🎧 New: AI-Generated Podcasts Turn your study notes into engaging audio conversations. Learn more

APznzaZHChMzCTfdvpLXmCPq4bPyWw_Pfm-Yb33vU0vZB7DWLypNOZjVI2OKhSbM6UgpmZSpvmgK1m9_Eb-r2YdKhfJRfqyEtMM6tBPb8HBDM3-fL1K1Sx0TzeJoI5JTZzuWXlFu8k5virY4yVu7has2kzuAtQtKzMjJ77xnZVP1V-krS7vH3M4bu4ZOWEqKjB1ZthjdYO_7I.pdf

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Full Transcript

‭ nit XII‬ U ‭ ESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE‬ D ‭ANALYSIS OF VARIANCE‬ ‭INTRODUCTION‬ ‭Experiments‬ ‭are‬ ‭a‬ ‭natural‬ ‭part‬ ‭of‬ ‭the‬ ‭engineering‬ ‭and‬ ‭scientific‬ ‭ ec...

‭ nit XII‬ U ‭ ESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE‬ D ‭ANALYSIS OF VARIANCE‬ ‭INTRODUCTION‬ ‭Experiments‬ ‭are‬ ‭a‬ ‭natural‬ ‭part‬ ‭of‬ ‭the‬ ‭engineering‬ ‭and‬ ‭scientific‬ ‭ ecision-making‬‭processes.‬‭These‬‭experiments‬‭consist‬‭of‬‭different‬‭treatments‬ d ‭to‬ ‭gather‬ ‭data‬ ‭for‬ ‭testing.‬ ‭In‬ ‭comparing‬ ‭experiments‬ ‭with‬ ‭two‬ ‭factors,‬ ‭the‬ ‭hypothesis‬ ‭tests‬ ‭for‬ ‭the‬‭two‬‭samples‬‭introduced‬‭in‬‭the‬‭previous‬‭chapters‬‭are‬ ‭sufficient.‬ ‭However,‬ ‭many‬ ‭experiments‬ ‭involved‬ ‭more‬ ‭than‬ ‭two‬ ‭levels‬ ‭of‬ ‭factors.‬ ‭Thus,‬ ‭the‬‭primary‬‭focus‬‭of‬‭this‬‭unit‬‭is‬‭the‬‭use‬‭of‬‭analysis‬‭of‬‭variance‬ ‭(ANOVA)‬ ‭in‬ ‭determining‬ ‭differences‬ ‭between‬ ‭multiple‬ ‭levels‬ ‭of‬ ‭factors‬ ‭and‬ ‭populations,‬‭the‬‭analysis‬‭of‬‭single-factor‬‭experiments,‬‭and‬‭the‬‭significance‬‭of‬ ‭randomizing experimental runs.‬ ‭OBJECTIVES‬ ‭At the end of this unit, the student must be able to:‬ ‭1.‬ ‭Design and conduct analysis on engineering single factor‬ ‭experiments;‬ ‭2.‬ ‭Understand how the analysis of variance is used to conclude the‬ ‭experiments;‬ ‭3.‬ ‭Use multiple comparison procedures and assess model‬ ‭adequacy with residual plots;‬ ‭4.‬ ‭Understand the difference between fixed and random factors;‬ ‭5.‬ ‭Conduct experiments involving the randomized complete block‬ ‭design;‬ ‭6.‬ ‭Apply the learnings in order to solve problems and draw‬ ‭conclusions in real-world scenarios.‬ ‭CONTENTS‬ ‭A.‬ ‭Completely Randomized Single Factor Experiments‬ ‭a.‬ ‭Analysis of Variance (ANOVA)‬ ‭Analysis‬ ‭of‬ ‭Variance‬ ‭(ANOVA)‬ ‭is‬ ‭a‬ ‭statistical‬ ‭method‬ ‭ sed‬ ‭to‬ ‭analyze‬ ‭experimental‬ ‭data‬ ‭to‬ ‭compare‬ ‭and‬ ‭determine‬ u ‭differences‬ ‭between‬ ‭multiple‬ ‭population‬ ‭means.‬ ‭It‬ ‭involves‬ ‭partitioning‬ ‭components‬ ‭observed‬ ‭in‬ ‭data‬ ‭with‬ ‭a‬ ‭mathematical‬ ‭model‬‭to‬‭explain‬‭how‬‭different‬‭factors‬‭influence‬‭an‬‭experiment's‬ ‭outcome.‬ ‭Statistically represented as:‬ ‭𝑌‬‭𝑖𝑗‬ = ‭‬µ + τ‭𝑖‬ + ϵ‭𝑖𝑗‬ { ‭𝑖‭‬‬=‭‭1 } ‬ ‬‭,‬‭‬‭2‭‬‬,‭.‬..‭‬,‭‬‭𝑎‬ ‭𝑗‬‭‬=‭‭1 ‬ ‭‬‬,‭‬‭2‬‭‬,‭‬...‭‬,‭‬‭𝑛‬ ‭Engineering Data Analysis‬ ‭Page‬‭1‬ ‭Where;‬ ‭𝑌‬‭𝑖𝑗‬ ‭- is a random variable denoting the (‬‭𝑖𝑗‬‭)th‬ ‭ bservation‬ o µ ‭- is the overall mean of observations‬ τ‭𝑖‬ ‭- is the‬‭𝑖‬‭th treatment effect‬ ϵ‭𝑖𝑗‬ ‭- is a random error component‬ ‭ oreover,‬ ‭ANOVA‬ ‭tests‬‭hypotheses.‬‭The‬‭null‬‭hypothesis‬ M ‭states‬ ‭that‬ ‭all‬ ‭observation‬ ‭means‬ ‭are‬ ‭equal‬ ‭and‬ ‭there‬ ‭is‬ ‭no‬ ‭significant‬ ‭difference‬ ‭among‬ ‭the‬ ‭treatment‬‭means,‬‭whereas‬‭the‬ ‭alternative‬‭hypothesis‬‭states‬‭that‬‭there‬‭is‬‭a‬‭significant‬‭difference‬ ‭among‬‭the treatment means.‬‭Specifically,‬ ‭𝐻‬‭0:‬ τ‭1‬ = τ‭2‬ =···= τ‭𝑎‬ = ‭0‬ ‭𝐻‬‭1:‬ τ‭𝑖‬ ≠ ‭0‬ I‭n‬ ‭order‬ ‭to‬ ‭test‬ ‭the‬ ‭hypothesis,‬ ‭the‬ ‭total‬ ‭variability‬ ‭in‬ ‭a‬ ‭sample‬ ‭data‬ ‭is‬ ‭subdivided‬ ‭into‬ ‭two‬ ‭parts‬ ‭described‬‭by‬‭the‬‭total‬ ‭sum of squares‬ ‭𝑎‬ ‭𝑛‬ ‭2‬ ‭𝑆𝑆‬‭𝑇‬ = ∑ ∑ (‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬ ) ‭𝑖‬=‭1‬‭𝑗= ‬ ‭1‬ ‭ r‬ ‭simply‬ ‭obtaining‬ ‭the‬ ‭squares‬ ‭of‬ ‭the‬ ‭differences‬ ‭between‬‭the‬ o ‭observed‬ ‭single‬ ‭data‬ ‭and‬ ‭the‬ ‭grand‬ ‭mean‬ ‭for‬ ‭all‬ ‭observations‬ ‭and‬ ‭treatments.