Unit XII Design and Analysis of Single-Factor Experiments PDF

Document Details

AuthoritativeParabola

Uploaded by AuthoritativeParabola

Central Mindanao University

Tags

statistical methods engineering experimental design analysis of variance

Summary

This document provides an introduction to single-factor experiments and analysis of variance (ANOVA). It covers design principles, explains how ANOVA is used to draw conclusions from experiments, and discusses the significance of randomization. The document also touches upon model adequacy and the difference between fixed and random factors.

Full Transcript

‭ nit XII‬ U ‭ ESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE‬ D ‭ANALYSIS OF VARIANCE‬ ‭INTRODUCTION‬ ‭Experiments‬ ‭are‬ ‭a‬ ‭natural‬ ‭part‬ ‭of‬ ‭the‬ ‭engineering‬ ‭and‬ ‭scientific‬ ‭ ec...

‭ nit XII‬ U ‭ ESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE‬ D ‭ANALYSIS OF VARIANCE‬ ‭INTRODUCTION‬ ‭Experiments‬ ‭are‬ ‭a‬ ‭natural‬ ‭part‬ ‭of‬ ‭the‬ ‭engineering‬ ‭and‬ ‭scientific‬ ‭ ecision-making‬‭processes.‬‭These‬‭experiments‬‭consist‬‭of‬‭different‬‭treatments‬ d ‭to‬ ‭gather‬ ‭data‬ ‭for‬ ‭testing.‬ ‭In‬ ‭comparing‬ ‭experiments‬ ‭with‬ ‭two‬ ‭factors,‬ ‭the‬ ‭hypothesis‬ ‭tests‬ ‭for‬ ‭the‬‭two‬‭samples‬‭introduced‬‭in‬‭the‬‭previous‬‭chapters‬‭are‬ ‭sufficient.‬ ‭However,‬ ‭many‬ ‭experiments‬ ‭involved‬ ‭more‬ ‭than‬ ‭two‬ ‭levels‬ ‭of‬ ‭factors.‬ ‭Thus,‬ ‭the‬‭primary‬‭focus‬‭of‬‭this‬‭unit‬‭is‬‭the‬‭use‬‭of‬‭analysis‬‭of‬‭variance‬ ‭(ANOVA)‬ ‭in‬ ‭determining‬ ‭differences‬ ‭between‬ ‭multiple‬ ‭levels‬ ‭of‬ ‭factors‬ ‭and‬ ‭populations,‬‭the‬‭analysis‬‭of‬‭single-factor‬‭experiments,‬‭and‬‭the‬‭significance‬‭of‬ ‭randomizing experimental runs.‬ ‭OBJECTIVES‬ ‭At the end of this unit, the student must be able to:‬ ‭1.‬ ‭Design and conduct analysis on engineering single factor‬ ‭experiments;‬ ‭2.‬ ‭Understand how the analysis of variance is used to conclude the‬ ‭experiments;‬ ‭3.‬ ‭Use multiple comparison procedures and assess model‬ ‭adequacy with residual plots;‬ ‭4.