Seismic Exploration Methods PDF
Document Details
Uploaded by InspirationalValley
Universiti Teknologi Malaysia
Tags
Related
Summary
This document details seismic exploration methods, including seismic reflection and refraction, focusing on the geometry of reflected ray paths, the impact of multiple reflectors, seismic velocities, and how these principles apply to dipping layers. These methods are used in subsurface imaging.
Full Transcript
SeismicExploration Methods 1. SeismicReflection method(Kaedah seismik pemantulan) 2. Seismic Refraction method(Kaedah seismik pembiasan) SeismicReflection Method Seismic ReflectionMethods Themost widely used. Inmany casestheassumption oflayered mediais valid . Raw datacanbeprocessed...
SeismicExploration Methods 1. SeismicReflection method(Kaedah seismik pemantulan) 2. Seismic Refraction method(Kaedah seismik pembiasan) SeismicReflection Method Seismic ReflectionMethods Themost widely used. Inmany casestheassumption oflayered mediais valid . Raw datacanbeprocessed sothat an“image ”of the subsurface emerges. Dataprocessing isdone bycomputers. A) SingleHorizontal Reflector • Ahorizontal boundary(zero-dip), 2-dimensional • Reflected layerABand depth h 1 • Thearrival timest x ofreflections fromaninterface at depth h 1 asafunction ofoffset xare given as: • Thent(travel time)=2(SR)/V 1 • Reflected RayPaths Geometry 2 1 2 V 1 1 t (x) = . ( x )+ 4h ReflectedRayPaths Geometry ReflectedRayPaths Geometry • Reflection method ReflectedRayPaths Geometry (1) • Inx,can bewritten as: V 2t2 = x 2 +4h 2 (V 2t2 /4h 2) – (x 2/4h 2)= 1 ⇒The traveltimetcurve ahyperbola • Geophone atG also records directwaves move along SGwhich isSG <SR +RG ⇒ travel time: t D = x/V ⇒ time curve isastraight line. ReflectedRayPaths Geometry • Position ofreflector (layerthickness, h)can be determined bymeasuring t o,travel timeatshot point . • When x=0,then h= ½Vt o or t o =2h/V • Then eq.(1 ) can bewritten as: t 2 = x 2 /V 2 + 4h 2 / V 2 t2 = x 2 /V 2 + t 2 (2 ) o • To find t,can besolved fromeq.(1 ). ReflectedRayPaths Geometry • So,ifplot t 2 vsx 2,we can determine V 1 andh 1 from theslope andintercept . • Thedifferent (additional correction) inthe travel time ofareflection for2geophones positionis known asmoveout, Δt. ReflectedRayPaths Geometry • Ift 1 & t 2 are travel timeandx 1 &x 2 are offset, so: Δt =t 2 –t 1 2 2 2 ~(x 2 –x 1 )/ 2V t o (3) The time difference betweenthearrival atx 1=0 and arrival atx, Δt known as normal moveout (NMO),Δt n then, Δt n ~x 2 /2V 2to (4) The importance ofNMO: •Having determined thelayer velocity, wecan usethepredicted quadratic shape toidentify reflectors • Thencorrect (shifttraces) andstack toenhance signaltonoise ReflectedRayPaths Geometry Graphical demonstration ofNMO Singlehorizontal reflector QuickTime ™and a TIFF (Uncompressed) decompressor are needed tosee thispicture. Singlehorizontal reflector Singlehorizontal reflector QuickTime ™and a TIFF (Uncompressed) decompressor are needed tosee thispicture. MultipleHorizontal Reflector B) Ifthere are2or more reflector layers,we want t(x) for each reflected event: t 1 ~ 2h 1/V 1 t 2 ~2[(h 1/V 1)+ (h 2 /V 2 )] And sofor t 3 ….until t n. • Ifthe average velocity foreach