‬ ‭The‬ ‭preceding‬ ‭equation‬ ‭can‬ ‭be‬ ‭partitioned‬ ‭according to its identity‬ ‭𝑎‬ ‭𝑛‬ ‭2‬ ‭𝑎‬ ‭2‬ ‭𝑎‬ ‭𝑛‬ ‭2‬ ∑ ∑ (‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬ ) = ‭𝑛‬ ∑ (‭𝑦‬‭𝑖‬ − ‭𝑦‬ ) = ∑ ∑ (‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬‭𝑖 ‬ ) ‭𝑖‬=‭1‬‭𝑗= ‬ ‭1‬ ‭𝑖‬=‭1‬ ‭𝑖= ‬ ‭1‬‭𝑗‬=‭1‬ ‭or symbolically‬ ‭𝑆𝑆‬‭𝑇‬ = ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ + ‭𝑆𝑆‬‭𝐸‬ ‭where‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭denote‬ ‭the‬ ‭sum‬ ‭of‬ ‭squares‬ ‭of‬ ‭differences‬ ‭between‬‭treatment‬‭means‬‭and‬‭the‬‭grand‬‭mean‬‭and‬‭𝑆𝑆‬‭𝐸‬ ‭denoting‬ t‭he‬ ‭sum‬ ‭of‬ ‭squares‬ ‭of‬ ‭differences‬ ‭of‬ ‭observations‬ ‭within‬ ‭a‬ ‭treatment‬ ‭from‬ ‭the‬ ‭treatment‬ ‭mean.‬ ‭Additionally,‬ ‭the‬ ‭expected‬ ‭values‬‭of‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭and‬ ‭𝑆𝑆‬‭𝐸‬ ‭will‬‭also‬‭be‬‭considered‬‭to‬‭be‬‭used‬ ‭for the test statistic.‬ ‭Engineering Data Analysis‬ ‭Page‬‭2‬ ‭The expected value of the treatment sum of squares is‬ ‭𝑎‬ ‭2‬ ‭2‬ ‭𝐸‬(‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬) = (‭𝑎‬ − ‭1‬)σ + ‭𝑛‬ ∑ τ‭𝑖‬ ‭𝑖‬=‭1‬ ‭and the expected value of the error sum of squares is‬ ‭2‬ ‭𝐸‬(‭𝑆𝑆‬‭𝐸)‬ = ‭𝑎‬(‭𝑛‬ − ‭1‬)σ ‭ ccordingly,‬ ‭the‬ ‭equivalent‬ ‭degrees‬ ‭of‬ ‭freedom‬ ‭for‬ ‭the‬ A ‭sum of squares identity is expressed as‬ ‭𝑎𝑛‬ − ‭1‬ = ‭𝑎‬ − ‭1‬ + ‭𝑎‬(‭𝑛‬ − ‭1‬) ‭This‬‭follows‬‭that‬‭the‬‭mean‬‭square‬‭for‬‭treatments‬‭is‬‭given‬ ‭as‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ = ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭/‬(‭𝑎‬ − ‭1‬) ‭and the error mean square as‬ ‭𝑀𝑆‬‭𝐸‬ = ‭𝑆𝑆‬‭𝐸‭/‬ ‬[‭𝑎‬(‭𝑛‬ − ‭1‬)] ‭2‬ ‭ hich‬‭are‬‭unbiased‬‭estimators‬‭of‬σ ‭if‬‭the‬‭null‬‭hypothesis‬‭is‬‭true.‬ w ‭Then,‬ ‭the‬ ‭ratio‬ ‭of‬ ‭the‬ ‭mean‬ ‭squares‬ ‭follows‬ ‭the‬ ‭𝐹‬‭-distribution‬ ‭with‬‭𝑎‬ − ‭1‬ ‭and‬‭𝑎‬(‭𝑛‬ − ‭1‬) ‭degrees of freedom. That is,‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭/(‬ ‭𝑎‬−‭1)‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝐹‬‭0‬ = ‭𝑆𝑆‬‭𝐸‬‭/[‬ ‭𝑎‬(‭𝑛‬−‭1‬)] = ‭𝑀𝑆‬‭𝐸‬ ‭The‬ ‭only‬ ‭condition‬ ‭that‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭can‬ ‭be‬ ‭rejected‬ ‭is‬ ‭where‬ ‭the‬ ‭expected‬ ‭value‬ ‭of‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭is‬ ‭greater‬ ‭than‬ ‭the‬ ‭expected‬ ‭value‬ ‭of‬ ‭𝑀𝑆‬‭𝐸‬‭,‬‭implying‬‭an‬‭upper-tail,‬‭one-tail‬ ‭critical‬ ‭region.‬ ‭Reject‬ ‭𝐻‬‭0‬ ‭if‬ ‭𝑓‬‭0‬ > ‭𝑓‬α,‭‬‭𝑎‬−‭1‬,‭‬‭𝑎‬(‭𝑛− ‬ ‭1‬) ‭,‬ ‭where‬ ‭𝑓‬‭0‬ ‭is‬ ‭the‬ ‭computed value from the test statistic.‬ ‭For‬ ‭equal‬ ‭sample‬ ‭sizes,‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭and‬ ‭𝑆𝑆‬‭𝑇‬ ‭can‬ ‭be‬ ‭reduced into‬ ‭𝑎‬ ‭𝑛‬ ‭2‬ ‭𝑦‬ ‭2‬ ‭𝑆𝑆‬‭𝑇‬ = ∑ ∑ ‭𝑦‬‭𝑖𝑗‬ − ‭𝑁‬ ‭𝑖‬=‭1‬‭𝑗= ‬ ‭1‬ ‭and‬ ‭Engineering Data Analysis‬ ‭Page‬‭3‬ ‭𝑎‬ ‭𝑦‭2‬ ‬ ‭2‬ ‭𝑦 ‬ ‭𝑖 ‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ = ∑ ‭𝑛‬ − ‭𝑁‬ ‭𝑖‬=‭1‬ ‭The‬ ‭error‬ ‭sum‬ ‭of‬ ‭squares‬ ‭can‬ ‭then‬ ‭be‬ ‭obtained‬ ‭as‬ ‭the‬ ‭ ifference‬ ‭between‬ ‭the‬ ‭total‬ ‭sum‬ ‭of‬ ‭squares‬ ‭and‬ ‭the‬‭treatment‬ d ‭sum of squares‬ ‭𝑆𝑆‬‭𝐸‬ = ‭𝑆𝑆‬‭𝑇‬ − ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭The‬ ‭summary‬ ‭of‬ ‭this‬ ‭test‬ ‭procedure,‬ ‭called‬ ‭the‬ ‭ANOVA‬ ‭table, is provided in tabular form below:‬ ‭ ource of‬ S ‭Sum of‬ D ‭ egrees of‬ ‭Mean‬ ‭𝐹‬‭0‬ ‭Variation‬ ‭Squares‬ F‭ reedom‬ ‭Square‬ ‭Treatments‬ ‭𝑆𝑆‬ ‭𝑎‬ − ‭1‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝐸‬ ‭Error‬ ‭𝑆𝑆‬‭𝐸‬ ‭𝑎‬(‭𝑛‬ − ‭1‬) ‭𝑀𝑆‬‭𝐸‬ ‭Total‬ ‭𝑆𝑆‬‭𝑇‬ ‭𝑎𝑛‬ − ‭1‬ ‭Furthermore,‬ ‭several‬ ‭software‬ ‭applications‬ ‭analyze‬ ‭data‬ ‭ sing‬‭the‬‭analysis‬‭of‬‭variance.