Engineering Physics (1) BAS021 Chapter 3 Oscillation PDF
Document Details
Uploaded by DefeatedActionPainting
Delta University
Dr. H. Elhendawi
Tags
Summary
This document is lecture notes on Engineering Physics, covering Chapter 3: Oscillation. It details different types of oscillations, including mechanical and non-mechanical oscillations, and explores concepts like simple harmonic motion, damped harmonic motion, and forced harmonic motion.
Full Transcript
Engineering Physics(1) BAS021 Chapter 3 Oscillation Dr.H.Elhendawi 1 1 What Really Happened at the tacoma narrows bridge? Why do some buildings fall in earthquakes?...
Engineering Physics(1) BAS021 Chapter 3 Oscillation Dr.H.Elhendawi 1 1 What Really Happened at the tacoma narrows bridge? Why do some buildings fall in earthquakes? Dr.H.Elhendawi 2 2 Objectives Demonstrate your understanding of Oscillation definition , its 1 classification and types, motion function and energy function. Write and apply formulas for calculating Motion Function 2 and Energy Conservation Law. 3 Solve problems involving each of the parameters in the above objectives. Dr.H.Elhendawi 3 3 I-Concepts Dr.H.Elhendawi 4 4 1- Oscillation Oscillation is a periodic change in a physical quantity by increasing or decreasing some central value. التذبذب هو تغير دورى فى قيمة فيزيائية بالزيادة أو النقصاا واوق قيماة مةيناة تسامى القيماة.المركزية Dr.H.Elhendawi 5 5 2-Classification of oscillation Mechanical oscillation: تذبذب ميكانيكى An object moves around equilibrium position.. حركة جسم حول موضع اتزان معين As simple pendulum, spring and sound.. حركة البندول و السلك الزنبركى Dr.H.Elhendawi 6 6 Non mechanical oscillation: Is a periodic change in a physical quantity.. تغير دوري في قيمة كمية فيزيائية As Electromagnetic waves, voltage and alternating current. Dr.H.Elhendawi 7 7 3- Types of Oscillation Simple Harmonic Oscillation إهتزازة توافقية بسيطة أو الوركة التوافقية البسيطة ويت ال يودت فقد فى الطاقة. Damped Harmonic Oscillation إهتزازه مخمدة ويث يودث فقد فى الطاقة Forced Harmonic Oscillation. إهتزازة مجبرة ويث يضاف لها طاقة لتصبح إهتزازة توافقية بسيطة . Dr.H.Elhendawi 8 8 1- Simple Harmonic Motion Spring Oscillations An object of mass m oscillating at the end of a spring. Dr.H.Elhendawi 99 Hook’s Law The restoring force F( )قوة اإلسترجاعis directly proportional to the displacement x ) (اإلزاحةthe spring has been stretched or compressed from the equilibrium position. 