Calculus Tutorial Manual PDF 2024-25
Document Details
P. P. Savani School of Engineering
2024
Tags
Related
- Engineering Mathematics I Tutorial & Assignment 2024-2025 PDF
- Engineering Mathematics I Tutorial Sheet 5 PDF
- MATH 101 Precalculus Tutorial 7 October 2024 PDF
- Engineering Calculus Tutorial Sheet 1 - EMAT101L 2024-25 - PDF
- MTL 100 Calculus Tutorial Sheet 3 PDF
- Tutorial Problems for MA3151 Matrices and Calculus (2023-2024) PDF
Summary
This document is a tutorial manual for a calculus course, likely for an undergraduate program at the P. P. Savani School of Engineering. It covers calculus topics including sequences, series, and partial derivatives.
Full Transcript
SESH1110-Calculus AY : 2024-25 Tutorial Manual Name of Student:_____________________________________________________________________________...
SESH1110-Calculus AY : 2024-25 Tutorial Manual Name of Student:___________________________________________________________________________________________________ Enrollment No.: ________________________________________Academic Year: _______________________________________ Department of Science & Humanities P. P. SAVANI SCHOOL OF ENGINEERING CERTIFICATE This is to certify that Mr./Ms. __________________________ of _________________________ Engineering having Enrollment No. __________________________ has completed his/her Term work in the subject of CALCULUS (SESH1110). Marks Obtained: - _____________out of _____________. Sign of Faculty Date:___________ SESH1110 – Calculus 2|Pa ge List of Tutorial Sr. No. Name of Tutorial Hours 1. Calculus – 1 4 2. Calculus – 2 4 3. Calculus – 3 2 4. Sequence and Series – 1 4 5. Sequence and Series – 2 2 6. Sequence and Series – 3 2 7. Partial Derivatives – 1 4 8. Partial Derivatives – 2 2 9. Curve tracing – 1 4 10. Curve tracing – 2 2 Total Hours 30 SESH1110 – Calculus 3|Pa ge Module 1: Calculus (10 Hours) SESH1110 – Calculus 4|Pa ge Tutorial Session – 1 Calculus – 1 1. 1. lim ( x 2 13) Ans: 4 2. lim 8(t 5)(t 7) Ans: 8 x 3 t6 3. 2x 5 5h 4 2 Ans: 5 lim Ans: 3 4. lim x 2 11 x 3 h 0 h 4 x2 7 x 10 5 y3 8 y 2 1 5. lim Ans: 3 6. lim Ans: y 0 3 y 4 16 y 2 2 x 2 x2 t2 t 2 8. x5 Ans: 1 7. lim Ans: 2 lim t 0 t 2 1 x5 x 2 25 10 x4 16 x3 x2 5 x 3 9. lim Ans: 32 10. lim Ans: 4 x 2 x 2 x 1 ( x 1)2 11. lim sec 2 t tan t Ans: 1 5x3 9x2 Ans: 9 3t 3 12. lim 3 2 t0 x0 2x 2x2 2 x2 Ans: 4 1 1 x Ans: 13. lim 14. limsin 2 x 0 3 3cos x 3 x 1 1 x 6 1 1 Ans: 1 5 x 25 Ans: 1 15. lim x 2 2 4 16. lim x2 x 10 x2 x 1 1 1 x 1 1 17. lim Ans: 18. lim Ans: x 0 x 1 x x 2 x 1 x 1 2 4 x2 2. Find lim. Ans: 0 x x 2x 1 2 4x2 x 3. Find lim. Ans: 0 x 2x3 5 x2 1 Ans: 1 4. Find lim. x 2x2 3 2 x2 1 5. Find lim. Ans: Not exist x 2x 3 4x 5 Ans: Continuous, If the f ( x ) function is continuous or discontinuous at x 1 , 6. 9 3x Continuous and x 0 and x 3 ? discontinuous SESH1110 – Calculus 5|Pa ge x x 0 7. Prove that f ( x ) is continuous at x 0. Ans: Proof x , x 0 2 1 x sin 2 x 0 Ans: Discuss 8. Discuss the continuity of f at origin, where f ( x) x . 0,x 0 continuity 1 x ,0 x 2 1 1 9. Prove that f ( x) 1,x is discontinuous at x . Ans: Proof 2 2 1 1 x , 2 x 1 x 2 5 if x 2 Given the function, f x . Compute the following 1 3 x if x 2 Ans: I. -17 10. limits: II. Not exist I. lim f x II. lim f x x 6 x 2 SESH1110 – Calculus 6|Pa ge Tutorial Session – 2 Calculus – 2 1. Find y n , for y x 2 log x. 2 1 n 3! n 3 Ans: yn n2 x 2. 