‬ ‭Understand the difference between fixed and random factors;‬ ‭5.‬ ‭Conduct experiments involving the randomized complete block‬ ‭design;‬ ‭6.‬ ‭Apply the learnings in order to solve problems and draw‬ ‭conclusions in real-world scenarios.‬ ‭CONTENTS‬ ‭A.‬ ‭Completely Randomized Single Factor Experiments‬ ‭a.‬ ‭Analysis of Variance (ANOVA)‬ ‭Analysis‬ ‭of‬ ‭Variance‬ ‭(ANOVA)‬ ‭is‬ ‭a‬ ‭statistical‬ ‭method‬ ‭ sed‬ ‭to‬ ‭analyze‬ ‭experimental‬ ‭data‬ ‭to‬ ‭compare‬ ‭and‬ ‭determine‬ u ‭differences‬ ‭between‬ ‭multiple‬ ‭population‬ ‭means.‬ ‭It‬ ‭involves‬ ‭partitioning‬ ‭components‬ ‭observed‬ ‭in‬ ‭data‬ ‭with‬ ‭a‬ ‭mathematical‬ ‭model‬‭to‬‭explain‬‭how‬‭different‬‭factors‬‭influence‬‭an‬‭experiment's‬ ‭outcome.‬ ‭Statistically represented as:‬ ‭𝑌‬‭𝑖𝑗‬ = ‭‬µ + τ‭𝑖‬ + ϵ‭𝑖𝑗‬ { ‭𝑖‭‬‬=‭‭1 } ‬ ‬‭,‬‭‬‭2‭‬‬,‭.‬..‭‬,‭‬‭𝑎‬ ‭𝑗‬‭‬=‭‭1 ‬ ‭‬‬,‭‬‭2‬‭‬,‭‬...‭‬,‭‬‭𝑛‬ ‭Engineering Data Analysis‬ ‭Page‬‭1‬ ‭Where;‬ ‭𝑌‬‭𝑖𝑗‬ ‭- is a random variable denoting the (‬‭𝑖𝑗‬‭)th‬ ‭ bservation‬ o µ ‭- is the overall mean of observations‬ τ‭𝑖‬ ‭- is the‬‭𝑖‬‭th treatment effect‬ ϵ‭𝑖𝑗‬ ‭- is a random error component‬ ‭ oreover,‬ ‭ANOVA‬ ‭tests‬‭hypotheses.‬‭The‬‭null‬‭hypothesis‬ M ‭states‬ ‭that‬ ‭all‬ ‭observation‬ ‭means‬ ‭are‬ ‭equal‬ ‭and‬ ‭there‬ ‭is‬ ‭no‬ ‭significant‬ ‭difference‬ ‭among‬ ‭the‬ ‭treatment‬‭means,‬‭whereas‬‭the‬ ‭alternative‬‭hypothesis‬‭states‬‭that‬‭there‬‭is‬‭a‬‭significant‬‭difference‬ ‭among‬‭the treatment means.‬‭Specifically,‬ ‭𝐻‬‭0:‬ τ‭1‬ = τ‭2‬ =···= τ‭𝑎‬ = ‭0‬ ‭𝐻‬‭1:‬ τ‭𝑖‬ ≠ ‭0‬ I‭n‬ ‭order‬ ‭to‬ ‭test‬ ‭the‬ ‭hypothesis,‬ ‭the‬ ‭total‬ ‭variability‬ ‭in‬ ‭a‬ ‭sample‬ ‭data‬ ‭is‬ ‭subdivided‬ ‭into‬ ‭two‬ ‭parts‬ ‭described‬‭by‬‭the‬‭total‬ ‭sum of squares‬ ‭𝑎‬ ‭𝑛‬ ‭2‬ ‭𝑆𝑆‬‭𝑇‬ = ∑ ∑ (‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬ ) ‭𝑖‬=‭1‬‭𝑗= ‬ ‭1‬ ‭ r‬ ‭simply‬ ‭obtaining‬ ‭the‬ ‭squares‬ ‭of‬ ‭the‬ ‭differences‬ ‭between‬‭the‬ o ‭observed‬ ‭single‬ ‭data‬ ‭and‬ ‭the‬ ‭grand‬ ‭mean‬ ‭for‬ ‭all‬ ‭observations‬ ‭and‬ ‭treatments.