‬‭This‬‭includes‬‭the‬‭Minitab‬‭Output,‬ u ‭which results in the following confidence interval definition:‬ ‭The‬ ‭confidence‬ ‭interval‬ ‭(CI)‬ ‭on‬ ‭the‬ ‭mean‬ ‭of‬‭a‬‭treatment‬ ‭provides‬ ‭a‬ ‭range‬ ‭within‬ ‭which‬ ‭we‬ ‭expect‬ ‭the‬ ‭true‬ ‭mean‬ ‭of‬ ‭the‬ ‭treatment to fall. This is calculated as:‬ ‭𝑀𝑆‬‭𝐸‬ ‭𝑀𝑆‬‭𝐸‬ γ‭𝑖‬ − ‭𝑡‬α‭/2‬,‭𝑎‬(‭𝑛− ‬ ‭1‬) ‭𝑛‬ ‭‬‭‬ ≤ ‭‬µ‭𝑖‬‭‬ ≤ γ‭𝑖‬ + ‭𝑡‬α‭/2‬,‭𝑎‬(‭𝑛− ‬ ‭1‬) ‭𝑛‬ ‭‬ ‭Also‬ ‭a‬ ‭100‬(‭1‬‭‬ − ‭‬‭𝑎‬) ‭percent‬ ‭confidence‬ ‭interval‬ ‭on‬ ‭the‬ ‭difference in two treatment means‬µ‭𝑖‭‬ ‬ − ‭‬µ‭𝑗‬ ‭is‬ ‭2‭𝑀 ‬ 𝑆‬‭𝐸‬ ‭2‬‭𝑀𝑆‬‭𝐸‬ ‭𝑌‬‭𝑖‬·‭‬ − ‭𝑌‬‭𝑗·‬ − ‭𝑡‬α‭/2‬,‭𝑎‬(‭𝑛‬−‭1)‬ ‭𝑛‬ ‭‬‭‬ ≤ ‭‬‭‬µ‭𝑖‬‭‬ − ‭‬µ‭𝑗‭‬ ‬ ≤ ‭𝑌‬‭𝑖·‬ ‭‬ − ‭𝑌‬‭𝑗‬· + ‭𝑡‬α‭/2‬,‭𝑎(‬ ‭𝑛− ‬ ‭1)‬ ‭𝑛‬ ‭‬ ‭Additionally,‬ ‭i‬‭n‬ ‭single-factor‬ ‭experiments,‬ ‭an‬ ‭unbalanced‬ ‭ esign‬ ‭occurs‬ ‭when‬ ‭the‬ ‭number‬ ‭of‬ ‭observations‬ ‭per‬ ‭treatment‬ d ‭varies.‬ ‭Adjustments‬ ‭to‬ ‭the‬ ‭sums‬ ‭of‬ ‭squares‬ ‭formulas‬ ‭are‬ ‭Engineering Data Analysis‬ ‭Page‬‭4‬ ‭needed.‬ ‭If‬ ‭𝑛‬‭𝑖‬ ‭represents‬ ‭the‬‭number‬‭of‬‭observations‬‭for‬‭the‬‭i‬‭-th‬ ‭𝑎‬ ‭treatment, the total number of observations,‬‭𝑁‭,‬ ‬‭is‬‭𝑁‬ = ‭‬ ∑ ‭𝑛‬‭𝑖‭.‬ ‬ ‭𝑖‭‬‬=‭‬‭1‬ ‭ he‬ ‭sums‬ ‭of‬ ‭squares‬ ‭computing‬ ‭formulas‬ ‭for‬ ‭the‬ ‭ANOVA‬ ‭with‬ T ‭unequal sample sizes‬‭𝑛‬‭𝑖‬ ‭in each treatment are:‬ ‭𝑛‬‭𝑖‬ ‭2‬ ‭2‬ ‭𝑦‬.. ‭1.‬ ‭𝑆𝑆‬‭𝑇‬ = ‭𝑐‬ ∑ ‭𝑦‬‭𝑖𝑗‬‭‬ − ‭‬ ‭𝑁‬ ‭‬ ‭𝑗‭‬‬=‭‬‭1‬ ‭𝑎‬ ‭2‬ ‭𝑦‬‭𝑖.‬ ‭2‬ ‭𝑦‬.. ‭2.‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ = ∑ ‭‬ ‭𝑛‬ − ‭𝑁‬ ‭‬ ‭𝑖‬‭= ‬ ‭‭1 ‬‬ ‭𝑖‬ ‭3.‬ ‭𝑆𝑆‬‭𝐸‬ = ‭‬‭𝑆𝑆‬‭𝑇‬‭‬ − ‭‬‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭ hoosing‬ ‭a‬ ‭balanced‬ ‭design‬ ‭offers‬ ‭two‬ ‭key‬‭advantages.‬ C ‭First,‬ ‭the‬ ‭ANOVA‬ ‭is‬ ‭relatively‬ ‭insensitive‬ ‭to‬ ‭small‬ ‭departures‬ ‭from‬ ‭the‬ ‭assumption‬ ‭of‬ ‭equality‬ ‭of‬ ‭variances‬ ‭when‬ ‭the‬ ‭sample‬ ‭sizes‬‭are‬‭equal.‬‭This‬‭robustness‬‭is‬‭not‬‭maintained‬‭with‬‭unequal‬ ‭sample‬‭sizes.‬‭Second,‬‭the‬‭power‬‭of‬‭the‬‭test‬‭is‬‭maximized‬‭when‬ ‭the‬ ‭samples‬ ‭are‬ ‭of‬ ‭equal‬ ‭size,‬ ‭ensuring‬ ‭more‬ ‭reliable‬ ‭and‬ ‭effective results.‬ ‭b.‬ ‭Multiple Comparison following the ANOVA‬ ‭ he‬‭Analysis‬‭of‬‭Variance‬‭(ANOVA)‬‭is‬‭a‬‭statistical‬‭formula‬ T ‭that‬ ‭is‬ ‭used‬ ‭to‬ ‭compare‬ ‭differences‬ ‭of‬ ‭means‬ ‭among‬ ‭different‬ ‭groups.‬ ‭However,‬ ‭the‬‭ANOVA‬‭doesn’t‬‭identify‬‭which‬‭means‬‭are‬ ‭different.‬ ‭That‬ ‭is‬ ‭why‬ ‭multiple‬ ‭comparison‬‭method‬‭is‬‭used‬‭to‬ ‭investigate‬ ‭whether‬ ‭there‬ ‭are‬ ‭differences‬ ‭in‬ ‭population‬ ‭means‬ ‭among the different populations.‬ ‭The‬‭Fisher’s‬‭least‬‭significant‬‭difference‬‭(LSD)‬‭method‬‭for‬ ‭multiple‬ ‭comparisons‬ ‭is‬ ‭used‬ ‭in‬ ‭ANOVA‬ ‭to‬ ‭build‬ ‭on‬ ‭the‬ ‭equal‬ ‭variances‬ ‭t-test‬ ‭of‬ ‭the‬ ‭difference‬ ‭between‬ ‭the‬ ‭two‬ ‭means.‬‭This‬ ‭compares‬‭all‬‭pairs‬‭of‬‭means‬‭with‬‭the‬‭null‬‭hypotheses‬‭𝐻‬‭0:‬ µ‭𝑖‬ = µ‭𝑗‬ ‭(for all‬‭𝑖‬ ≠ ‭𝑗‭)‬ using the t-statistic formula‬ ‭𝑦‭𝑖‬‬·−‭𝑦‭𝑗‬ ·‬ ‭𝑡‬‭0‬ = ‭2‬‭𝑀𝑆‬‭𝐸‬ ‭𝑛‬ ‭Where;‬ ‭𝑡‬‭0‬ ‭- is the t-statistic‬ ‭𝑦‬‭𝑖‬· ‭- is the treatment mean 1‬ ‭𝑦‬‭𝑗‬· ‭- is the treatment mean 2‬ ‭𝑀𝑆‬‭𝐸‬ ‭- is the mean squared error‬ ‭Engineering Data Analysis‬ ‭Page‬‭5‬ ‭𝑛‬ ‭- is the sample sizes‬ I‭f‬ ‭it’s‬ ‭a‬ ‭two-sided‬ ‭alternative‬ ‭hypothesis,‬ ‭the‬ ‭pair‬ ‭means‬ µ‭𝑖‬ ‭and‬µ‭𝑗‬ ‭would be declare significantly‬‭different if‬ ||‭𝑦‬ − 𝑦 | | ‭𝑖‬· ‭ ‬‭𝑗‬·|| > ‭𝐿 𝑆𝐷‬ ‭Where LSD (least significant difference) is‬ ‭2‬‭𝑀𝑆‬‭𝐸‬ ‭𝐿 𝑆𝐷‬ = ‭𝑡‬α‭/2‬,‭‬‭𝑎‬(‭𝑛− ‬ ‭1)‬ ‭𝑛‬ ‭However,‬ ‭if‬ ‭the‬ ‭sample‬ ‭sizes‬ ‭are‬ ‭different‬ ‭in‬ ‭each‬ ‭treatment, then the LSD is defined as‬ ‭𝐿 𝑆𝐷‬ = ‭𝑡‬α‭/2‬,‭‬‭𝑁‬−‭𝑎‬ ‭𝑀𝑆‬‭𝐸‬ ( ‭1‬ ‭ ‬‭𝑖‬ 𝑛 + ‭1‬ ‭ ‭𝑗‬ ‬ 𝑛 ) ‭c.‬ ‭Residual Analysis and Model Checking‬ ‭In‬ ‭the‬ ‭analysis‬ ‭of‬ ‭variance‬ ‭(ANOVA),‬ ‭it‬ ‭is‬ ‭assumed‬ ‭that‬ ‭ bservations‬‭are‬‭normally‬‭and‬‭independently‬‭distributed‬‭with‬‭the‬ o ‭same‬ ‭variance‬ ‭across‬ ‭all‬ ‭treatment‬ ‭or‬ ‭factor‬ ‭levels.‬ ‭These‬ ‭assumptions‬ ‭can‬ ‭be‬ ‭verified‬ ‭by‬ ‭examining‬ ‭the‬ ‭residuals,‬‭which‬ ‭are‬ ‭the‬ ‭differences‬ ‭between‬ ‭observed‬ ‭values‬ ‭(‭𝑦 ‬ ‬‭𝑖𝑗‬‭)‬ ‭and‬ ‭their‬ ‭estimated‬‭values‬‭(‬‭‬‭ŷ‬‭𝑖𝑗‬‭)‬‭from‬‭the‬‭statistical‬‭model.‬‭In‬‭a‬‭completely‬ ‭randomized‬‭design,‬ ‭ŷ‬‭𝑖𝑗‬ ‭is‬‭the‬‭mean‬‭of‬‭the‬‭observations‬‭for‬‭each‬ ‭treatment (‬‭𝑦‬‭𝑖‭)‬ , and each residual (‬‭𝑒‬‭𝑖𝑗‬‭) is calculated as‬ ‭𝑒‬‭𝑖𝑗‬ = ‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬‭𝑖‬· ‭The‬‭normality‬‭assumption‬‭can‬‭be‬‭checked‬‭using‬‭a‬‭normal‬ ‭ robability‬ ‭plot‬ ‭of‬ ‭the‬ ‭residuals;‬ ‭a‬ ‭straight‬ ‭line‬ ‭in‬ ‭this‬ ‭plot‬ p ‭suggests‬‭normality.‬‭To‬‭check‬‭the‬‭assumption‬‭of‬‭equal‬‭variances,‬ ‭residuals‬ ‭are‬ ‭plotted‬ ‭against‬‭the‬‭factor‬‭levels‬‭and‬‭the‬‭spread‬‭is‬ ‭compared.‬ ‭Plotting‬ ‭residuals‬ ‭against‬ ‭the‬ ‭fitted‬ ‭values‬ ‭(‬‭𝑦‬‭𝑖‭)‬ ‬ ‭also‬ ‭ elps‬‭verify‬‭that‬‭residual‬‭variability‬‭does‬‭not‬‭depend‬‭on‬‭the‬‭fitted‬ h ‭values.‬ ‭If‬ ‭a‬ ‭pattern‬ ‭appears,‬ ‭it‬ ‭might‬ ‭indicate‬ ‭the‬ ‭need‬ ‭for‬ ‭a‬ ‭transformation,‬ ‭such‬ ‭as‬ ‭taking‬ ‭the‬ ‭logarithm‬ ‭or‬ ‭square‬ ‭root‬ ‭of‬ ‭the data, to stabilize variance.‬ ‭Engineering Data Analysis‬ ‭Page‬‭6‬ ‭ dditionally,‬ ‭the‬ ‭independence‬ ‭of‬ ‭observations‬ ‭can‬ ‭be‬ A ‭assessed‬ ‭by‬ ‭plotting‬ ‭residuals‬ ‭against‬ ‭the‬ ‭time‬ ‭or‬ ‭run‬ ‭order‬ ‭of‬ ‭the‬ ‭experiment.‬ ‭A‬ ‭pattern‬ ‭in‬ ‭this‬ ‭plot‬ ‭may‬ ‭suggest‬ ‭that‬ ‭time‬‭or‬ ‭run‬ ‭order‬ ‭affects‬ ‭the‬ ‭results,‬ ‭indicating‬ ‭that‬ ‭time-dependent‬ ‭variables need to be included in the experimental design.‬ ‭d.‬ ‭Determining Sample Size‬ ‭ electing‬ ‭the‬ ‭appropriate‬ ‭sample‬ ‭size‬ ‭or‬ ‭number‬ ‭of‬ S ‭replicates‬ ‭in‬ ‭any‬ ‭experimental‬ ‭design‬ ‭problem‬ ‭is‬ ‭crucial.‬ ‭In‬ ‭making‬ ‭this‬ ‭selection,‬ ‭operating‬ ‭characteristics‬ ‭curves‬ ‭(OC‬ ‭curves)‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭provide‬ ‭guidance.‬ ‭The‬ ‭OC‬‭curve‬‭plots‬ ‭the‬‭chance‬‭of‬‭a‬‭type‬‭II‬‭error‬‭(β ‬ ‭)‬‭for‬‭different‬‭sample‬‭sizes‬‭versus‬ ‭the‬ ‭critical‬ ‭difference‬ ‭in‬ ‭means‬ ‭to‬ ‭detect.‬ ‭OC‬ ‭curves‬ ‭can‬ ‭be‬ ‭utilized‬ ‭to‬ ‭determine‬ ‭how‬‭many‬‭replicates‬‭are‬‭needed‬‭to‬‭obtain‬ ‭sufficient sensitivity.‬ ‭The power of the ANOVA test is‬ { ‭1‬ − β = ‭𝑃‬ ‭𝑅𝑒𝑗𝑒𝑐𝑡‬‭‬‭𝐻‬‭0‭‬ ‬‭|‬‭‬‭𝐻‭0‬ ‬‭‬‭𝑖𝑠‬‭‬‭𝑓𝑎𝑙𝑠𝑒‬ } = ‭𝑃‬{‭𝐹‬‭0‬ > ‭𝑓‬α,‭‬‭𝑎‬−‭1,‬‭‬‭𝑎‬(‭𝑛‬−‭1)‬ ‭‬‭|‬‭‬‭𝐻‬‭0‭‬ ‬‭𝑖𝑠‬‭‬‭𝑓𝑎𝑙𝑠𝑒‬} I‭f‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭is‬ ‭false,‬ ‭then‬ ‭we‬‭need‬‭to‬‭know‬‭the‬ ‭distribution‬ ‭of‬ ‭the‬ ‭test‬ ‭statistic‬ ‭𝐹‬‭0‬ ‭in‬ ‭order‬ ‭to‬ ‭evaluate‬ ‭this‬ ‭ robability‬‭statement.‬‭This‬‭is‬‭because‬‭the‬‭null‬‭hypothesis‬‭can‬‭be‬ p ‭false‬ ‭in‬ ‭different‬ ‭ways,‬ ‭especially‬ ‭that‬ ‭the‬ ‭ANOVA‬ ‭compares‬ ‭different means.‬ ‭The OC curves plot β against the parameter‬ϕ‭, where‬ ‭𝑎‬ ‭2‬ ‭𝑛‬∑ τ‭𝑖‬ ‭2‬ ‭2‬ ‭2‬ ‭𝑛‬δ ϕ = ‭𝑖= ‬ ‭1‬ ‭2‬ ‭or‬Φ = ‭2‬ ‭𝑎‬σ ‭2‭𝑎 ‬ ‬σ ‭2‬ ‭ he‬ ‭parameter‬ ϕ ‭is‬ ‭the‬ ‭noncentrality‬ ‭parameter‬ ‭δ.‬ T ‭Curves‬‭are‬‭available‬‭for‬ α = ‭0‬. ‭05‬ ‭and‬α = ‭0‬. ‭01‬ ‭and‬‭for‬‭several‬ ‭values‬ ‭of‬ ‭the‬ ‭number‬ ‭of‬ ‭degrees‬ ‭of‬ ‭freedom‬ ‭for‬ ‭numerator‬ ‭(denoted‬‭𝑣‬‭1‭)‬ and denominator (denoted‬‭𝑣‬‭2‭)‬.‬ ‭B. The Random Effects Model‬ ‭Differentiating‬ ‭between‬ ‭fixed‬ ‭and‬ ‭random‬ ‭factors‬ ‭is‬ ‭crucial‬ ‭in‬ ‭single‬‭factor‬‭experiment‬‭design‬‭and‬‭analysis‬‭because‬‭it‬‭affects‬‭how‬‭the‬ ‭results are interpreted and generalized.‬ ‭a.