Mathematical Calculations PDF

Document Details

ThankfulUtopia

Uploaded by ThankfulUtopia

Tags

linear algebra matrices mathematics calculations

Summary

These notes or calculations appear to be mathematical, focused on matrix operations, and determinants. They possibly relate to linear algebra or a similar subject.

Full Transcript

## ### Page 1 - 141-110217 - $A_2 = [\begin{smallmatrix} -14-5 & 4\\ -10x+14 & F \end{smallmatrix}]$ - $A_2 = [\begin{smallmatrix} -15 & 10\\ 2 & 5 \end{smallmatrix}]$ - Determinant: $1409 - 5 * 25 = 1259$ - $-112 - 10 = -122$ - Determinant: $(+)(+) + (+)(-) + (-)(+) = (-)$ - $lo + VK + k - (l...

## ### Page 1 - 141-110217 - $A_2 = [\begin{smallmatrix} -14-5 & 4\\ -10x+14 & F \end{smallmatrix}]$ - $A_2 = [\begin{smallmatrix} -15 & 10\\ 2 & 5 \end{smallmatrix}]$ - Determinant: $1409 - 5 * 25 = 1259$ - $-112 - 10 = -122$ - Determinant: $(+)(+) + (+)(-) + (-)(+) = (-)$ - $lo + VK + k - (ll + VK + k) = -F$ - $Az[1\ 6\ 8] B_2[9\ 10\ 1]$ - $a\begin{bmatrix} 12 & 4 & 3\\ 12 & 12 & 12 \end{bmatrix}$, $b\begin{bmatrix} 3 & 2 & 9 \\ 4 & 6 & 9 \end{bmatrix}$, $c\begin{bmatrix} 12 & 4 & 3 \\ 4 & 6 & 9 \end{bmatrix}$ - $((T_M)(1x1)) - ((T_x)(1_x1)) = 12$ - $Az[a1a1]$ - $A = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \sim AxB = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} a & b\\ c & d \end{bmatrix} = \begin{bmatrix} aa+bc & ab+bd\\ ac+cd & ad+dd \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd\\ ac+cd & ad+d^2 \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd\\ ac+cd & ad+d^2 \end{bmatrix}$ ### Page 2 - $ |A| = logdxl.go-logixlogx$ - $log(logx) - (logxlogx) < (logxlogx)(logx-1)$ - $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \sim \begin{bmatrix} da-vb & fa+db \\ ac-vd & fc+td \end{bmatrix}$ - $(wa-vb)(fc+td) - (fa+db)(ac-vd) = (ac+load-abc-tidb)-(ac-raad+trackload-tube-1) = (ad-bc) \sim 10x + 09x + 1-tobs$ - $A = [\begin{smallmatrix} 1 & 1 \\ -1 & 3 \end{smallmatrix}] \sim A^{-1} = [\begin{smallmatrix} 3 & -1 \\ 1 & 1 \end{smallmatrix}]$ - $ \begin{bmatrix} -1(-3) & 1\\ -1 & 1 \end{bmatrix}\Rightarrow \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$ - $ \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} \sim\begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} -1 & -\frac{2}{1} \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} -1 & -2 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ - $A_2 = \begin{bmatrix} -1 & -2 \\ -1 & 0 \end{bmatrix}$ - $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \sim AxB = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} a & b\\ c & d \end{bmatrix}= \begin{bmatrix} aa+bc & ab+bd\\ ac+cd & ad+dd \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd\\ ac+cd & ad+d^2 \end{bmatrix}$ - $A_2 = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \sim A^{-1} = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix} $ - $ \begin{bmatrix} 1 & 1\\ -1 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$ ### Page 3 - $A_2 [\begin{smallmatrix} i & -j \end{smallmatrix}]$ - $ \begin{bmatrix} a & a\\ b & d \end{bmatrix} \sim a1a1 - C01A1 + Y20 (1A1-1) (141-9) 2$ - $A_2 = \begin{bmatrix} a & a\\ b & d \end{bmatrix} \sim (ad - bc) (ad - bc) + (-aw (ad-bc) (Al21) $ - $ad - bc zl\rightarrow 2a1 -11 - 1$ - $ ad - bc 24$ - $a - a - r$ - $a - a -patra$

Use Quizgecko on...
Browser
Browser