𝑭=−𝒌𝒙 Where F restoring force (N) »قوة اإلسترجاع «القوة التى تعيد الجسم لوضع اإلتزان دائما k spring constant (N/m) x displacement (m) Minus sign indicates that the restoring force is in the opposite direction to the displacement. 𝑭𝒆𝒙𝒕 = −𝑭 = 𝒌 𝒙 Dr.H.Elhendawi 1 10 0 II- Motion Function 1- Displacement Equation 𝑭=−𝒌𝒙 but 𝒎𝒂 = − 𝒌 𝒙 where m mass , a acceleration 𝒌 𝒂=− 𝒙 𝒎 𝒅𝟐 𝒙 𝒌 𝟐 + 𝒙=𝟎 𝒅𝒕 𝒎 𝒅𝟐 𝒙 𝒌 + 𝝎𝟐 𝒙 =𝟎 (𝝎𝟐 = ) 𝒅𝒕𝟐 𝒎 2nd order difference equation it’s solution is 𝒙 𝒕 = 𝑨 𝒔𝒊𝒏 (𝝎𝒕 + ∅) 1 Dr.H.Elhendawi 11 1 1- Displacement Equation 𝒙 𝒕 = 𝑨 𝒔𝒊𝒏 𝝎𝒕 + ∅ Where 𝒙 𝒕 Displacement at any time t (sec) (t) اإلزاحة عند أى لحظة زمنية A Amplitude ( max displacement) (m) )السعة (أقصى إزاحة يصل إليه االجسم 𝝎 Angular frequency التردد الزاوى 2π 𝒌 𝟏 𝝎 = 2πf = (rad/sec) Or (𝛚 = ,𝑻 = ), T 𝒎 𝒇 ∅ Phase constant (rad) )ثابت الطور و منها تحدد اإلزاحة اإلبتدائية (االزاحة عند زمن صفر 𝒙𝒎𝒂𝒙 = ±𝑨 Dr.H.Elhendawi 1 12 2 2- Velocity Equation 𝒙 𝒕 = 𝑨𝒔𝒊𝒏 𝝎𝒕 + ∅or 𝒙 𝒕 = 𝑨𝒄𝒐𝒔 𝝎𝒕 + ∅ 𝒅𝒙 𝒅𝒙 𝝑 𝒕 = = 𝑨 𝝎 𝒄𝒐𝒔 𝝎𝒕 + ∅ or 𝝑 𝒕 = = −𝑨 𝝎 𝒔𝒊𝒏 𝝎𝒕 + ∅ 𝒅𝒕 𝒅𝒕 𝝑𝒎𝒂𝒙 = ±𝑨𝝎 3- Acceleration Equation 𝒅𝟐 𝒙 𝒂 𝒕 = 𝟐 = −𝑨 𝝎𝟐 𝒔𝒊𝒏 𝝎𝒕 + ∅ = −𝝎𝟐 𝒙 𝒕 𝒅𝒕 Or 𝒂 𝒕 = −𝑨 𝝎𝟐 𝒄𝒐𝒔 𝝎𝒕 + ∅ = −𝝎𝟐 𝒙 𝒕 𝒂𝒎𝒂𝒙 = ±𝑨𝝎𝟐 Dr.H.Elhendawi 1 13 3 SHM Function displacement - velocity - acceleration Dr.H.Elhendawi 1 14 4 III- Conservation Energy of SHM The total mechanical energy is constant. فى الوركة التوافقية البسيطة و تبةا لقانو بقاء الطاقة فإ مجموع طاقتى الوضع و الوركة يظق ثابت عند اى لوظة زمنية. 1 1 )The Potential Energy(U طافة الوضع )∅ 𝑈 = 𝑘𝑥 2 = 𝑘𝐴2 𝑠𝑖𝑛2 (𝜔𝑡 + 2 2 1 1 1 = 𝐸 The Kinetic Energy(K.E) 𝐾. 𝑚𝑣 2 = 𝑚𝜔2 𝐴2 𝑐𝑜𝑠 2 ∅ 𝜔𝑡 + ∅ = 𝑘𝐴2 𝑐𝑜𝑠 2 𝜔𝑡 + 2 2 2 1 ) ∅ 𝐸 = 𝑈 + 𝐾. 𝐸 = 2 𝑘𝐴2 (𝑠𝑖𝑛2 𝜔𝑡 + ∅ + 𝑐𝑜𝑠 2 𝜔𝑡 + )The Total Energy (E 𝟐 𝟏 𝑨𝒌 = 𝑬 𝟐 الوظ أ الطاقة الكلية مقدار ثابت و يتناسب مع مربع السةة 1 15 Dr.H.Elhendawi 5 Conservation Energy of SHM 𝟏 Potential Energy 𝑼 = 𝒌𝒙𝟐 𝟐 at x=0 U=0 1 at x= ±A 𝑈 = 𝑘𝐴2 (Maximum) 2 𝟏 Kinetic Energy 𝑲. 𝑬 = 𝒎𝒗𝟐 𝟐 at x= 0 𝝑 = 𝝑𝒎𝒂𝒙 = ±𝑨𝝎 1 1 𝐾. 𝐸 = 𝑚𝑣 2 = 𝐴2 𝜔2 (Maximum) 2 2 at x= ±A 𝝑=𝟎 𝐾. 