‬ ‭Fixed vs. Random Factors‬ ‭Engineering Data Analysis‬ ‭Page‬‭7‬ ‭ ‬ ‭fixed‬ ‭factor‬ ‭is‬ ‭one‬ ‭whose‬ ‭levels‬ ‭are‬ ‭carefully‬ ‭set‬ ‭and‬ A ‭are‬ ‭of‬‭primary‬‭interest.‬‭When‬‭analyzing‬‭data‬‭from‬‭a‬‭fixed-factor‬ ‭experiment,‬‭an‬‭ANOVA‬‭(analysis‬‭of‬‭variance)‬‭is‬‭typically‬‭used‬‭to‬ ‭assess‬ ‭if‬ ‭the‬ ‭means‬ ‭of‬ ‭the‬ ‭levels‬ ‭differ‬ ‭substantially.‬ ‭Results‬ ‭can't‬ ‭be‬ ‭generalized‬ ‭beyond‬ ‭the‬ ‭levels‬ ‭tested‬ ‭and‬ ‭are‬ ‭only‬ ‭applicable to those levels covered in the experiment.‬ ‭A‬‭random‬‭factor,‬‭on‬‭the‬‭other‬‭hand,‬‭is‬‭a‬‭factor‬‭with‬‭levels‬ ‭chosen‬ ‭at‬ ‭random‬ ‭from‬ ‭a‬ ‭broader‬ ‭set‬ ‭of‬ ‭potential‬ ‭levels.‬ ‭The‬ ‭levels‬ ‭are‬ ‭considered‬ ‭a‬ ‭random‬ ‭sample‬ ‭from‬ ‭a‬ ‭broader‬ ‭category.‬ ‭When‬ ‭dealing‬ ‭with‬ ‭random‬ ‭factors,‬ ‭the‬ ‭focus‬ ‭is‬ ‭on‬ ‭estimating‬‭the‬‭variability‬‭among‬‭the‬‭levels‬‭rather‬‭than‬‭comparing‬ ‭specific levels.‬ ‭b.‬ ‭ANOVA and Variance Components‬ ‭ANOVA‬ ‭allows‬‭you‬‭to‬‭simultaneously‬‭compare‬‭arithmetic‬ ‭ eans‬ ‭across‬ ‭groups.‬ ‭You‬ ‭can‬ ‭determine‬ ‭whether‬ ‭the‬ m ‭differences‬‭observed‬‭are‬‭due‬‭to‬‭random‬‭chance‬‭or‬‭if‬‭they‬‭reflect‬ ‭genuine,‬ ‭meaningful‬ ‭differences.‬ ‭On‬ ‭the‬ ‭same‬ ‭hand,‬ ‭the‬ ‭Variance‬ ‭Components‬ ‭Analysis‬ ‭procedure‬ ‭is‬ ‭designed‬ ‭to‬ ‭estimate‬‭the‬‭contribution‬‭of‬‭multiple‬‭factors‬‭to‬‭the‬‭variability‬‭of‬‭a‬ ‭dependent‬ ‭variable‬ ‭Y.‬‭The‬‭analysis‬‭of‬‭variance‬‭is‬‭the‬‭extension‬ ‭of the t-test for independent samples to more than two groups.‬ ‭Since‬ ‭we‬ ‭deal‬ ‭with‬ ‭continuous‬ ‭response‬ ‭variables‬ ‭as‬ ‭a‬ ‭function‬ ‭of‬ ‭one‬ ‭or‬ ‭more‬ ‭predictor‬ ‭variables,‬ ‭we‬ ‭use‬ ‭the‬ ‭linear‬ ‭statistical‬ ‭model.‬ ‭The‬ ‭model‬ ‭is‬ ‭identical‬ ‭in‬ ‭structure‬ ‭to‬ ‭the‬ ‭fixed-effects‬‭case,‬‭but‬‭the‬‭parameters‬‭are‬‭interpreted‬‭differently,‬ ‭with‬ ‭the‬ ‭treatment‬ ‭effects‬ τ‭𝑖‬‭‬ ‭and‬ ‭the‬ ‭errors‬ ϵ‭𝑖𝑗‬ ‭as‬ ‭independent‬ ‭random variables.‬ ‭2‬ ‭If‬ ‭the‬ ‭variance‬ ‭of‬ ‭the‬ ‭treatment‬ ‭effects‬ τ‭𝑖‬‭‬ ‭is‬ στ ‭,‬ ‭by‬ ‭independence the variance of the response is‬ ‭2‬ ‭2‬ ( ) ‭𝑉‬ ‭𝑌‬‭𝑖𝑗‬ = στ + σ ‭2‬ ‭2‬ ‭The‬‭variances‬ στ ‭‭a ‬ nd‬ σ ‭are‬‭called‬‭variance‬‭components,‬ ‭ nd‬ ‭the‬ ‭model‬ ‭is‬ ‭called‬ ‭the‬ ‭components‬ ‭of‬ ‭the‬‭variance‬‭model‬ a ‭or the random-effects model.‬ ‭For‬‭the‬‭random-effects‬‭model,‬‭testing‬‭the‬‭hypothesis‬‭that‬ ‭the‬ ‭individual‬ ‭treatment‬ ‭effects‬ ‭are‬ ‭zero‬ ‭is‬ ‭meaningless.‬ ‭It‬ ‭is‬ ‭2‬ ‭more appropriate to test hypotheses about‬στ ‭. Specifically,‬ ‭2‬ ‭𝐻‬‭0:‬ στ = ‭0‬ ‭2‬ ‭𝐻‬‭1:‬ στ > ‭0‬ ‭Engineering Data Analysis‬ ‭Page‬‭8‬ ‭2‬ ‭2‬‭‭‬‬ ‭If‬ στ = ‭0‭,‬ ‬‭all‬‭treatments‬‭are‬‭identical;‬‭but‬‭if‬στ > ‭0‭,‬ ‬‭there‬ i‭s‬ ‭variability‬‭between‬‭treatments.‬‭The‬‭ANOVA‬‭decomposition‬‭of‬ ‭total variability is still valid.‬ ‭Furthermore,‬‭𝑀𝑆‬‭𝐸‬ ‭and‬‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭are independent.‬ ‭Consequently, the ratio‬ ( ‭𝐹‬‭0‭‬ ‬ = ‭‬‭𝐸‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝐸‬ ) ‭‬‭‬ ‭is an F random variable with‬‭𝑎‬ − ‭1‬ ‭and‬‭𝑎‬(‭𝑛‬ − ‭1‬) ‭degrees of freedom when‬‭𝐻‬‭0‬ ‭is true. The null‬‭hypothesis would‬ ‭ e rejected at the‬α ‭- level of significance if‬‭the computed value‬ b ‭of the test statistic‬‭𝑓‬‭0‬ > ‭𝑓‬α,‭𝑎‬−‭1‬,‭𝑎‬(‭𝑛‬−‭1)‬ ‭.‬ ‭ quating‬ ‭Observed‬ ‭and‬ ‭Expected‬ ‭Mean‬ ‭Squares‬ ‭in‬ ‭the‬ E ‭One-way Classification Random-Effects Model:‬ ‭2‬ ‭2‬ ‭2‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ = σ + ‭𝑛‬στ ‭‬‭‬‭‬ ‭and‬ ‭𝑀𝑆‬‭𝐸‬ = σ ‭‬‭‬‭‭‬‬‭‬ ‭Variance Components Estimates‬ ‭2‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬−‭𝑀𝑆‬‭𝐸‬ ‭2‬ στ ‭‭‬‬‭‬‭=‬ ‭𝑛‬ ‭and‬ σ = ‭𝑀𝑆‬‭𝐸‭‬ ‬‭‬‭‭‬‬‭‬ ‭The‬ ‭only‬ ‭condition‬ ‭that‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭can‬ ‭be‬ ‭rejected‬ ‭is‬ ‭where‬ ‭the‬ ‭expected‬ ‭value‬ ‭of‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭is‬ ‭greater‬ ‭than‬ ‭the‬ ‭expected‬ ‭value‬ ‭of‬ ‭𝑀𝑆‬‭𝐸‬‭,‬‭implying‬‭an‬‭upper-tail,‬‭one-tail‬ ‭critical‬ ‭region.