‬ ‭The‬ ‭preceding‬ ‭equation‬ ‭can‬ ‭be‬ ‭partitioned‬ ‭according to its identity‬ ‭𝑎‬ ‭𝑛‬ ‭2‬ ‭𝑎‬ ‭2‬ ‭𝑎‬ ‭𝑛‬ ‭2‬ ∑ ∑ (‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬ ) = ‭𝑛‬ ∑ (‭𝑦‬‭𝑖‬ − ‭𝑦‬ ) = ∑ ∑ (‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬‭𝑖 ‬ ) ‭𝑖‬=‭1‬‭𝑗= ‬ ‭1‬ ‭𝑖‬=‭1‬ ‭𝑖= ‬ ‭1‬‭𝑗‬=‭1‬ ‭or symbolically‬ ‭𝑆𝑆‬‭𝑇‬ = ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ + ‭𝑆𝑆‬‭𝐸‬ ‭where‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭denote‬ ‭the‬ ‭sum‬ ‭of‬ ‭squares‬ ‭of‬ ‭differences‬ ‭between‬‭treatment‬‭means‬‭and‬‭the‬‭grand‬‭mean‬‭and‬‭𝑆𝑆‬‭𝐸‬ ‭denoting‬ t‭he‬ ‭sum‬ ‭of‬ ‭squares‬ ‭of‬ ‭differences‬ ‭of‬ ‭observations‬ ‭within‬ ‭a‬ ‭treatment‬ ‭from‬ ‭the‬ ‭treatment‬ ‭mean.‬ ‭Additionally,‬ ‭the‬ ‭expected‬ ‭values‬‭of‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭and‬ ‭𝑆𝑆‬‭𝐸‬ ‭will‬‭also‬‭be‬‭considered‬‭to‬‭be‬‭used‬ ‭for the test statistic.‬ ‭Engineering Data Analysis‬ ‭Page‬‭2‬ ‭The expected value of the treatment sum of squares is‬ ‭𝑎‬ ‭2‬ ‭2‬ ‭𝐸‬(‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬) = (‭𝑎‬ − ‭1‬)σ + ‭𝑛‬ ∑ τ‭𝑖‬ ‭𝑖‬=‭1‬ ‭and the expected value of the error sum of squares is‬ ‭2‬ ‭𝐸‬(‭𝑆𝑆‬‭𝐸)‬ = ‭𝑎‬(‭𝑛‬ − ‭1‬)σ ‭ ccordingly,‬ ‭the‬ ‭equivalent‬ ‭degrees‬ ‭of‬ ‭freedom‬ ‭for‬ ‭the‬ A ‭sum of squares identity is expressed as‬ ‭𝑎𝑛‬ − ‭1‬ = ‭𝑎‬ − ‭1‬ + ‭𝑎‬(‭𝑛‬ − ‭1‬) ‭This‬‭follows‬‭that‬‭the‬‭mean‬‭square‬‭for‬‭treatments‬‭is‬‭given‬ ‭as‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ = ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭/‬(‭𝑎‬ − ‭1‬) ‭and the error mean square as‬ ‭𝑀𝑆‬‭𝐸‬ = ‭𝑆𝑆‬‭𝐸‭/‬ ‬[‭𝑎‬(‭𝑛‬ − ‭1‬)] ‭2‬ ‭ hich‬‭are‬‭unbiased‬‭estimators‬‭of‬σ ‭if‬‭the‬‭null‬‭hypothesis‬‭is‬‭true.‬ w ‭Then,‬ ‭the‬ ‭ratio‬ ‭of‬ ‭the‬ ‭mean‬ ‭squares‬ ‭follows‬ ‭the‬ ‭𝐹‬‭-distribution‬ ‭with‬‭𝑎‬ − ‭1‬ ‭and‬‭𝑎‬(‭𝑛‬ − ‭1‬) ‭degrees of freedom. That is,‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭/(‬ ‭𝑎‬−‭1)‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝐹‬‭0‬ = ‭𝑆𝑆‬‭𝐸‬‭/[‬ ‭𝑎‬(‭𝑛‬−‭1‬)] = ‭𝑀𝑆‬‭𝐸‬ ‭The‬ ‭only‬ ‭condition‬ ‭that‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭can‬ ‭be‬ ‭rejected‬ ‭is‬ ‭where‬ ‭the‬ ‭expected‬ ‭value‬ ‭of‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭is‬ ‭greater‬ ‭than‬ ‭the‬ ‭expected‬ ‭value‬ ‭of‬ ‭𝑀𝑆‬‭𝐸‬‭,‬‭implying‬‭an‬‭upper-tail,‬‭one-tail‬ ‭critical‬ ‭region.‬ ‭Reject‬ ‭𝐻‬‭0‬ ‭if‬ ‭𝑓‬‭0‬ > ‭𝑓‬α,‭‬‭𝑎‬−‭1‬,‭‬‭𝑎‬(‭𝑛− ‬ ‭1‬) ‭,‬ ‭where‬ ‭𝑓‬‭0‬ ‭is‬ ‭the‬ ‭computed value from the test statistic.‬ ‭For‬ ‭equal‬ ‭sample‬ ‭sizes,‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭and‬ ‭𝑆𝑆‬‭𝑇‬ ‭can‬ ‭be‬ ‭reduced into‬ ‭𝑎‬ ‭𝑛‬ ‭2‬ ‭𝑦‬ ‭2‬ ‭𝑆𝑆‬‭𝑇‬ = ∑ ∑ ‭𝑦‬‭𝑖𝑗‬ − ‭𝑁‬ ‭𝑖‬=‭1‬‭𝑗= ‬ ‭1‬ ‭and‬ ‭Engineering Data Analysis‬ ‭Page‬‭3‬ ‭𝑎‬ ‭𝑦‭2‬ ‬ ‭2‬ ‭𝑦 ‬ ‭𝑖 ‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ = ∑ ‭𝑛‬ − ‭𝑁‬ ‭𝑖‬=‭1‬ ‭The‬ ‭error‬ ‭sum‬ ‭of‬ ‭squares‬ ‭can‬ ‭then‬ ‭be‬ ‭obtained‬ ‭as‬ ‭the‬ ‭ ifference‬ ‭between‬ ‭the‬ ‭total‬ ‭sum‬ ‭of‬ ‭squares‬ ‭and‬ ‭the‬‭treatment‬ d ‭sum of squares‬ ‭𝑆𝑆‬‭𝐸‬ = ‭𝑆𝑆‬‭𝑇‬ − ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭The‬ ‭summary‬ ‭of‬ ‭this‬ ‭test‬ ‭procedure,‬ ‭called‬ ‭the‬ ‭ANOVA‬ ‭table, is provided in tabular form below:‬ ‭ ource of‬ S ‭Sum of‬ D ‭ egrees of‬ ‭Mean‬ ‭𝐹‬‭0‬ ‭Variation‬ ‭Squares‬ F‭ reedom‬ ‭Square‬ ‭Treatments‬ ‭𝑆𝑆‬ ‭𝑎‬ − ‭1‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝐸‬ ‭Error‬ ‭𝑆𝑆‬‭𝐸‬ ‭𝑎‬(‭𝑛‬ − ‭1‬) ‭𝑀𝑆‬‭𝐸‬ ‭Total‬ ‭𝑆𝑆‬‭𝑇‬ ‭𝑎𝑛‬ − ‭1‬ ‭Furthermore,‬ ‭several‬ ‭software‬ ‭applications‬ ‭analyze‬ ‭data‬ ‭ sing‬‭the‬‭analysis‬‭of‬‭variance.‬‭This‬‭includes‬‭the‬‭Minitab‬‭Output,‬ u ‭which results in the following confidence interval definition:‬ ‭The‬ ‭confidence‬ ‭interval‬ ‭(CI)‬ ‭on‬ ‭the‬ ‭mean‬ ‭of‬‭a‬‭treatment‬ ‭provides‬ ‭a‬ ‭range‬ ‭within‬ ‭which‬ ‭we‬ ‭expect‬ ‭the‬ ‭true‬ ‭mean‬ ‭of‬ ‭the‬ ‭treatment to fall. This is calculated as:‬ ‭𝑀𝑆‬‭𝐸‬ ‭𝑀𝑆‬‭𝐸‬ γ‭𝑖‬ − ‭𝑡‬α‭/2‬,‭𝑎‬(‭𝑛− ‬ ‭1‬) ‭𝑛‬ ‭‬‭‬ ≤ ‭‬µ‭𝑖‬‭‬ ≤ γ‭𝑖‬ + ‭𝑡‬α‭/2‬,‭𝑎‬(‭𝑛− ‬ ‭1‬) ‭𝑛‬ ‭‬ ‭Also‬ ‭a‬ ‭100‬(‭1‬‭‬ − ‭‬‭𝑎‬) ‭percent‬ ‭confidence‬ ‭interval‬ ‭on‬ ‭the‬ ‭difference in two