𝐸 = 0 Total Energy 𝟏 𝟐 1 2 1 𝑬 = 𝒌𝑨 = 𝑘𝑥 + 𝑚𝑣 2 𝟐 2 2 𝑘 𝑣 2 = (𝑨𝟐 − 𝑥 2 ) 𝑚 so 𝜗 = ±𝜔 𝑨𝟐 − 𝑥 2 1 16 Dr.H.Elhendawi 6 خطوات حل المسائل .1كتابة معادلة اإلزاحة و مقارنتها بالمعادلة المعطاة بالمسألة .2من المقارنه نوجد قيمة Aو𝝎 و ∅ .3إذا كانت هناك رسم نستخرج منه الثوابت السابقة 𝝅𝟐 = 𝒇𝝅𝟐 = 𝝎 .4لحساب التردد و الطول الزمن الدورى 𝑻 released from rest.5معناها أنه بدأ من السكون t=0و عندها x=A و لهذا إذا كان الجسم المرتبط بالسلك الزنبركى مشدود 𝝅 1) Stretched Position x = A 𝒐𝟎𝟗 = = ∅ 𝐨𝐬 𝟏 = ∅𝒏𝒊𝒔 𝒙 = 𝑨 𝒔𝒊𝒏∅ so 𝟐 𝟎 = ∅ 𝐨𝐬 𝟏 = ∅𝒔𝒐𝒄 𝒙 = 𝑨 𝒄𝒐𝒔∅ so 𝒐 لهذا إذا كان الجسم المرتبط بالسلك الزنبركى مضغوط 𝝅𝟑 𝒐𝟎𝟕𝟐 = 𝟐 = ∅ 𝒐𝒔 𝟏2) Compression Position x = -A 𝒙 = 𝑨 𝒔𝒊𝒏∅ = −𝑨 so 𝒔𝒊𝒏∅ = − 𝑨𝒙 = 𝑨 𝒄𝒐𝒔∅ = − 𝒐𝟎𝟖𝟏 = 𝝅 = ∅ 𝐨𝐬 𝟏so 𝒄𝒐𝒔∅ = − 1 17 Dr.H.Elhendawi 7 Ex(1) The position of a particle moving along the x axis is given by 𝒙(𝒕) = 𝟎. 𝟖𝒔𝒊𝒏 𝟏𝟐𝒕 + 𝟎. 𝟑 where x is in meter and t is in sec. (a) what are the amplitude and the period of the motion? (b) Determine the position, velocity and acceleration when t=0.6s Solution 𝒙 𝒕 = 𝑨𝒔𝒊𝒏 𝝎𝒕 + ∅ 𝒙 = 𝟎. 𝟖𝒎𝒔𝒊𝒏 𝟏𝟐𝒕 + 𝟎. 𝟑 (a) The amplitude (A) =0.8m 𝟐𝝅 𝟐𝝅 𝟐𝒙𝟑.𝟏𝟒 The period of (T) 𝝎 = 𝟏𝟐 = so 𝑇= = = 𝟎. 𝟓𝟐𝟑 𝒔𝒆𝒄 𝑻 𝝎 𝟏𝟐 (b) the position at t=0.6s 𝒙(𝒕) = 𝟎. 𝟖𝒔𝒊𝒏 𝟏𝟐(𝟎. 𝟔𝒔) + 𝟎. 𝟑 = 𝟎. 𝟎𝟕𝟓𝒎 𝑑𝑥 the velocity 𝜗 𝑡 = = 0.8 12 𝑐𝑜𝑠 12𝑡 + 0.3 𝑎𝑡 𝑡 = 0.6𝑠 𝜗 = 0.333𝑚/𝑠 𝑑𝑡 𝑑2 𝑥 the acceleration 𝑎 𝑡 = = −(0.8) (122 )𝑠𝑖𝑛 12𝑡 + 0.3 𝑑𝑡 2 𝒂𝒕 𝒕 = 𝟎. 𝟔𝒔 𝒂 = −𝟏𝟎. 𝟖 𝒎/𝒔𝟐 181 Dr.H.Elhendawi 8 Ex(2) A 2 kg block is attached to a spring for which k=200N/m. It is held at an extension of 5 cm and then released at t=0.Find (a) The displacement as a function of time. (b) The velocity and the acceleration when x=A/2 Solution m=2kg , k=200N/m , A=0.05m (a) The displacement as a function of time, we need A, 𝛚, ∅ 𝑘 200𝑁/𝑚 𝛚= = = 10 𝑟𝑎𝑑/𝑠 𝑚 2𝑘𝑔 𝝅 To find ∅ at t=0 x = A 𝑨 = 𝑨𝒔𝒊𝒏∅ , ∅= 𝟐 𝝅 𝒙(𝒕) = 𝟎. 𝟎𝟓𝒔𝒊𝒏 𝟏𝟎𝒕 + 𝒎 𝟐 Dr.H.Elhendawi 1 19 9 (b) to find the velocity at x=A/2 we have to find the time t 𝝅 𝝅 𝝅 𝟓𝝅 𝒔𝒊𝒏 𝟏𝟎𝒕 + = 𝟎. 𝟓 so 𝟏𝟎𝒕 + = 𝒐𝒓 𝟐 𝟐 𝟔 𝟔 dx π ϑ t = = 0.05 10 cos 10t + dt 2 π 5π = 0.5cos or 0.5cos( ) 6 6 m = 0.43 or -0.43m/s s 𝑘 10𝑟𝑎𝑑 2 0.05 acceleration when x=A/2 𝑎 = − 𝑥 = −𝜔2 𝑥 =− 𝑚 = −2.5 𝑚/𝑠 2 𝑚 𝑠 2 Dr.H.Elhendawi 2 20 0 𝝅 Ex(3) In Ex(2) the displacement equation is 𝒙 = 𝟎. 