Mathematical Calculations PDF
Document Details
Uploaded by ThankfulUtopia
Tags
Summary
These notes or calculations appear to be mathematical, focused on matrix operations, and determinants. They possibly relate to linear algebra or a similar subject.
Full Transcript
## ### Page 1 - 141-110217 - $A_2 = [\begin{smallmatrix} -14-5 & 4\\ -10x+14 & F \end{smallmatrix}]$ - $A_2 = [\begin{smallmatrix} -15 & 10\\ 2 & 5 \end{smallmatrix}]$ - Determinant: $1409 - 5 * 25 = 1259$ - $-112 - 10 = -122$ - Determinant: $(+)(+) + (+)(-) + (-)(+) = (-)$ - $lo + VK + k - (l...
## ### Page 1 - 141-110217 - $A_2 = [\begin{smallmatrix} -14-5 & 4\\ -10x+14 & F \end{smallmatrix}]$ - $A_2 = [\begin{smallmatrix} -15 & 10\\ 2 & 5 \end{smallmatrix}]$ - Determinant: $1409 - 5 * 25 = 1259$ - $-112 - 10 = -122$ - Determinant: $(+)(+) + (+)(-) + (-)(+) = (-)$ - $lo + VK + k - (ll + VK + k) = -F$ - $Az[1\ 6\ 8] B_2[9\ 10\ 1]$ - $a\begin{bmatrix} 12 & 4 & 3\\ 12 & 12 & 12 \end{bmatrix}$, $b\begin{bmatrix} 3 & 2 & 9 \\ 4 & 6 & 9 \end{bmatrix}$, $c\begin{bmatrix} 12 & 4 & 3 \\ 4 & 6 & 9 \end{bmatrix}$ - $((T_M)(1x1)) - ((T_x)(1_x1)) = 12$ - $Az[a1a1]$ - $A = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \sim AxB = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} a & b\\ c & d \end{bmatrix} = \begin{bmatrix} aa+bc & ab+bd\\ ac+cd & ad+dd \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd\\ ac+cd & ad+d^2 \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd\\ ac+cd & ad+d^2 \end{bmatrix}$ ### Page 2 - $ |A| = logdxl.go-logixlogx$ - $log(logx) - (logxlogx) < (logxlogx)(logx-1)$ - $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \sim \begin{bmatrix} da-vb & fa+db \\ ac-vd & fc+td \end{bmatrix}$ - $(wa-vb)(fc+td) - (fa+db)(ac-vd) = (ac+load-abc-tidb)-(ac-raad+trackload-tube-1) = (ad-bc) \sim 10x + 09x + 1-tobs$ - $A = [\begin{smallmatrix} 1 & 1 \\ -1 & 3 \end{smallmatrix}] \sim A^{-1} = [\begin{smallmatrix} 3 & -1 \\ 1 & 1 \end{smallmatrix}]$ - $ \begin{bmatrix} -1(-3) & 1\\ -1 & 1 \end{bmatrix}\Rightarrow \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$ - $ \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} \sim\begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} -1 & -\frac{2}{1} \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} -1 & -2 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ - $A_2 = \begin{bmatrix} -1 & -2 \\ -1 & 0 \end{bmatrix}$ - $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \sim AxB = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} a & b\\ c & d \end{bmatrix}= \begin{bmatrix} aa+bc & ab+bd\\ ac+cd & ad+dd \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd\\ ac+cd & ad+d^2 \end{bmatrix}$ - $A_2 = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \sim A^{-1} = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix} $ - $ \begin{bmatrix} 1 & 1\\ -1 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$ ### Page 3 - $A_2 [\begin{smallmatrix} i & -j \end{smallmatrix}]$ - $ \begin{bmatrix} a & a\\ b & d \end{bmatrix} \sim a1a1 - C01A1 + Y20 (1A1-1) (141-9) 2$ - $A_2 = \begin{bmatrix} a & a\\ b & d \end{bmatrix} \sim (ad - bc) (ad - bc) + (-aw (ad-bc) (Al21) $ - $ad - bc zl\rightarrow 2a1 -11 - 1$ - $ ad - bc 24$ - $a - a - r$ - $a - a -patra$