treatment means‬µ‭𝑖‭‬ ‬ − ‭‬µ‭𝑗‬ ‭is‬ ‭2‭𝑀 ‬ 𝑆‬‭𝐸‬ ‭2‬‭𝑀𝑆‬‭𝐸‬ ‭𝑌‬‭𝑖‬·‭‬ − ‭𝑌‬‭𝑗·‬ − ‭𝑡‬α‭/2‬,‭𝑎‬(‭𝑛‬−‭1)‬ ‭𝑛‬ ‭‬‭‬ ≤ ‭‬‭‬µ‭𝑖‬‭‬ − ‭‬µ‭𝑗‭‬ ‬ ≤ ‭𝑌‬‭𝑖·‬ ‭‬ − ‭𝑌‬‭𝑗‬· + ‭𝑡‬α‭/2‬,‭𝑎(‬ ‭𝑛− ‬ ‭1)‬ ‭𝑛‬ ‭‬ ‭Additionally,‬ ‭i‬‭n‬ ‭single-factor‬ ‭experiments,‬ ‭an‬ ‭unbalanced‬ ‭ esign‬ ‭occurs‬ ‭when‬ ‭the‬ ‭number‬ ‭of‬ ‭observations‬ ‭per‬ ‭treatment‬ d ‭varies.‬ ‭Adjustments‬ ‭to‬ ‭the‬ ‭sums‬ ‭of‬ ‭squares‬ ‭formulas‬ ‭are‬ ‭Engineering Data Analysis‬ ‭Page‬‭4‬ ‭needed.‬ ‭If‬ ‭𝑛‬‭𝑖‬ ‭represents‬ ‭the‬‭number‬‭of‬‭observations‬‭for‬‭the‬‭i‬‭-th‬ ‭𝑎‬ ‭treatment, the total number of observations,‬‭𝑁‭,‬ ‬‭is‬‭𝑁‬ = ‭‬ ∑ ‭𝑛‬‭𝑖‭.‬ ‬ ‭𝑖‭‬‬=‭‬‭1‬ ‭ he‬ ‭sums‬ ‭of‬ ‭squares‬ ‭computing‬ ‭formulas‬ ‭for‬ ‭the‬ ‭ANOVA‬ ‭with‬ T ‭unequal sample sizes‬‭𝑛‬‭𝑖‬ ‭in each treatment are:‬ ‭𝑛‬‭𝑖‬ ‭2‬ ‭2‬ ‭𝑦‬.. ‭1.‬ ‭𝑆𝑆‬‭𝑇‬ = ‭𝑐‬ ∑ ‭𝑦‬‭𝑖𝑗‬‭‬ − ‭‬ ‭𝑁‬ ‭‬ ‭𝑗‭‬‬=‭‬‭1‬ ‭𝑎‬ ‭2‬ ‭𝑦‬‭𝑖.‬ ‭2‬ ‭𝑦‬.. ‭2.‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ = ∑ ‭‬ ‭𝑛‬ − ‭𝑁‬ ‭‬ ‭𝑖‬‭= ‬ ‭‭1 ‬‬ ‭𝑖‬ ‭3.‬ ‭𝑆𝑆‬‭𝐸‬ = ‭‬‭𝑆𝑆‬‭𝑇‬‭‬ − ‭‬‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭ hoosing‬ ‭a‬ ‭balanced‬ ‭design‬ ‭offers‬ ‭two‬ ‭key‬‭advantages.‬ C ‭First,‬ ‭the‬ ‭ANOVA‬ ‭is‬ ‭relatively‬ ‭insensitive‬ ‭to‬ ‭small‬ ‭departures‬ ‭from‬ ‭the‬ ‭assumption‬ ‭of‬ ‭equality‬ ‭of‬ ‭variances‬ ‭when‬ ‭the‬ ‭sample‬ ‭sizes‬‭are‬‭equal.‬‭This‬‭robustness‬‭is‬‭not‬‭maintained‬‭with‬‭unequal‬ ‭sample‬‭sizes.‬‭Second,‬‭the‬‭power‬‭of‬‭the‬‭test‬‭is‬‭maximized‬‭when‬ ‭the‬ ‭samples‬ ‭are‬ ‭of‬ ‭equal‬ ‭size,‬ ‭ensuring‬ ‭more‬ ‭reliable‬ ‭and‬ ‭effective results.‬ ‭b.‬ ‭Multiple Comparison following the ANOVA‬ ‭ he‬‭Analysis‬‭of‬‭Variance‬‭(ANOVA)‬‭is‬‭a‬‭statistical‬‭formula‬ T ‭that‬ ‭is‬ ‭used‬ ‭to‬ ‭compare‬ ‭differences‬ ‭of‬ ‭means‬ ‭among‬ ‭different‬ ‭groups.‬ ‭However,‬ ‭the‬‭ANOVA‬‭doesn’t‬‭identify‬‭which‬‭means‬‭are‬ ‭different.‬ ‭That‬ ‭is‬ ‭why‬ ‭multiple‬ ‭comparison‬‭method‬‭is‬‭used‬‭to‬ ‭investigate‬ ‭whether‬ ‭there‬ ‭are‬ ‭differences‬ ‭in‬ ‭population‬ ‭means‬ ‭among the different populations.