𝟎𝟓𝒔𝒊𝒏 𝟏𝟎𝒕 + 𝟐 Find (a) K.E and U and E at t= π/15 s (b) the speed at x=A/2. Solution m=2kg , k=200N/m , A=0.05m 𝟏 1 200𝑁 (a) The Total Energy E 𝑬 = 𝒌𝑨𝟐 = 0.05 2 = 0.25𝐽 𝟐 2 𝑚 1 1 10𝜋 𝝅 3 The Kinetic Energy K.E 𝐾. 𝐸 = 𝑚𝑣 2 = (2 𝑘𝑔) [cos 𝑠 + ]2 = 𝐽 2 2 15 𝟐 16 2 1 1 10𝜋 𝜋 1 Potential Energy U 𝑈 = 𝑘𝑥 2 = (200𝑚 𝑁 ) 𝑠𝑖 𝑛 𝑠 + = 𝐽 2 2 15 2 16 𝟏 1 𝐴 1 (b) the speed at x=A/2 𝑘𝐴2 = 𝑘( )2 + 𝑚𝑣 2 𝟐 2 2 2 3𝑘𝐴2 So ϑ= = 0.43 𝑚/𝑠 4𝑚 2 21 Dr.H.Elhendawi 1 Ex(4) For the mass-spring system m = 200g, k = 5.0 N/m if the block were released from the same initial position, xi=5.0 cm, but with an initial velocity of vi= −0.1 m/s. Express the position as a function of time in SI units. Solution Let : x)t( = A sin ) ω t+ φ ( v)t ( = ω A cos ) ω t+ φ ( At t = 0 → x = 0.05 m and v = −0.1 m/s 𝒌 5.0 N/m 𝛚= = = 5𝑟𝑎𝑑/𝑠 𝒎 200x10−3 kg At t= 0→ x( 0 ) = 0.05 m A sin φ = 0.05 → 𝑒𝑞(1) At t= 0→ v( 0 ) = −0.1 m/s 5 A cos φ = − 0.1 A cos φ = −0.02 → 𝑒𝑞(2) [𝑒𝑞𝑛 1 ]2 +[𝑒𝑞𝑛 2 ]2 → 𝐴2 = (0.05)2 +(0.02)2 → A = 0.0538 m 2 22 Dr.H.Elhendawi 2 𝑒𝑞𝑛(1) = 𝑡𝑎𝑛∅ = −𝟐. 𝟓 𝑒𝑞𝑛 3 𝑒𝑞𝑛(2) − 𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑠𝑜 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 or fourth quarter ∅ = 𝑡𝑎𝑛−1 2.5 = 1.19 𝑟𝑎𝑑 ∅ = 𝜋 − 1.19 𝑟𝑎𝑑 = 𝟏. 𝟗𝟓 𝒓𝒂𝒅 𝑥(𝑡) = 0.0538𝑚 sin(5𝑡 + 1.95) Dr.H.Elhendawi 2 23 3 2- Damped oscillation There is energy loss due to friction or air resistance, so it’s amplitude decreases يوجد فقد في الطاقة نتيجة لوجود قوى تحاول إخماد هذه الحركة (قوة االحتكاك أو مقاومة المائع) وبالتالي تقل سعة.االهتزازة بالتدريج مع الوقت The frictional force (𝐹𝑓 ): 𝐹𝑓 = −𝑏𝑣 Where 𝑣 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 m/s 𝑏 damping constant (kg/s) 2 24 Dr.H.Elhendawi 4 Appling newton’s 2𝑛𝑑 law on damped oscillations 𝐹 = 𝑚𝑎 −𝑘𝑥 − 𝑏𝑣 = 𝑚𝑎 𝑑𝑥 𝑑2𝑥 −𝑘𝑥 − 𝑏 =𝑚 2 𝑑𝑡 𝑑𝑡 𝑑 2 𝑥 𝑏 𝑑𝑥 𝑘 𝑘 + + 𝑥=0 𝑏𝑢𝑡 𝜔𝑜 = 𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑 𝑆𝐻𝑂 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑡 2 𝑚 𝑑𝑡 𝑚 𝑚 𝑑2𝑥 𝑑𝑥 𝑘 𝑏 + 2𝜇𝜔𝑜 + 𝑥=0 𝑤ℎ𝑒𝑟𝑒 2𝜇𝜔𝑜 = 𝑑𝑡 2 𝑑𝑡 𝑚 𝑚 𝑏 𝜇= 𝑤ℎ𝑒𝑟𝑒 𝜇 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜, 𝑏 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , 2𝑚𝜔𝑜 There are 3 solutions depending on the value of 𝝁 2 25 Dr.H.Elhendawi 5 There are 