﺍﺕ ﻝﻠﺴﻠﺴﻠﺔ ﺒﺤﻴـﺙ ﻻ ﻴﻤﻜـﻥ ﻤﻌﻬـﺎ ﺍﺴﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﺨﻁﻲ ﺨﺎﺼﺔ ﻤﻊ ﺍﻝﻅﻭﺍﻫﺭ ﺍﻻﻗﺘﺼﺎﺩﻴﺔ ﺍﻝﺘﻲ ﺘﺘﺼﻑ ﺒـﺎﻝﺘﻐﻴﺭ ﻋﻠـﻰ ﺍﻷﻤـﺩ ﺍﻝﻁﻭﻴل ،ﺤﻴﻨﺌﺫ ﻨﺴﺘﺨﺩﻡ ﻤﻌﺎﺩﻝﺔ ﻏﻴﺭ ﺨﻁﻴﺔ ﻤﻨﺎﺴﺒﺔ ﻝﻘﻴﺎﺱ ﻤﻨﺤﻨﻰ ﺍﻻﺘﺠﺎﻩ .ﻭﻤﻥ ﺃﻫﻡ ﻫﺫﻩ ﺍﻝﻁﺭﻕ ﻨﺠﺩ: -8- ( :1د ا 4ا(م ا23 ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻝﻅﺎﻫﺭﺓ ﺘﺯﻴﺩ ) ﺃﻭ ﺘﻨﻘﺹ ( ﺒﻤﻌﺩل ﺜﺎﺒﺕ ﻜل ﻓﺘﺭﺓ ﺯﻤﻨﻴﺔ ﻓﺎﻥ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌـﺎﻡ ﺘﺄﺨـﺫ ﺍﻝﺸﻜل ﺍﻝﺘﺎﻝﻲ: ˆyˆ = aˆ b x ˆ aˆ , bﻨﺄﺨﺫ ﻝﻭﻏﺎﺭﻴﺘﻡ ﺍﻝﻁﺭﻓﻴﻥ ﻓﺘﺼﺒﺢ ﺍﻝﻤﻌﺎﺩﻝﺔ: ﻭﻝﻠﺤﺼﻭل ﻋﻠﻰ ˆlog yˆ = log aˆ + x log b ﻭﻨﺤﺼل ﻋﻠﻰ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ˆaˆ , b ﻭﺒﻨﻔﺱ ﺍﻷﺴﻠﻭﺏ ﺍﻝﺴﺎﺒﻕ ﻨﻘﺩﺭ ˆ log aˆ , log bﻭﻤﻥ ﺜﻡ ﻨﺠﺩ ﺍﻵﺴﻴﺔ ﺍﻝﺘﻲ ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ ﺍﻝﺘﻨﺒﺅ. : 2ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﺘﺭﺒﻴﻌﻲ ﺇﺫﺍ ﺩل ﺍﻝﺘﻤﺜﻴل ﺍﻝﺒﻴﺎﻨﻲ ﻝﻠﺴﻠﺴﻠﺔ ﺍﻝﺒﻴﺎﻨﻴﺔ ﻋﻠﻰ ﻭﺠﻭﺩ ﻋﻼﻗﺔ ﻤﻨﺤﻨﻴﺔ ﻤﻥ ﺍﻝﺩﺭﺠﺔ ﺍﻝﺜﺎﻨﻴﺔ ﻤﺜﻠﹰﺎ ) ﻗﻁﻌﹰﺎ ﻤﻜﺎﻓﺌﹰﺎ ( ،ﻓﺈﻥ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﺘﻜﻭﻥ ﻋﻠﻰ ﺼﻭﺭﺓ ﻤﻌﺎﺩﻝﺔ ﻤﻥ ﺍﻝﺩﺭﺠﺔ ﺍﻝﺜﺎﻨﻴﺔ ﻓﻲ ﻤﺘﻐﻴﺭ ﻭﺍﺤـﺩ ﻭﺘﺄﺨـﺫ ﺍﻝﺼﻭﺭﺓ ﺍﻝﺘﺎﻝﻴﺔ = ˆy aˆ + bˆ x + cˆ x 2 ﻭﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻝﻤﺭﺒﻌﺎﺕ ﺍﻝﺼﻐﺭﻯ ﻨﻘﺩﺭ ﻜﻼ ﻤـﻥ c , b , aﻭﺒـﺎﻝﺘﻌﻭﻴﺽ ﻓـﻲ ﺍﻝﻤﻌﺎﺩﻝﺔ ﺍﻝﺴﺎﺒﻘﺔ ﻨﺤﺼل ﻋﻠﻰ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﺍﻝﺘﻲ ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ ﺍﻝﺘﻨﺒﺅ ﺒﺎﻝﻘﻴﻡ ﺍﻝﻤﺴـﺘﻘﺒﻠﻴﺔ ﻝﻠﻅﺎﻫﺭﺓ . !ل : 5ﺍﻝﺠﺩﻭل ﺍﻝﺘﺎﻝﻲ ﺃﻋﺩﺍﺩ ﺍﻝﻤﺴﺎﻓﺭﻴﻥ ﺒﻭﺍﺴﻁﺔ ﺇﺤﺩﻯ ﺸﺭﻜﺎﺕ ﺍﻝﻁﻴﺭﺍﻥ ﺍﻝﻌﺎﻝﻤﻴﺔ ﺨﻼل ﺍﻝﺴﻨﻭﺍﺕ 2001 – 1991ﻤﻘﺩﺭﺓ ﺒﺎﻷﻝﻑ. 1996 1995 1994 1993 1992 1991 ا 310 300 240 260 250 210 %د ا5"6 2001 2000 1999 1998 1997 ا 560 530 470 380 330 %د ا5"6 ا* ب : – 1ﺍﺭﺴﻡ ﺴﻠﺴﻠﺔ ﺃﻋﺩﺍﺩ ﺍﻝﻤﺴﺎﻓﺭﻴﻥ . – 2ﺤﺩﺩ ﺍﻝﻨﻤﻭﺫﺝ ﺍﻝﻤﻼﺌﻡ ﻹﻴﺠﺎﺩ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ . - 3ﺇﻴﺠﺎﺩ ﻤﻌﺎﺩﻝﺔ ﺨﻁ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ . – 4ﻤﺎ ﻫﻲ ﺃﻋﺩﺍﺩ ﺍﻝﻤﺴﺎﻓﺭﻴﻥ ﺍﻝﻤﻘﺩﺭﺓ ﻝﻌﺎﻡ 2003؟ ا : – 1ﻨﺭﺴﻡ ﺍﻝﺴﻠﺴﻠﺔ ﻜﺎﻵﺘﻲ : -9- 600 500 400 300 Value VAR00001 200 100 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 - 2ﻭﺍﻀﺢ ﻤﻥ ﻫﺫﺍ ﺍﻝﺸﻜل ﺃﻥ ﺨﻁ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻤﺴﺘﻘﻴﻡ ﻻ ﻴﻜﻭﻥ ﻤﻼﺌﻤﹰﺎ ﻭﺃﻥ ﺍﻝﺸﻜل ﻴﻭﺤﻲ ﺒﺈﻤﻜﺎﻨﻴـﺔ ﺍﺴﺘﺨﺩﺍﻡ ﺍﻝﻨﻤﻭﺫﺝ ﺍﻵﺘﻰ. yˆ = aˆ bˆ x ﻭﺒﺄﺨﺫ ﻝﻭﻏﺎﺭﻴﺘﻡ ﺍﻝﻁﺭﻓﻴﻥ ﺘﺼﺒﺢ ﺍﻝﻤﻌﺎﺩﻝﺔ log yˆ = log aˆ + x log ˆb b 1 = log ˆb ˆ a 1 = log aﻭ ﻨﻔﺭﺽ ﺃﻥ ˆ y 1 = log yﻭ ﻓﺘﺼﺒﺢ ﺍﻝﻤﻌﺎﺩﻝﺔ ﻋﻠﻰ ﺍﻝﺼﻭﺭﺓ: y 1 = a 1 + b 1 x a 1 , b 1 ﻭﻫﻲ ﻤﻌﺎﺩﻝﺔ ﻝﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺨﻁﻴﺔ ﺘﻤﻜﻨﻨﺎ ﻤﻥ ﺍﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻝﻤﺭﺒﻌﺎﺕ ﺍﻝﺼﻐﺭﻯ ﻝﺤﺴﺎﺏ a 1 = 2. 267 , b 1 =. 04225 - 3ﻤﻥ ﺍﻝﻨﺘﺎﺌﺞ ﻨﻼﺤﻅ ﺃﻥ ﻭﻤﻨﻪ ﺘﻜﻭﻥ aˆ = 10a1 = 102.267 = 184.927 bˆ = 10b1 = 10.04225 = 1.1022 ﻭﺘﻜﻭﻥ ﺍﻝﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻫﻴﺔ ﻫﻲ: yˆ = 184. 927 (1. 1022 ) x – 4ﻭﻹﻴﺠﺎﺩ ﺃﻋﺩﺍﺩ ﺍﻝﻤﺴﺎﻓﺭﻴﻥ ﺍﻝﻤﻘﺩﺭﺓ ﻝﻌﺎﻡ 2003ﻨﻌﻭﺽ ﻓﻲ ﺍﻝﻤﻌﺎﺩﻝﺔ ﻋﻥ x = 13 ﻓﻴﻜﻭﻥ ﺍﻝﻌﺩﺩ ﺍﻝﻤﻘﺩﺭ ﻫﻭ .655 1 :6-1ﺘﺤﻠﻴل ﺍﻝﺘﻐﻴﺭ ﺍﻝﻤﻭﺴﻤﻲ ﺘﺘﺭﻜﺯ ﺃﻫﻤﻴﺔ ﺩﺭﺍﺴﺔ ﺍﻝﺘﻐﻴﺭﺍﺕ ﺍﻝﻤﻭﺴﻤﻴﺔ ﻓﻲ ﻜل ﻤﻥ ﺘﺨﻠﻴﺹ ﺍﻝﺒﻴﺎﻨﺎﺕ ﻤﻥ ﺃﺜﺭ ﺍﻝﻤﻭﺴﻡ ﻭﻓﻲ ﺍﻝﺘﻨﺒﺅ. ﻭﻫﻨﺎﻙ ﻋﺩﺓ ﻁﺭﻕ ﻝﺘﻘﺩﻴﺭ ﺍﻝﻤﺭﻜﺒﺔ ﺍﻝﻤﻭﺴﻤﻴﺔ )ﺍﻝﻔﺼﻠﻴﺔ (.ﺴﻨﻜﺘﻔﻲ ﺒﺫﻜﺭ ﻭﺍﺤﺩﺓ ﻤﻨﻬـﺎ ﻭﺍﻝﺘـﻲ ﺘﺴـﻤﻰ ﺍﻝﻨﺴﺒﺔ ﺇﻝﻰ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﻭﺘﻌﺘﻤﺩ ﻫﺫﻩ ﺍﻝﻁﺭﻴﻘﺔ ﻋﻠﻰ ﺤﺴﺎﺏ ﺍﻝﺩﻝﻴل ﺍﻝﻤﻭﺴﻤﻲ. :1-6-1ﺘﻌﺭﻴﻑ ﺍﻝﺩﻝﻴل ﺍﻝﻤﻭﺴﻤﻲ 1ﻤﻭﻝﻭﺩ ﺤﺸﻤﺎﻥ .ﺘﻘﻨﻴﺎﺕ ﻭ ﻨﻤﺎﺫﺝ ﺍﻝﺘﻨﺒﺅ ﺍﻝﻘﺼﻴﺭ ﺍﻝﻤﺩﻯ ، OPU،ﺍﻝﺠﺯﺍﺌﺭ ، 2002 ،ﺹ .38 -ﻋﺯﺍﻡ ،ﻋﺒﺩ ﺍﻝﻤﺭﻀﻲ ﺤﺎﻤﺩ ﻭﺃﺤﻤﺩ ﺤﺴﻴﻥ ﻫﺎﺭﻭﻥ.