Circle in General Form PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document describes the general equation of a circle, and provides examples of how to convert between general and standard form equations. The document also includes several example problems that demonstrate calculations to obtain the center and radius given the general form.
Full Transcript
CIRCLE IN GENERAL FORM The general form of the equation of a circle are: 1. 𝐀𝐱 + 𝐀𝐲 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 ; where 𝐀 ≠ 𝟎 𝟐 𝟐 2. 𝐱 + 𝐲 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 𝟐 𝟐 where; 𝐃 = −𝟐𝐡 𝐄 = −𝟐𝐤 𝟐 𝟐 𝟐 𝐅=𝐡 +𝐤 −𝐫 Note: (h, k) is the center and r is t...
CIRCLE IN GENERAL FORM The general form of the equation of a circle are: 1. 𝐀𝐱 + 𝐀𝐲 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 ; where 𝐀 ≠ 𝟎 𝟐 𝟐 2. 𝐱 + 𝐲 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 𝟐 𝟐 where; 𝐃 = −𝟐𝐡 𝐄 = −𝟐𝐤 𝟐 𝟐 𝟐 𝐅=𝐡 +𝐤 −𝐫 Note: (h, k) is the center and r is the radius. Steps: 1. Write in standard form. 2. Expand the (𝐱 − 𝐡) 𝟐 and (𝐲 − 𝐤)𝟐 using foil method. 3. Write the equation in general form. 4. Simplify the expression. 1. Write the equation of the circle in general form with center (2, 1) and radius 3 Solution: The standard form of a circle is 𝟐 𝟐 𝟐 (𝐱 − 𝐡) +(𝐲 − 𝐤) = 𝐫 𝟐 𝟐 (𝐱 − 𝟐) +(𝐲 − 𝟏) = (𝟑)𝟐 𝐱 − 𝟐 (𝐱 − 𝟐) 𝟐 𝟐 𝟐 𝐱 −𝟐𝐱 −𝟐𝐱 +𝟒 (𝐱 − 𝟐) +(𝐲 (𝐲 − 𝟏) = 𝟗 𝐱 𝟐 − 𝟒𝐱 + 𝟒 𝐱 𝟐− 𝟒𝐱 + 𝟒+ 𝐲 𝟐 − 𝟐𝐲 + 𝟏= 𝟗 𝟐 𝟐 𝐱 + 𝐲 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 𝟐 𝟐 𝐲 − 𝟏 (𝐲 − 𝟏) 𝐱 + 𝐲 − 𝟒𝐱 − 𝟐𝐲 + 𝟒 + 𝟏 = 𝟗 𝟐 𝟐 𝟐 𝐲 − 𝟏𝐲 − 𝟏𝐲 + 𝟏 𝐱 + 𝐲− 𝟒𝐱 − 𝟐𝐲 + 𝟒 + 𝟏 − 𝟗 = 𝟎 𝐲 𝟐 − 𝟐𝐲 + 𝟏 𝟐 𝟐 𝐱 + 𝐲 − 𝟒𝐱 − 𝟐𝐲 − 𝟒 = 𝟎 1. Write the equation of the circle in general form with center (2, 1) and radius 3 Alternative Solution: Since the center is at (2, 1) and r = 3, where h = 2 and k = 1 𝐅= 𝐡 𝟐 + 𝐤 𝟐 − 𝐫 𝟐 𝐃 = −𝟐𝐡 𝐄 = −𝟐𝐤 𝐅= 𝟐 𝟐 + 𝟏 𝟐 − 𝟑 𝟐 𝐃 = −𝟐(𝟐) 𝐄 = −𝟐(𝟏) 𝐃 = −𝟒 𝐄 = −𝟐 𝐅=𝟒+𝟏−𝟗 𝐅 = −𝟒 𝐱 𝟐 + 𝐲 𝟐 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 𝟐 𝟐 𝐱 + 𝐲 − 𝟒𝐱 − 𝟐𝐲 − 𝟒 = 𝟎 2. Write the equation of the circle in general