‬ ‭The‬‭Fisher’s‬‭least‬‭significant‬‭difference‬‭(LSD)‬‭method‬‭for‬ ‭multiple‬ ‭comparisons‬ ‭is‬ ‭used‬ ‭in‬ ‭ANOVA‬ ‭to‬ ‭build‬ ‭on‬ ‭the‬ ‭equal‬ ‭variances‬ ‭t-test‬ ‭of‬ ‭the‬ ‭difference‬ ‭between‬ ‭the‬ ‭two‬ ‭means.‬‭This‬ ‭compares‬‭all‬‭pairs‬‭of‬‭means‬‭with‬‭the‬‭null‬‭hypotheses‬‭𝐻‬‭0:‬ µ‭𝑖‬ = µ‭𝑗‬ ‭(for all‬‭𝑖‬ ≠ ‭𝑗‭)‬ using the t-statistic formula‬ ‭𝑦‭𝑖‬‬·−‭𝑦‭𝑗‬ ·‬ ‭𝑡‬‭0‬ = ‭2‬‭𝑀𝑆‬‭𝐸‬ ‭𝑛‬ ‭Where;‬ ‭𝑡‬‭0‬ ‭- is the t-statistic‬ ‭𝑦‬‭𝑖‬· ‭- is the treatment mean 1‬ ‭𝑦‬‭𝑗‬· ‭- is the treatment mean 2‬ ‭𝑀𝑆‬‭𝐸‬ ‭- is the mean squared error‬ ‭Engineering Data Analysis‬ ‭Page‬‭5‬ ‭𝑛‬ ‭- is the sample sizes‬ I‭f‬ ‭it’s‬ ‭a‬ ‭two-sided‬ ‭alternative‬ ‭hypothesis,‬ ‭the‬ ‭pair‬ ‭means‬ µ‭𝑖‬ ‭and‬µ‭𝑗‬ ‭would be declare significantly‬‭different if‬ ||‭𝑦‬ − 𝑦 | | ‭𝑖‬· ‭ ‬‭𝑗‬·|| > ‭𝐿 𝑆𝐷‬ ‭Where LSD (least significant difference) is‬ ‭2‬‭𝑀𝑆‬‭𝐸‬ ‭𝐿 𝑆𝐷‬ = ‭𝑡‬α‭/2‬,‭‬‭𝑎‬(‭𝑛− ‬ ‭1)‬ ‭𝑛‬ ‭However,‬ ‭if‬ ‭the‬ ‭sample‬ ‭sizes‬ ‭are‬ ‭different‬ ‭in‬ ‭each‬ ‭treatment, then the LSD is defined as‬ ‭𝐿 𝑆𝐷‬ = ‭𝑡‬α‭/2‬,‭‬‭𝑁‬−‭𝑎‬ ‭𝑀𝑆‬‭𝐸‬ ( ‭1‬ ‭ ‬‭𝑖‬ 𝑛 + ‭1‬ ‭ ‭𝑗‬ ‬ 𝑛 ) ‭c.‬ ‭Residual Analysis and Model Checking‬ ‭In‬ ‭the‬ ‭analysis‬ ‭of‬ ‭variance‬ ‭(ANOVA),‬ ‭it‬ ‭is‬ ‭assumed‬ ‭that‬ ‭ bservations‬‭are‬‭normally‬‭and‬‭independently‬‭distributed‬‭with‬‭the‬ o ‭same‬ ‭variance‬ ‭across‬ ‭all‬ ‭treatment‬ ‭or‬ ‭factor‬ ‭levels.‬ ‭These‬ ‭assumptions‬ ‭can‬ ‭be‬ ‭verified‬ ‭by‬ ‭examining‬ ‭the‬ ‭residuals,‬‭which‬ ‭are‬ ‭the‬ ‭differences‬ ‭between‬ ‭observed‬ ‭values‬ ‭(‭𝑦 ‬ ‬‭𝑖𝑗‬‭)‬ ‭and‬ ‭their‬ ‭estimated‬‭values‬‭(‬‭‬‭ŷ‬‭𝑖𝑗‬‭)‬‭from‬‭the‬‭statistical‬‭model.‬‭In‬‭a‬‭completely‬ ‭randomized‬‭design,‬ ‭ŷ‬‭𝑖𝑗‬ ‭is‬‭the‬‭mean‬‭of‬‭the‬‭observations‬‭for‬‭each‬ ‭treatment (‬‭𝑦‬‭𝑖‭)‬ , and each residual (‬‭𝑒‬‭𝑖𝑗‬‭) is calculated as‬ ‭𝑒‬‭𝑖𝑗‬ = ‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬‭𝑖‬· ‭The‬‭normality‬‭assumption‬‭can‬‭be‬‭checked‬‭using‬‭a‬‭normal‬ ‭ robability‬ ‭plot‬ ‭of‬ ‭the‬ ‭residuals;‬ ‭a‬ ‭straight‬ ‭line‬ ‭in‬ ‭this‬ ‭plot‬ p ‭suggests‬‭normality.