ﺍﻝﺴﻼﺴـل ﺍﻝﺯﻤﻨﻴـﺔ ﻤـﻥ ﺍﻝﺠﻬـﺔ ﺍﻝﺘﻁﺒﻴﻘﻴـﺔ ﻭﻨﻤـﺎﺫﺝ ﺒـﻭﻜﺱ- ﺠﻨﻜﻨﺯ.ﻜﺘﺎﺏ ﻤﺘﺭﺠﻡ ،ﺍﻝﺭﻴﺎﺽ :ﺩﺍﺭ ﺍﻝﻤﺭﻴﺦ1992،ﻡ. - 10 - ﻨﺴﺒﺔ ﻤﺌﻭﻴﺔ ﺘﻭﻀﺢ ﺃﺜﺭ ﺍﻝﻤﻭﺴﻡ ﻓﻲ ﺍﻝﻅﺎﻫﺭﺓ ﻤﺤل ﺍﻝﺩﺭﺍﺴﺔ ﻓﺈﺫﺍ ﻜﺎﻥ ﺍﻝﺩﻝﻴل ﺍﻝﻤﻭﺴﻤﻲ ﻷﺤﺩ ﺍﻝﻤﻭﺍﺴﻡ % 98ﻴﺩل ﻋﻠﻰ ﺃﻥ ﻫﺫﺍ ﺍﻝﻤﻭﺴﻡ ﻴﺅﺩﻱ ﺇﻝﻰ ﻨﻘﺹ ﻗﻴﻡ ﺍﻝﻅﺎﻫﺭﺓ ﺒﻨﺴﺒﺔ % 2ﻭﺇﺫﺍ ﻜﺎﻥ ﺍﻝﺩﻝﻴل ﺍﻝﻤﻭﺴﻤﻲ % 105ﺩل ﺫﻝﻙ ﻋﻠﻰ ﺃﻥ ﺍﻝﻅﺎﻫﺭﺓ ﺘﺯﻴﺩ ﻓﻲ ﻫﺫﺍ ﺍﻝﻤﻭﺴﻡ ﺒﻨﺴﺒﺔ .% 5 :2-6-1ﺨﻁﻭﺍﺕ ﺤﺴﺎﺏ ﺍﻝﺩﻝﻴل ﺍﻝﻤﻭﺴﻤﻲ -1ﺭﺴﻡ ﺍﻝﺴﻠﺴﻠﺔ ﺍﻝﺯﻤﻨﻴﺔ ﻭﻤﻥ ﺨﻼل ﺍﻝﺭﺴﻡ ﻨﺤﺩﺩ ﻤﻌﺎﺩﻝﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﺍﻝﻤﻨﺎﺴﺒﺔ . – 2ﺃﻴﺠﺎﺩ ﻤﻌﺎﺩﻝﺔ ﺨﻁ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻝﻤﺭﺒﻌﺎﺕ ﺍﻝﺼﻐﺭﻯ ﻤﻊ ﺃﺨﺫ ﻗﻴﻡ Xﻤﻭﺴﻤﻴﹰﺎ. – 3ﺘﻜﻭﻴﻥ ﺍﻝﻘﻴﻡ ﺍﻻﺘﺠﺎﻫﻴﺔ ﺒﺎﻝﺘﻌﻭﻴﺽ ﻋﻥ Xﻓﻲ ﻤﻌﺎﺩﻝﺔ ﺨﻁ ﺍﻻﺘﺠﺎﻩ ﺍﻝﻌﺎﻡ. y – 4ﺘﻜﻭﻴﻥ ﺍﻝﻨﺴﺏ ﺍﻝﻤﻭﺴﻤﻴﺔ ﻝﻜل ﻤﻭﺴﻡ = ) ( 100 ̂y – 5ﺘﻜﻭﻴﻥ ﻤﺘﻭﺴﻁ ﺍﻝﻨﺴﺏ ﺍﻝﻤﻭﺴﻤﻴﺔ ﻝﻜل ﻤﻭﺴﻡ ﻋﺒﺭ ﺍﻝﺴﻨﻭﺍﺕ ﻭﻝﻴﻜﻥ . m i – 6ﺤﺴﺎﺏ ﺍﻝﺩﻝﻴل ﺍﻝﻤﻭﺴﻤﻲ ﻤﻥ ﺍﻝﻤﻌﺎﺩﻝﺔ: mi = si 100 m ∑ i m ﻋﺩﺩ ﺍﻝﻤﻭﺍﺴﻡ s i ،ﺍﻝﺩﻝﻴل ﺍﻝﻤﻭﺴﻤﻲ ﻝﻜل ﻤﻭﺴﻡ . ﺤﻴﺙ m !8ل : 6ﺍﻝﺒﻴﺎﻨﺎﺕ ﺍﻝﺘﺎﻝﻴﺔ ﺘﻭﻀﺢ ﺍﻝﻤﺒﻴﻌﺎﺕ ﺭﺒﻊ ﺍﻝﺴﻨﻭﻴﺔ ) ﺒﺎﻝﻤﻠﻴﻭﻥ ﺭﻴﺎل ( ﻹﺤـﺩﻯ ﺸـﺭﻜﺎﺕ ﺍﻝﻤﻴﺎﻩ ﺍﻝﻐﺎﺯﻴﺔ ﻝﺴﻨﻭﺍﺕ 2001 ، 2000 ، 1999 ا 2001 2000 1999 ا9. 13 12 10 ا:ول 25 30 20 ا!;2 70 80 50 ا!