2x 1 Find y n , for y . x 2 x 1 1 1 Ans: yn 1 n! n x 2 x 1 n 1 n 1 3. Find y n , for y x 2e x cos x. 2 n2 n 3 Ans: yn e x 2 2 2 x cos x 2 2 nx x n 1 n n 1 cos x n 2 4 4 4 4. 1 Find y n , for y 2. x 6x 8 1 n! n 1 1 Ans: yn 2 x 4 n 1 x 2 n 1 5. Find y n , for y x3 log x. Ans: 6. Find y n , for y x 2 cos x. n n 1 n n 1 cos x n 2 Ans: yn x 2 cos x 2nx cos x 2 2 2 7. Find y n , for y e x log x. Ans: yn e x log x nC1 x 1 nC2 x 2 ... 1 n 1! nCn x n n 1 8. Verify Rolle’s theorem 5 I. f ( x) e x (sin x cos x), x , . Ans: Verified and c 4 4 x 2 ab II. f ( x) log , x a, b ,a 0,b 0. Ans: Verified and c ab x(a b) 2 III. f ( x) 2 x 3 x 2 4 x 2,x 2, 2 . Ans: Verified and c 1, 3 IV. f ( x ) cos 2 x, x , . Ans: Verified and c 0 4 4 9. Lagrange’s mean value theorem I. f x log x, x 1,e Ans: Verified and c e 1 ba II. f x 2 x 2 3 x 4 in a, b Ans: Verified and c a, b 2 SESH1110 – Calculus 7|Pa ge 62 3 III. f x x 1 x 2 x 3 , x 0,4 Ans: Verified and c 3 1 IV. f x , x 1,1 Ans: Not verified x 10. Verify Cauchy’s mean value theorem ab I. f ( x) x 2 ,g ( x) x,x [a, b] Ans: Verified and c 2 14 II. f ( x) x 2 2, g ( x) x 3 1,x [1,2] Ans: Verified and c 9 13 III. f ( x) x 2 3, g ( x) x3 1,x [1,3] Ans: Verified and c 6 1 e IV. f x log x, g x , x 1, e Ans: Verified and c x e 1 SESH1110 – Calculus 8|Pa ge Tutorial Session – 3 Calculus – 3 Q.1 Write the definitions of global maxima, global minima, local maxima, local minima, critical point, local extremum and global extremum. Q.2 Find the maxima and minima of the function 10 x 6 24 x 5 15 x 4 40 x 3 108. Ans: For x 2 , minimum and x 0 neither maximum nor minimum Q.3 Find the maximum and minimum values of x 5 5 x 4 5 x 3 1. Ans: Max. f 1 0 , Min. f 3 28 , No extremum f 0 0 Q.4 Find the maximum and minimum values of a 2 sin 2 x b 2 cos 2 x. a , Min. value f b 2 2 Ans: Max. value f 2 Q.5 Find the local and global extremum values of f ( x ) sin x ,0 x 2. Ans: Local and global max. value f 1 2 3 Local and global min. value f 1 2 Q.6 Find the local extremum values f x 2 x 2 9 x 1, 2 x 5. 9 89 Ans: f 4 8 x2 x 1 Q.7 Find the maximum and minimum values of. x2 x 1 1 Ans: Max. f (1) 3, Min. f ( 1) . 3 SESH1110 – Calculus 9|Pa ge Module 2: Sequence and Series – I (4 Hours) SESH1110 – Calculus 10 | P a g e Tutorial Session – 4 Sequence and Series – 1 Q-1 Test the convergence of the following sequences: n2 n a) 2 Ans: Convergent; 2n n b) 2 1 n Ans: Oscillating Sequence; 1 and 3 3n c) Ans: Convergent; 0 n 7n2 n 2 d) Ans: Convergent; 1 n 1 2n3 7n e) 3 2 Ans: Convergent; 5n 3n 2n 1 f) Ans: Convergent 1 3n 1 g) 1 Ans: Convergent n h) n 1 n Ans: Convergent 1 Q-2 Is the sequence sin convergent? Ans: Yes 6 n Q-3 Test the convergence of the series: 1 3 5 a) Ans: Convergent 1 2 3 2 3 4 3 4 5 2 13 5 2 23 5 2 n3 5 b) Ans: Convergent 4 15 1 4 25 1 4 n5 1 1 1 1 c) p p p Ans: Convergent 3 5 7 n 1 n 2 d) Ans: Convergent n 1 n2 n n 1 n 2 e) Ans: Divergent n 1 n2 n Q-4 Test the convergence of the series: 1 1 1 1 a) Ans: Convergent 2 5 10 1 n2 12 22 32 42 b) Ans: Convergent 1! 2! 3! 4! 