3 solutions depending on the value of 𝝁 𝝁 يوجد ثالث أنواع م االهتزارة المجمدة تبةا لقيمة 1- Overdamped (𝝁 > 1 ) The displacement is exponentially decay. تقق اإلزاوة في صورة دالة أسية No oscillations. ال يوجد تذبذب The system returned slowly to its equilibrium position. يةود الجسم لموضع اتزانه ببطء شديد 2- Critically damped 𝝁 = 1 The displacement is exponentially decay. تقق اإلزاوة في صورة دالة أسية No oscillations. ال يوجد تذبذب The system returned as quickly as possible to its equilibrium position..يةود الجسم لموضع اتزانه أسرع نسبيا م الوالة السابقة 2 26 Dr.H.Elhendawi 6 3- Underdamping The system oscillates with it’s amplitude exponentially decay. يتذبذب الجسم ووق موضع االتزا و تقق سةة االهتزازة في صورة دالة أسية The displacement of under damped oscillations 𝒙 𝒕 = 𝑨𝒔𝒊𝒏 𝝎𝟏 𝒕 + ∅ where A Underdamped amplitude 𝒃𝒕 −𝟐𝒎 𝑨 = 𝑨𝒐 𝒆 where Aₒ initial amplitude 2 27 Dr.H.Elhendawi 7 https://math24.net/oscillations-electrical-circuits.html 2 28 Dr.H.Elhendawi 8 Energy of damped OSC The energy of underdamped oscillations: 𝒃𝒕 𝟏 𝟏 − 𝑬= 𝒌𝑨𝟐 = 𝒌𝑨𝒐 𝒆 𝟐𝒎 𝟐 𝟐 Where 𝟏 𝒌𝑨𝟐𝒐 is initial energy 𝟐 Dr.H.Elhendawi 2 29 9 3- Forced oscillation Energy (force) is added continually to replace the energy lost in friction. يضاف طاقة باستمرار لتةويض الفقد في الطاقة نتيجة االوتكاك This driving force has a frequency “ f ”. The natural frequency of the system “ fₒ ”. f= fₒ the driving force is most effective and it is in “resonance” with the system and “fₒ” is the “resonance frequency ”. 3 30 Dr.H.Elhendawi 0 https://courses.lumenlearning.com/suny-physics/chapter/16-8-forced-oscillations-and-resonance/ 3 31 Dr.H.Elhendawi 1 Now, can you explain What happened at the Tacoma narrows bridge or what happens to building during earthquake ? https://www.youtube.com/watch?v=mXTSnZgrfxM https://www.youtube.com/watch?v=uWoiMMLIvco https://www.youtube.com/watch?v=Il0U9_WPGPk https://www.youtube.com/watch?v=DtpckvIBrqo 3 32 Dr.H.Elhendawi 2 Recourses Serway, Raymond A., and John W. Jewett. Physics for scientists and engineers. Cengage learning, 2018. https://www.iris.edu/hq/inclass/animation/building_resonance_the_resonant_frequency_of_different_s eismic_waves 3 33 Dr.H.Elhendawi 3 3 34 Dr.H.Elhendawi 4