‬ ‭Reject‬ ‭𝐻‬‭0‬ ‭if‬ ‭𝑓‬‭0‬ > ‭𝑓‬α,‭‬‭𝑎‬−‭1‬,‭‬‭𝑎‬(‭𝑛− ‬ ‭1‬) ‭,‬ ‭where‬ ‭𝑓‬‭0‬ ‭is‬ ‭the‬ ‭computed value from the test statistic.‬ ‭C. Randomized Complete Block Design‬ ‭a.‬ ‭Design and Statistical Analysis‬ ‭Experimental‬‭design‬‭is‬‭a‬‭structured‬‭approach‬‭to‬‭planning‬ ‭and‬ ‭conducting‬ ‭experiments‬ ‭with‬ ‭the‬ ‭goal‬ ‭of‬ ‭obtaining‬ ‭valid,‬ ‭reliable,‬‭and‬‭interpretable‬‭results.‬‭It‬‭involves‬‭carefully‬‭controlling‬ ‭and‬ ‭manipulating‬ ‭variables‬ ‭to‬ ‭determine‬ ‭their‬ ‭effects‬ ‭while‬ ‭minimizing‬ ‭the‬ ‭impact‬ ‭of‬ ‭confounding‬ ‭factors.‬ ‭It‬ ‭helps‬ ‭ensure‬ ‭that‬ ‭the‬ ‭results‬ ‭of‬ ‭an‬ ‭experiment‬ ‭are‬ ‭reliable‬ ‭and‬ ‭can‬ ‭be‬ ‭attributed‬‭to‬‭the‬‭factors‬‭being‬‭tested,‬‭rather‬‭than‬‭other‬‭unrelated‬ ‭variables.‬ ‭Then‬ ‭a‬ ‭statistical‬ ‭analysis‬ ‭involves‬ ‭the‬ ‭process‬ ‭of‬ ‭collecting,‬ ‭analyzing,‬ ‭interpreting,‬ ‭presenting,‬ ‭and‬ ‭organizing‬ ‭Engineering Data Analysis‬ ‭Page‬‭9‬ ‭ ata.‬ ‭It‬ ‭uses‬ ‭mathematical‬ ‭theories‬ ‭and‬ ‭formulas‬ ‭to‬ ‭derive‬ d ‭insights and make decisions based on data.‬ ‭Moreover,‬ ‭a‬ ‭randomized‬ ‭block‬ ‭design‬ ‭is‬ ‭an‬‭extension‬‭of‬ ‭the‬ ‭paired‬ ‭t-test‬ ‭to‬ ‭situations‬ ‭where‬ ‭the‬ ‭factor‬ ‭of‬ ‭interest‬ ‭has‬ ‭more‬‭than‬‭two‬‭levels;‬‭that‬‭is,‬‭more‬‭than‬‭two‬‭treatments‬‭must‬‭be‬ ‭compared.‬ ‭The observations for randomized complete block design‬ ‭may be represented by the linear statistical model‬ ‭𝑌‬‭𝑖𝑗‬ ‭=‬µ‭‬ + τ‭𝑖‬‭‬ ‭+‬ β‭𝑗‬ ‭+‬ϵ‭𝑖𝑗‬ { ‭𝑖‭‬‬=‭‭1 } ‬ ‬‭,‬‭‬‭2‭‬‬,‭.‬..‭‬,‭‬‭𝑎‬ ‭𝑗‬‭‬=‭‭1 ‬ ‭‬‬,‭‬‭2‬‭‬,‭‬...‭‬,‭‬‭𝑏‬ ‭where‬ ‭µ‬ ‭an‬ ‭overall‬ ‭mean,‬ τ‭𝑖‬‭‬ ‭is‬ ‭the‬ ‭effect‬ ‭of‬ ‭the‬ ‭th‬ ‭treatment,‬ β‭𝑗‬ ‭is‬‭the‬‭effect‬‭of‬‭the‬‭th‬ ‭block,‬‭and‬ ϵ‭𝑖𝑗‬‭‭‬‬‭is‬‭the‬‭random‬ ‭error‬ ‭term,‬ ‭which‬ ‭is‬‭assumed‬‭to‬‭be‬‭normally‬‭and‬‭independently‬ ‭2‬ ‭distributed with mean zero and variance‬σ ‭.‬ I‭n‬ ‭a‬ ‭randomized‬ ‭block‬ ‭experiment,‬ ‭it‬ ‭uses‬ ‭a‬ ‭sum‬ ‭of‬ ‭squares‬ ‭identity‬ ‭that‬ ‭partitions‬ ‭the‬ ‭total‬ ‭sum‬ ‭of‬ ‭squares‬ ‭into‬ ‭three components‬ ‭𝑏‬ ‭𝑎‬ ‭2‬ ‭𝑏‬ ‭2‬ ( ) ( ∑ ‭𝑦‭𝑖‬𝑗‬ − ‭𝑦‬‭‬.. = ‭‬‭𝑏‬ ∑ ‭‬ ‭‬‭𝑦‬‭𝑖‬‭‬ − ‭𝑦‬‭‬.. ‭𝑗‬‭‬=‭‭1 ‬‬ ‭𝑖‬‭‬=‭‬‭1‬ ) ( + ‭𝑎‬ ∑ ‭‬‭‬ ‭𝑦‬‭𝑗‬ − ‭𝑦‬‭‬.. ‭‬‭‬‭‬‭‬ ‭𝑗‬‭‬=‭‭1 ‬‬ ) ‭𝑎‬ ‭𝑏‬ ‭2‬ + ∑ ∑ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‬‭𝑗‬‭‬=‭‬‭1‬ ( ‭‬‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬‭𝑗‬ − ‭𝑦‬‭𝑖‬‭‬ − ‭𝑦‬‭‬.. ) ‭symbolically :‬ ‭𝑆𝑆‬‭𝑇‬ ‭=‬‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭+‬‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭+‬‭𝑆𝑆‬‭𝐸‭‬‬ ‭Where the degrees of freedom corresponding to the‬ ‭sums of squares are‬ ‭ab - 1 = ( a - 1) + ( b - 1) + ( a - 1)( b - 1)‬ ‭ his follows the relevant mean square for a randomized‬ T ‭block design:‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ = ‭𝑎‬‭‬−‭‬‭1‭‬‬ ‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬ ‭𝑀𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ = ‭𝑏‭‬‬−‭‬‭1‭‬‬ ‭𝑆𝑆‬‭𝐸‬ ‭𝑀𝑆‬‭𝐸‭‬ ‬ = (‭𝑎‬‭‬−‭‬‭1)‬ ‭‬(‭‬‭𝑏‬‭‬−‭‬‭1)‬ ‭‬ ‭Engineering Data Analysis‬ ‭Page‬‭10‬ ‭ lso,‬ ‭the‬ ‭expected‬ ‭values‬ ‭of‬ ‭this‬ ‭mean‬ ‭squares‬ ‭are‬ A ‭shown as‬ ‭𝑎‬ ‭2‬ ‭𝑏‬‭‬ ∑ ‭‬τ‭𝑖‬ ‭2‬ ‭𝐸‬(‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬)‭‬ = ‭‬σ ‭+‬ ‭𝑖‬‭= ‭𝑎‬‭− ‬ ‭‬‭1‬ ‬ ‭‬‭1‬ ‭𝑎‬ ‭2‬ ‭𝑏‬‭‬ ∑ ‭‬β‭𝑗‬ ‭2‬ ‬ ‭+‬ ‭‬‭𝐸‬(‭𝑀𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬)‭‬ = ‭σ ‭𝑗‬‭= ‭𝑏‬‭− ‬ ‭‭1 ‬ ‭‬‭1‬ ‬‬ ‭2‬ ‭𝐸‬(‭𝑀𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬)‭‬ = ‭σ ‬ ‭To‬ ‭test‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭that‬ ‭the‬ ‭treatment‬‭effects‬‭are‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭all‬ ‭zero,‬ ‭we‬ ‭use‬ ‭the‬ ‭ratio‬ ‭𝐹‬‭0‭‬ ‬ = ‭‬ ‭𝑀𝑆‬‭𝐸‬ ‭which‬ ‭has‬ ‭an‬ ‭ -distribution‬‭with‬‭a‬‭-‬‭1‬‭and‬‭(a‬ ‭1)(b‬ ‭1)‬‭degrees‬‭of‬‭freedom‬‭if‬‭the‬ F ‭null‬ ‭hypothesis‬ ‭is‬ ‭true.