form with center (-1, -6) and radius 8. Solution: The standard form of a circle is 𝟐 𝟐 𝟐 (𝐱 − 𝐡) +(𝐲 − 𝐤) = 𝐫 (𝐱 − 𝟐 (−𝟏)) +(𝐲 − 𝟐 (−𝟔)) = (𝟖) 𝟐 𝐱 + 𝟏 (𝐱 + 𝟏) 𝟐 𝟐 𝟐 𝐱 +𝟏𝐱 +𝟏𝐱+𝟏 (𝐱 + 𝟏) +(𝐲 (𝐲 + 𝟔) = 𝟔𝟒 𝐱 𝟐 + 𝟐𝐱 + 𝟏 𝐱 𝟐+ 𝟐𝐱 + 𝟏+ 𝐲 𝟐 + 𝟏𝟐𝐲 + 𝟑𝟔 = 𝟔𝟒 𝟐 𝟐 𝐱 + 𝐲 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 𝟐 𝟐 𝐲 + 𝟔 (𝐲 + 𝟔) 𝐱 + 𝐲 + 𝟐𝐱 + 𝟏𝟐𝐲 + 𝟏 + 𝟑𝟔 = 𝟔𝟒 𝟐 𝟐 𝟐 𝐲 + 𝟔𝐲 + 𝟔𝐲 + 𝟑𝟔 𝒙 + 𝒚 + 𝟐𝐱 + 𝟏𝟐𝐲 + 𝟏 + 𝟑𝟔 − 𝟔𝟒 = 𝟎 𝐲 𝟐 + 𝟏𝟐𝐲 + 𝟑𝟔 𝟐 𝟐 𝐱 + 𝐲 + 𝟐𝐱 + 𝟏𝟐𝐲 − 𝟐𝟕 = 𝟎 2. Write the equation of the circle in general form with center (-1, -6) and radius 8. Alternative Solution: Since the center is at (-1, -6) and r = 8, where h = -1 and k = -6 𝐅= 𝐡 𝟐 + 𝐤 𝟐 − 𝐫 𝟐 𝐃 = −𝟐𝐡 𝐄 = −𝟐𝐤 𝐅 = −𝟏 𝟐 + −𝟔 𝟐 − 𝟖 𝟐 𝐃 = −𝟐(−𝟏) 𝐄 = −𝟐(−𝟔) 𝐃=𝟐 𝐄 = 𝟏𝟐 𝐅 = 𝟏 + 𝟑𝟔 − 𝟔𝟒 𝐅 = −𝟐𝟕 𝐱 𝟐 + 𝐲 𝟐 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 𝟐 𝟐 𝐱 + 𝐲 + 𝟐𝐱 + 𝟏𝟐𝐲 − 𝟐𝟕 = 𝟎 3. Write the equation of the circle in general form with center (7, -1) and radius 6. Solution: The standard form of a circle is 𝟐 𝟐 𝟐 (𝐱 − 𝐡) +(𝐲 − 𝐤) = 𝐫 𝟐 𝟐 𝟐 (𝐱 − 𝟕) +(𝐲 − (−𝟏)) = (𝟔) 𝟐 𝟐 (𝐱 − 𝟕) +(𝐲 + 𝟏) = 𝟑𝟔 𝟐 𝟐 𝐱 − 𝟏𝟒𝐱 + 𝟒𝟗+ 𝒚 + 𝟐𝐲 + 𝟏 = 𝟑𝟔 𝐱 𝟐 + 𝐲 𝟐 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 𝐱 𝟐 + 𝐲 𝟐 − 𝟏𝟒𝐱 + 𝟐𝐲 + 𝟒𝟗 + 𝟏 − 𝟑𝟔 = 𝟎 𝐱 𝟐 + 𝐲 𝟐 − 𝟏𝟒𝐱 + 𝟐𝐲 + 𝟏𝟒 = 𝟎 𝟐 𝟐 𝒙 + 𝒚 + 𝑫𝒙 + 𝑬𝒚 + 𝑭 = 𝟎 𝒙−𝒉 𝟐 + 𝒚−𝒌 𝟐 = 𝒓𝟐 Steps: 1. Isolate the constant term. 2. Combine the x and y term. 3. Completing the square for 𝒙 𝐨𝐫 𝒚 , and 𝟐 𝟐 add all the third term to the other side of the equation. 4. Factor the left side using perfect square trinomial. 4. Convert the general equation 𝐱 + 𝐲 + 𝟖𝐱 − 𝟔𝐲 + 𝟐𝟏 = 𝟎 𝟐 𝟐 into standard form equation of a circle. Find the center and radius. Steps: Solution: 1. Isolate the constant term. 𝟐 𝟐 2. Combine the x and y term. 𝐱 + 𝐲 + 𝟖𝐱 − 𝟔𝐲 + 𝟐𝟏 = 𝟎 3. Completing the square for 𝟐 𝟐 𝐱 + 𝐲 + 𝟖𝐱 − 𝟔𝐲 = −𝟐𝟏 𝐱 𝐨𝐫 𝐲 , and add all the third term 𝟐 𝟐 to the other side of the equation. 𝟐 𝟐 (𝐱 +𝟖𝐱) + (𝐲 − 𝟔𝐲) = −𝟐𝟏 4. Factor the left side using perfect square trinomial. 