3n n c) n 1 4 n SESH1110 – Calculus 11 | P a g e Tutorial Session – 5 Sequence and Series – 2 Q-1 Test the convergence of the following series: an1 a) n Ans: l 1 ; Convergent n1 n 2 3 n 1 2 3 n b) Ans: l 1 ; Convergent 3 5 7 2n 1 nnxn Ans: The series is convergent c) if x 1 and is divergent if n 1 n n 1 x 1 1 1 1 1 d) 1 2 3 4 n Ans: l 1 ; Convergent 2 3 4 n n n 1 e) n 1 3n Ans: l 1 ; Convergent Q-2 Test the convergence of the following series: 2 tan 1 n 3 2 a) n 1 1 n 2 Ans: I 16 ; Convergent 1 b) Ans: I ; Convergent n1 1 n 2 4 1 c) n log n n1 Ans: Convergent 1 d) n log n n 3 log n 1 2 Ans: I 2 sec 1 log 3 ; Convergent Q-3 Test the convergence of the following series: 1 1 1 1 a) 1 Ans: Convergent 2 4 8 16 1 2 3 4 b) Ans: Convergent 2 5 10 17 1 n 1 c) log( n 1) n 1 Ans: Convergent 1 n 1 d) n n 1 2 ( n 1) Ans: Convergent n 1 1 n1 e) log Ans: Convergent n1 n SESH1110 – Calculus 12 | P a g e Module 3: Sequence and Series – II (4 Hours) SESH1110 – Calculus 13 | P a g e Tutorial Session – 6 Sequence and Series – 3 Q-1. Expand log x in powers of ( x 1) and hence evaluate log 1.1 correct up to four decimal places. 1 1 1 Ans: log x x 1 x 1 x 1 x 1 ; log 1.1 0.09 53 08 2 3 4 2 3 4 Q-2. Expand 3 x 3 8 x 2 x 2 in powers of x3. Ans: f ( x) 154 130 x 3 35 x 3 3 x 3 2 3 Q-3. Expand x 4 11x 3 43 x 2 60 x 14 in powers of x3. Ans: f ( x) 5 9 x 3 2 x 3 x 3 2 3 Q-4. Expand sin x in powers of x. Hence find the value of sin 44 and sin 46 . 4 Ans: sin x 1 x 2 x3 1 x ; sin 44 0.6947 & sin 46 0.7193 4 2 2! 3! Q-5. Expand x 4 3 x 3 2 x 2 x 1 in powers of x3. Ans: 16 38 x 3 29 x 3 9 x 3 x 3 2 3 4 Q-6. Express ( x 1)4 2(x 1)3 5(x 1) 2 in ascending power of x. Ans: f (x) 4 7x 2x3 x4 Q-7. Determine the Maclaurin’s series for cosh3x up to x6. 9 27 4 81 6 Ans: 1 x 2 x x 2 8 80 Q-8. Determine the Maclaurin’s series for cos4t as far as the term in t 6. 32 4 256 6 Ans: 1 8t 2 t t 3 45 3 x Q-9. Expand e 2 using Maclaurin’s series up to x3. 3 9 9 3 Ans: 1 x x 2 x 2 8 16 Q-10. Use Maclaurin’s series to determine the expansion of 3 2t . 4 Ans: 81 216t 216t 2 96 t 3 16 t 4 SESH1110 – Calculus 14 | P a g e Tutorial Session – 7 Sequence and Series – 4 1 x n 1 Q-1 Prove that lim n. x 0 x xex log(1 x) Ans: 3 Q-2 Evaluate lim. 2 x0 x2 x log x x 1 1 Q-3 Evaluate lim. Ans: x 1 x 1 log x 2 ex ex 2log(1 x) Q-4 Evaluate lim. Ans: 1 x0 x sin x ex ex x2 2 Ans: 1 Q-5 Evaluate lim. x0 sin2 x x2 4 log 1 kx 2 Q-6 Evaluate lim. Ans: 2k x 0 1 cos x x sin x 1 Q-7 Evaluate lim. Ans: x0 x3 6 tan x sin x 1 Q-8 Evaluate lim. Ans: x0 sin 3 x 2 log x Q-9 Prove that lim 0, n 0 . x xn log x Q-10 2 Prove that lim 0. tan x x 2 Q-11 Prove that lim log x tan x 1. x 0 x x 1 2x 1 1 Q-12 Prove that lim 3 . x 6x 3 Q-13 Prove that lim x log x 0. x0 x 1 Q-14 Prove that limlog 2 cot x a . xa a a 1 log 1 x 1 Q-15 Evaluate lim . Ans: x0 x x2 2 x 1 1 Q-16 Prove that lim . x 1 x 1 log x 2 1 1 1 Q-17 Prove that lim . x2 x 2 log x 1 2 SESH1110 – Calculus 15 | P a g e 1 1 1 Q-18 Evaluate lim 2 2 . Ans: x0 x sin x 3 3 Q-19 Prove that lim cos 2 x x 2 e 6. x0 1 1 Q-20 tan x x2 Prove that lim e. 3 x0 x Evaluate lim cot x sin x Q-21. Ans: 1 x0 tan x 1 Q-22 Evaluate lim . Ans: 1 x 0 x 1 Q-23 Prove that lim 1 x 2 log 1 x e. x 1 1 Prove that lim cos ecx tan 2 x Q-24 e2. x 2 SESH1110 – Calculus 16 | P a g e Module 4: Partial Derivatives (6 Hours) SESH1110 – Calculus 17 | P a g e