‬ ‭We‬ ‭would‬ ‭reject‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭at‬ ‭the‬ α‭level‬ ‭of‬ ‭significance‬ ‭if‬ ‭the‬ ‭computed‬ ‭value‬ ‭of‬ ‭the‬ ‭test‬ ‭statistic in equation is‬‭𝑓‬‭0‬ ‭=‬ ‭𝑓‬α,‭‭𝑎‬ ‬‭‬−‭‬‭1‬‭,‬(‭𝑎‬‭− ‬ ‭‭1 ‬ ‬)(‭𝑎‬‭‬−‭‬‭𝑏‬) ‭.‬ ‭Additionally,‬ ‭the‬ ‭appropriate‬ ‭computing‬ ‭formulas‬ ‭of‬ s‭ quares‬ ‭in‬ ‭the‬ ‭analysis‬ ‭of‬ ‭variance‬ ‭for‬ ‭a‬ ‭randomized‬ ‭block‬ ‭experiment are:‬ ‭𝑎‬ ‭𝑏‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭2‬ ‭𝑆𝑆‬‭𝑇‬ ‭=‬ ∑ ∑ ‭𝑦‬‭𝑖𝑗‬‭‬ − ‭‬ ‭𝑎𝑏‬ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‭𝑗‬ ‬‭‬=‭‭1 ‬‬ ‭𝑎‬ ‭2‬ ‭𝑦‬ ‭‬ ‭ ‬‭‬ 1 ‭2‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭=‬ ‭𝑏‬ ∑ ‭𝑦‬‭𝑖‬. ‭-‬ ‭𝑎.‭𝑏‬.‬ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‬ ‭𝑎‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭ ‬‭‬ 1 ‭2‬ ‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭=‬ ‭𝑎‬ ∑ ‭𝑦‬‭𝑗‬. ‭-‬ ‭𝑎𝑏‬ ‭𝑗‬‭‬=‭‭1 ‬ ‬‭‭‬‬ ‭𝑆𝑆‬‭𝐸‭‬‬ ‭=‬‭𝑆𝑆‬‭𝑇‬ ‭-‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭-‬‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭b.‬ ‭Multiple Comparisons‬ ‭In‬ ‭the‬ ‭context‬ ‭of‬ ‭a‬ ‭Randomized‬ ‭Complete‬ ‭Block‬ ‭Design‬ ‭(RCBD),‬ ‭multiple‬ ‭comparisons‬ ‭refer‬ ‭to‬ ‭statistical‬ ‭procedures‬ ‭used‬ ‭to‬ ‭determine‬ ‭which‬ ‭treatment‬ ‭means‬ ‭are‬ ‭significantly‬ ‭different‬ ‭from‬ ‭each‬ ‭other‬ ‭after‬ ‭conducting‬ ‭an‬‭ANOVA‬‭(Analysis‬ ‭of‬ ‭Variance).‬ ‭The‬ ‭RCBD‬ ‭is‬ ‭commonly‬ ‭used‬ ‭to‬ ‭control‬ ‭for‬ ‭variability‬ ‭among‬ ‭experimental‬ ‭units‬ ‭by‬ ‭grouping‬ ‭them‬ ‭into‬ ‭blocks, with each block containing a complete set of treatments.‬ ‭When‬ ‭ANOVA‬ ‭indicates‬ ‭significant‬ ‭differences‬ ‭between‬ ‭treatment‬ ‭means,‬ ‭it‬ ‭may‬ ‭be‬ ‭necessary‬ ‭to‬ ‭conduct‬ ‭additional‬ ‭tests‬ ‭to‬ ‭pinpoint‬ ‭the‬ ‭specific‬ ‭differences.‬ ‭Multiple‬ ‭comparison‬ ‭Engineering Data Analysis‬ ‭Page‬‭11‬ ‭ ethods,‬ ‭such‬ ‭as‬ ‭Fisher’s‬ ‭LSD‬ ‭method,‬ ‭can‬ ‭be‬ ‭employed‬ ‭for‬ m ‭this purpose.‬ ‭Computing‬ ‭Formulas‬ ‭for‬ ‭Multiple‬ ‭Comparisons‬ ‭in‬ ‭Randomized Complete Block Design:‬ ‭Sum of Squares (SS) Calculations:‬ ‭𝑎‬ ‭𝑏‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭2‬ ‭𝑆𝑆‬‭𝑇‬ ‭=‬ ∑ ∑ ‭𝑦‬‭𝑖𝑗‬‭‬ − ‭‬ ‭𝑎𝑏‬ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‭𝑗‬ ‬‭‬=‭‭1 ‬‬ ‭𝑎‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭ ‬‭‬ 1 ‭2‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭=‬ ‭𝑏‬ ∑ ‭𝑦‬‭𝑖‬. ‭-‬ ‭𝑎𝑏‬ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‬ ‭𝑎‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭ ‬‭‬ 1 ‭2‬ ‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭=‬ ‭𝑎‬ ∑ ‭𝑦‬‭𝑗‬. ‭-‬ ‭𝑎𝑏‬ ‭𝑗‬‭‬=‭‭1 ‬ ‬‭‭‬‬ ‭𝑆𝑆‬‭𝐸‭‬‬ ‭=‬‭𝑆𝑆‬‭𝑇‬ ‭-‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭-‬‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭Least Significant Difference:‬ ‭2‬‭𝑀𝑆‬‭𝐸‬ ‭𝐿 𝑆𝐷‬ = ‭𝑡‬α‭/2‬,α(‭𝑛‬−‭1)‬ ‭𝑛‬ ‭Degrees of Freedom (df):‬ ‭Total:‬ ‭𝑎𝑏‬ − ‭1‬ ‭Treatments:‬ ‭𝑎‬ − ‭1‬ ‭Blocks:‬ ‭𝑏‬ − ‭1‬ ‭Error:‬ (‭𝑎‬ − ‭1‬)(‭𝑏‬ − ‭1‬) ‭Mean Square‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ = ‭𝑎‬‭‬−‭‬‭1‭‬‬ ‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬ ‭𝑀𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ = ‭𝑏‭‬‬−‭‬‭1‭‬‬ ‭𝑆𝑆‬‭𝐸‬ ‭𝑀𝑆‬‭𝐸‭‬ ‬ = (‭𝑎‬‭‬−‭‬‭1)‬ ‭‬(‭‬‭𝑏‬‭‬−‭‬‭1)‬ ‭‬ ‭c.