‬‭To‬‭check‬‭the‬‭assumption‬‭of‬‭equal‬‭variances,‬ ‭residuals‬ ‭are‬ ‭plotted‬ ‭against‬‭the‬‭factor‬‭levels‬‭and‬‭the‬‭spread‬‭is‬ ‭compared.‬ ‭Plotting‬ ‭residuals‬ ‭against‬ ‭the‬ ‭fitted‬ ‭values‬ ‭(‬‭𝑦‬‭𝑖‭)‬ ‬ ‭also‬ ‭ elps‬‭verify‬‭that‬‭residual‬‭variability‬‭does‬‭not‬‭depend‬‭on‬‭the‬‭fitted‬ h ‭values.‬ ‭If‬ ‭a‬ ‭pattern‬ ‭appears,‬ ‭it‬ ‭might‬ ‭indicate‬ ‭the‬ ‭need‬ ‭for‬ ‭a‬ ‭transformation,‬ ‭such‬ ‭as‬ ‭taking‬ ‭the‬ ‭logarithm‬ ‭or‬ ‭square‬ ‭root‬ ‭of‬ ‭the data, to stabilize variance.‬ ‭Engineering Data Analysis‬ ‭Page‬‭6‬ ‭ dditionally,‬ ‭the‬ ‭independence‬ ‭of‬ ‭observations‬ ‭can‬ ‭be‬ A ‭assessed‬ ‭by‬ ‭plotting‬ ‭residuals‬ ‭against‬ ‭the‬ ‭time‬ ‭or‬ ‭run‬ ‭order‬ ‭of‬ ‭the‬ ‭experiment.‬ ‭A‬ ‭pattern‬ ‭in‬ ‭this‬ ‭plot‬ ‭may‬ ‭suggest‬ ‭that‬ ‭time‬‭or‬ ‭run‬ ‭order‬ ‭affects‬ ‭the‬ ‭results,‬ ‭indicating‬ ‭that‬ ‭time-dependent‬ ‭variables need to be included in the experimental design.‬ ‭d.‬ ‭Determining Sample Size‬ ‭ electing‬ ‭the‬ ‭appropriate‬ ‭sample‬ ‭size‬ ‭or‬ ‭number‬ ‭of‬ S ‭replicates‬ ‭in‬ ‭any‬ ‭experimental‬ ‭design‬ ‭problem‬ ‭is‬ ‭crucial.‬ ‭In‬ ‭making‬ ‭this‬ ‭selection,‬ ‭operating‬ ‭characteristics‬ ‭curves‬ ‭(OC‬ ‭curves)‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭provide‬ ‭guidance.‬ ‭The‬ ‭OC‬‭curve‬‭plots‬ ‭the‬‭chance‬‭of‬‭a‬‭type‬‭II‬‭error‬‭(β ‬ ‭)‬‭for‬‭different‬‭sample‬‭sizes‬‭versus‬ ‭the‬ ‭critical‬ ‭difference‬ ‭in‬ ‭means‬ ‭to‬ ‭detect.‬ ‭OC‬ ‭curves‬ ‭can‬ ‭be‬ ‭utilized‬ ‭to‬ ‭determine‬ ‭how‬‭many‬‭replicates‬‭are‬‭needed‬‭to‬‭obtain‬ ‭sufficient sensitivity.‬ ‭The power of the ANOVA test is‬ { ‭1‬ − β = ‭𝑃‬ ‭𝑅𝑒𝑗𝑒𝑐𝑡‬‭‬‭𝐻‬‭0‭‬ ‬‭|‬‭‬‭𝐻‭0‬ ‬‭‬‭𝑖𝑠‬‭‬‭𝑓𝑎𝑙𝑠𝑒‬ } = ‭𝑃‬{‭𝐹‬‭0‬ > ‭𝑓‬α,‭‬‭𝑎‬−‭1,‬‭‬‭𝑎‬(‭𝑛‬−‭1)‬ ‭‬‭|‬‭‬‭𝐻‬‭0‭‬ ‬‭𝑖𝑠‬‭‬‭𝑓𝑎𝑙𝑠𝑒‬} I‭f‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭is‬ ‭false,‬ ‭then‬ ‭we‬‭need‬‭to‬‭know‬‭the‬ ‭distribution‬ ‭of‬ ‭the‬ ‭test‬ ‭statistic‬ ‭𝐹‬‭0‬ ‭in‬ ‭order‬ ‭to‬ ‭evaluate‬ ‭this‬ ‭ robability‬‭statement.‬‭This‬‭is‬‭because‬‭the‬‭null‬‭hypothesis‬‭can‬‭be‬ p ‭false‬ ‭in‬ ‭different‬ ‭ways,‬ ‭especially‬ ‭that‬ ‭the‬ ‭ANOVA‬ ‭compares‬ ‭different means.