layer asV 1,V 2 --- - V n is known , then thethickness forlayer h 1,h 2,--- - h n can becalculated. Theaverage velocity V av can be given as: V av = Σh j/Σ(h j/V j) Multiplehorizontal layers QuickTime ™and a TIFF (Uncompressed) decompressor are needed tosee thispicture. Multiplehorizontal layers StandardReflection plot MultipleHorizontal Reflector • SeismicVelocities: • Weusevelocities veryoften inseismic reflection work: Velocity controlstraveltimes Velocity controlsimpedance contrasts Velocitiesarenecessary forNMO corrections Velocities areneeded forconversion fromtimeto depth. MultipleHorizontal Reflector • Therearemany different kindsofseismic velocities: Interval velocity Stacking (NMO)velocity RMS(root-mean square) velocity Average velocity • Intervalvelocity: V int =h i ti (at zero offset) i i i • Average velocity: V ∑ tt = ∑ viti = ∑ h i ave 0 ,i Seismic ReflectionMethods •Interval velocity Velocity ofone layer oraverage velocity overa depth section. Defined as: V i = z i/t i • The average velocity: V av = Σz j/Σt j =Σ v jtj/Σt j=Z n/T n MultipleHorizontal Reflector • Agood approximation isby using root-mean square (RMS) velocity, thent(x): 2 22 2 ti (x)=t 0i +x /(V rms,i ) • root -mean square (RMS) velocity: V av = (Σv j2 tj/Σt j)½ where v j isinterval velocity, and t j is one -way travel time. Weassume hereoffset distances thatare small compared tothe reflector depths. MultipleHorizontal Reflector • Theindividual NMOcanbeused toestimate RMS velocity downtoacertain depthandvalues at different depthstoestimate theinterval velocity V n (Dixequation): • where t o,n istwo way travel time.V n is the interval velocity between then-1 and nthreflector. • The interval velocitycanbe determined fromthe RMS velocities layerby layer startingat thetop. MultipleHorizontal Reflector • Dix’sformula allowsustotake themeasured RMS velocities andconvert thembacktoreal interval velocities. • Once wehave velocities, thicknesses areeasy to obtain by: DippingLayers (5) C) Dippingreflector, dipmoveout • Ifθ= dip angle, h= depth • For wave pathSCR, t = (SC+CR)/V • By using cosain law, V 2t2 = IR 2 = x 2+4h 2-4hx cos(π/2+θ) = x 2+4h 2+4hx sinθ • Then, canbewritten as: V 2t2/(2hcosθ) 2 – (x+2h sinθ) 2/(2hcosθ) 2 =1 DippingLayers DippingLayers • Traveltimecurve isahyperbola ,but asymmetric where theaxial plane isat x= -2hsinθ • t has different valueforgeophones atboth sideof shotpoint • when x= 0, h = ½Vt 0 but his not avertical depth To find dipangle θ,we need tosolve tvalue from Eq. (5). DippingLayers t= 2h/V [1+(x 2+4hxsinθ) /4h 2]½ »to find θ,which isfrom thedifferent oftravel time for2geophones atboth sidewith the same distance. x for down -dip =+s and forup-dip =-s, Then travel timet 1 andt 2 canbecalculated: DippingLayers t1 ~t o [1+ (s 2+4hs sinθ) /8h 2] t 2 ~ t o [1+ (s 2-4hs sinθ) /8h 2] » Δt d =t 2 -t 1 ~ to (s sinθ /h) ~ 2ssinθ /V Value Δt d dip moveout If we replace Δxfor the distance 2s,dip can be estimated: sinθ~ V(Δt d /Δx) DippingLayers t1 ~t o [1+ (s 2+4hs sinθ) /8h 2] t 2 ~ t o [1+ (s 2-4hs sinθ) /8h 2] » Δt d =t 2 -t 1 ~ to (s sinθ /h) ~ 2ssinθ /V Value Δt d dip moveout If we replace Δxfor the distance 2s,dip can be estimated: sinθ~ V(Δt d /Δx)