𝟐 (𝐱 +𝟖𝐱 + ____) 𝟐 𝟏𝟔 + (𝐲 − 𝟔𝐲 + ___) 𝟗 = −𝟐𝟏 +𝟏𝟔 +𝟗 𝟐 + 𝐲−𝟑 𝟐 =𝟒 𝐱+𝟒 𝐂 −𝟒 , 𝟑 𝐚𝐧𝐝 𝐫 = 𝟐 5. Convert the general equation 𝟖𝒙 + 𝟖𝒚 − 𝟏𝟔𝒙 + 𝟔𝟒𝒚 − 𝟏𝟎𝟒 = 𝟎 𝟐 𝟐 into standard form equation of a circle. Find the center and radius. Steps: Solution: 1. Isolate the constant term. 𝟖𝒙 𝟐 + 𝟖𝒚𝟐 − 𝟏𝟔𝒙 + 𝟔𝟒𝒚 − 𝟏𝟎𝟒 = 𝟎 2. Combine the x and y term. 𝟖𝒙 𝟐 + 𝟖𝒚𝟐 − 𝟏𝟔𝒙 + 𝟔𝟒𝒚 = 𝟏𝟎𝟒 3. Completing the square for 𝒙 𝐨𝐫 𝒚 , and add all the third term 𝟐 𝟐 𝒙 𝟐 + 𝒚𝟐 − 𝟐𝒙 + 𝟖𝒚 = 𝟏𝟑 to the other side of the equation. 𝟐 𝟐 4. Factor the left side using perfect (𝒙 −𝟐𝒙)+ (𝒚 + 𝟖𝒚) = 𝟏𝟑 square trinomial. 𝟐 𝟐 (𝒙 −𝟐𝒙 + __) 𝟏 + (𝒚 𝟏𝟔 = 𝟏𝟑 +𝟏 +𝟏𝟔 + 𝟖𝒚 + ____) 𝟐+ 𝒚+𝟒 𝟐 = 𝟑𝟎 𝒙−𝟏 𝑪 𝟏 , −𝟒 𝒂𝒏𝒅 𝒓 = 𝟑𝟎 ≈ 𝟓. 𝟒𝟖 6. Convert the general equation + 𝐱 𝟐 𝐲 𝟐 − 𝟐𝐱 − 𝟑𝟓 = 𝟎 into standard form equation of a circle. Find the center and radius. Solution: Steps: 𝟐 𝟐 1. Isolate the constant term. 𝐱 + 𝐲 − 𝟐𝐱 − 𝟑𝟓 = 𝟎 2. Combine the x and y term. 𝐱 𝟐 + 𝐲 𝟐 − 𝟐𝐱 = 𝟑𝟓 3. Completing the square for 𝐱 𝐨𝐫 𝐲 , and 𝟐 𝟐 𝟐 (𝐱 −𝟐𝐱) +𝐲 𝟐 = 𝟑𝟓 add all the third term to the other side of 𝟐 (𝐱 −𝟐𝐱 +𝟏 __) +𝐲 𝟐 = 𝟑𝟓 +𝟏 the equation. 𝟐 + 𝐲 𝟐 4. Factor the left side using perfect square 𝐱−𝟏 = 𝟑𝟔 trinomial. 𝐂 𝟏 , 𝟎 𝐚𝐧𝐝 𝐫 = 𝟔 𝟐 𝟐 𝐀𝐱 + 𝐀𝐲 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 Or 𝟐 𝟐 𝐱 + 𝐲 + 𝐃𝐱 + 𝐄𝐲 + 𝐅 = 𝟎 STEP 1: Write in standard form. STEP 2: Expand the (𝐱 − 𝐡)𝟐 or (𝐲 − 𝐤)𝟐 using foil method. STEP 3: Write the equation in general form. STEP 4: Simplify the expression. STEP 1: Isolate the constant term. STEP 2: Combine the x and y term. STEP 3: Completing the square for 𝒙 𝐨𝐫 𝒚 , and add all the third 𝟐 𝟐 term to the other side of the equation. STEP 4: Factor the left side using perfect square trinomial. ACTIVITY 2: MATCH TO SOLVE! A German automobile manufacturer that designs, engineers, produces, markets and distributes luxury vehicles. 1 2 3 4 Direction: Match column A with column B, by determining the standard and general equation of a circle. A B 1. 𝐱 + 𝐲 − 𝟖𝐱 + 𝟐𝐲 + 𝟏𝟑 = 𝟎 𝟐 𝟐 I. 𝟐 𝟐 𝐱+𝟓 + 𝐲+𝟏 =𝟒 2. 𝐱 + 𝐲 − 𝟐𝐱 + 𝟐𝐲 − 𝟐 = 𝟎 𝟐 𝟐 U. 𝟐 𝟐 𝐱−𝟏 + 𝐲+𝟏 =𝟒 3. 𝐱 + 𝐲 + 𝟒𝐱 + 𝟐𝐲 + 𝟏 = 𝟎 𝟐 𝟐 D. 𝟐 𝟐 𝐱+𝟐 + 𝐲+𝟏 =𝟒 4. 𝐱 + 𝐲 + 𝟏𝟎𝐱 + 𝟐𝐲 + 𝟐𝟐 = 𝟎 𝟐 𝟐 A. 𝟐 𝟐 𝐱−𝟒 + 𝐲+𝟏 =𝟒