‬ ‭Residual Analysis and Model Checking‬ ‭Residual‬‭analysis‬‭is‬‭a‬‭statistical‬‭method‬‭used‬‭to‬‭evaluate‬ ‭a‬‭linear‬‭regression‬‭model's‬‭performance‬‭by‬‭analyzing‬‭residuals.‬ ‭It‬ ‭helps‬ ‭identify‬ ‭and‬ ‭rectify‬ ‭model‬ ‭issues,‬ ‭assess‬ ‭assumptions,‬ ‭and‬ ‭detect‬ ‭outliers‬ ‭for‬ ‭improved‬ ‭efficiency.‬ ‭Residual‬ ‭analysis‬ ‭involves‬ ‭understanding‬ ‭residuals.‬ ‭This‬ ‭includes‬ ‭collecting‬ ‭data,‬ ‭Engineering Data Analysis‬ ‭Page‬‭12‬ c‭ onstructing‬ ‭a‬ ‭regression‬ ‭model,‬ ‭calculating‬ ‭residuals,‬ ‭visualizing‬ ‭residuals,‬ ‭analyzing‬ ‭residuals,‬ ‭assessing‬ ‭model‬ ‭assumptions,‬ ‭refining‬ ‭the‬ ‭model‬ ‭if‬ ‭necessary,‬ ‭and‬ ‭interpreting‬ ‭results.‬ ‭This‬ ‭analysis‬ ‭aims‬ ‭to‬ ‭evaluate‬ ‭the‬ ‭goodness‬ ‭of‬ ‭fit‬ ‭of‬‭a‬ ‭statistical model to the observed data.‬ ‭In‬‭any‬‭designed‬‭experiment,‬‭examining‬‭the‬‭residuals‬‭and‬ ‭checking‬‭for‬‭violations‬‭of‬‭basic‬‭assumptions‬‭that‬‭could‬‭invalidate‬ ‭the‬ ‭results‬ ‭is‬ ‭always‬ ‭important.‬ ‭As‬ ‭usual,‬ ‭the‬ ‭residuals‬ ‭for‬ ‭the‬ ‭RCBD‬ ‭are‬ ‭simply‬ ‭the‬ ‭difference‬ ‭between‬ ‭the‬ ‭observed‬ ‭and‬ ‭estimated (or fitted) values from the statistical model, say,‬ ^ ‭𝑒‬‭𝑖𝑗‬ = ‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬‭𝑖𝑗‬ ‭and the fitted values are represented by the equation:‬ ^ ‭𝑦‬‭𝑖𝑗‬ = ‭𝑦‬‭𝑖‬· + ‭𝑦‬·‭𝑗‬ − ‭𝑦‬·· ‭ he‬ ‭fitted‬ ‭value‬ ‭represents‬ ‭the‬ ‭estimate‬ ‭of‬ ‭the‬ ‭mean‬ T ‭response‬ ‭when‬ ‭the‬ ‭𝑖‬‭th‬ ‭treatment‬ ‭is‬ ‭run‬ ‭in‬ ‭the‬ ‭𝑗‬‭th‬ ‭block.‬ ‭Then,‬ ‭the‬ ‭residuals‬ ‭would‬ ‭be‬ ‭best‬ ‭identified‬ ‭by‬ ‭examining‬ ‭them‬ ‭in‬ ‭a‬ ‭table.‬‭Hence,‬‭residual‬‭plots‬‭are‬‭usually‬‭constructed‬‭by‬‭computer‬ ‭software packages.‬ ‭Engineering Data Analysis‬ ‭Page‬‭13‬ ‭GLOSSARY‬ ‭ nalysis‬ ‭of‬ ‭variance‬ ‭(ANOVA):‬ ‭A‬ ‭method‬ ‭of‬ ‭decomposing‬ ‭the‬ ‭total‬ A ‭variability‬‭in‬‭a‬‭set‬‭of‬‭observations,‬‭as‬‭measured‬‭by‬‭the‬‭sum‬‭of‬‭the‬‭squares‬‭of‬ ‭these‬ ‭observations‬ ‭from‬ ‭their‬‭average,‬‭into‬‭component‬‭sums‬‭of‬‭squares‬‭that‬ ‭are associated with specific defined sources of variation.‬ ‭ isher’s‬ ‭least‬ ‭significant‬ ‭difference‬ ‭(LSD)‬ ‭method:‬ ‭A‬ ‭series‬ ‭of‬ ‭pairwise‬ F ‭hypothesis‬ ‭tests‬ ‭of‬ ‭treatment‬ ‭means‬ ‭in‬ ‭an‬ ‭experiment‬ ‭to‬ ‭determine‬ ‭which‬ ‭means differ.‬ ‭ evels‬ ‭of‬ ‭a‬ ‭factor:‬ ‭The‬ ‭settings‬ ‭(or‬ ‭conditions)‬ ‭used‬ ‭for‬ ‭a‬ ‭factor‬ ‭in‬ ‭an‬ L ‭experiment.‬ ‭ andomized‬ ‭complete‬ ‭block‬ ‭design:‬ ‭A‬ ‭type‬ ‭of‬ ‭experimental‬ ‭design‬ ‭in‬ R ‭which treatment or factor levels are assigned to blocks in a random manner.‬ ‭ eplicates:‬ ‭One‬ ‭of‬ ‭the‬ ‭independent‬ ‭repetitions‬ ‭of‬ ‭one‬ ‭or‬ ‭more‬ ‭treatment‬ R ‭combinations in an experiment.‬ ‭ esidual:‬ ‭a‬‭difference‬‭between‬‭a‬‭value‬‭measured‬‭in‬‭a‬‭scientific‬‭experiment‬ R ‭and the theoretical or true value.‬ ‭REFERENCES‬ ‭McHugh, M. (2011). Multiple comparison analysis testing in ANOVA.‬ ‭Biochemia Media, 21‬‭(3),‬‭203 - 209.‬ ‭https://doi.org/10.11613/BM.2011.029‬ ‭Montgomery, D. C., & Runger, G. C. (2010). Applied Statistics and Probability‬ ‭for Engineers. John Wiley & Sons.‬ ‭Multiple Comparisons (2024).‬ ‭https://online.stat.psu.edu/stat500/lesson/10/10.3#:~:text=Multiple%20c‬ ‭omparisns%20conducts%20an%20analysis,Brand%20A%20to%20Bra‬ ‭nd%20B‬ ‭Engineering Data Analysis‬ ‭Page‬‭14‬ ‭Submitted by:‬ ‭1.‬ ‭Atazan, Kyla Mei Q.‬ ‭2.‬ ‭Bantaculo, Lorie Jane A.‬ ‭3.‬ ‭Baroy, Britney Dawn Q.‬ ‭4.‬ ‭Dadang, Carlrienyle‬ ‭5.‬ ‭Dinlayan, Princess Hannah D.‬ ‭6.‬ ‭Dueñas, Felix E.‬ ‭7.‬ ‭Fabre, Angela P.‬ ‭8.‬ ‭Miano, Kaye Roxette S.‬ ‭9.‬ ‭Piloton, Marithe M.‬ ‭10.‬‭Roz, James Michael‬ ‭11.‬‭Tabor, Lex Aine June D.‬ ‭Engineering Data Analysis‬ ‭Page‬‭15‬

Use Quizgecko on...
Browser
Browser