‬ ‭The OC curves plot β against the parameter‬ϕ‭, where‬ ‭𝑎‬ ‭2‬ ‭𝑛‬∑ τ‭𝑖‬ ‭2‬ ‭2‬ ‭2‬ ‭𝑛‬δ ϕ = ‭𝑖= ‬ ‭1‬ ‭2‬ ‭or‬Φ = ‭2‬ ‭𝑎‬σ ‭2‭𝑎 ‬ ‬σ ‭2‬ ‭ he‬ ‭parameter‬ ϕ ‭is‬ ‭the‬ ‭noncentrality‬ ‭parameter‬ ‭δ.‬ T ‭Curves‬‭are‬‭available‬‭for‬ α = ‭0‬. ‭05‬ ‭and‬α = ‭0‬. ‭01‬ ‭and‬‭for‬‭several‬ ‭values‬ ‭of‬ ‭the‬ ‭number‬ ‭of‬ ‭degrees‬ ‭of‬ ‭freedom‬ ‭for‬ ‭numerator‬ ‭(denoted‬‭𝑣‬‭1‭)‬ and denominator (denoted‬‭𝑣‬‭2‭)‬.‬ ‭B. The Random Effects Model‬ ‭Differentiating‬ ‭between‬ ‭fixed‬ ‭and‬ ‭random‬ ‭factors‬ ‭is‬ ‭crucial‬ ‭in‬ ‭single‬‭factor‬‭experiment‬‭design‬‭and‬‭analysis‬‭because‬‭it‬‭affects‬‭how‬‭the‬ ‭results are interpreted and generalized.‬ ‭a.‬ ‭Fixed vs. Random Factors‬ ‭Engineering Data Analysis‬ ‭Page‬‭7‬ ‭ ‬ ‭fixed‬ ‭factor‬ ‭is‬ ‭one‬ ‭whose‬ ‭levels‬ ‭are‬ ‭carefully‬ ‭set‬ ‭and‬ A ‭are‬ ‭of‬‭primary‬‭interest.‬‭When‬‭analyzing‬‭data‬‭from‬‭a‬‭fixed-factor‬ ‭experiment,‬‭an‬‭ANOVA‬‭(analysis‬‭of‬‭variance)‬‭is‬‭typically‬‭used‬‭to‬ ‭assess‬ ‭if‬ ‭the‬ ‭means‬ ‭of‬ ‭the‬ ‭levels‬ ‭differ‬ ‭substantially.‬ ‭Results‬ ‭can't‬ ‭be‬ ‭generalized‬ ‭beyond‬ ‭the‬ ‭levels‬ ‭tested‬ ‭and‬ ‭are‬ ‭only‬ ‭applicable to those levels covered in the experiment.‬ ‭A‬‭random‬‭factor,‬‭on‬‭the‬‭other‬‭hand,‬‭is‬‭a‬‭factor‬‭with‬‭levels‬ ‭chosen‬ ‭at‬ ‭random‬ ‭from‬ ‭a‬ ‭broader‬ ‭set‬ ‭of‬ ‭potential‬ ‭levels.‬ ‭The‬ ‭levels‬ ‭are‬ ‭considered‬ ‭a‬ ‭random‬ ‭sample‬ ‭from‬ ‭a‬ ‭broader‬ ‭category.‬ ‭When‬ ‭dealing‬ ‭with‬ ‭random‬ ‭factors,‬ ‭the‬ ‭focus‬ ‭is‬ ‭on‬ ‭estimating‬‭the‬‭variability‬‭among‬‭the‬‭levels‬‭rather‬‭than‬‭comparing‬ ‭specific levels.‬ ‭b.‬ ‭ANOVA and Variance Components‬ ‭ANOVA‬ ‭allows‬‭you‬‭to‬‭simultaneously‬‭compare‬‭arithmetic‬ ‭ eans‬ ‭across‬ ‭groups.‬ ‭You‬ ‭can‬ ‭determine‬ ‭whether‬ ‭the‬ m ‭differences‬‭observed‬‭are‬‭due‬‭to‬‭random‬‭chance‬‭or‬‭if‬‭they‬‭reflect‬ ‭genuine,‬ ‭meaningful‬ ‭differences.‬ ‭On‬ ‭the‬ ‭same‬ ‭hand,‬ ‭the‬ ‭Variance‬ ‭Components‬ ‭Analysis‬ ‭procedure‬ ‭is‬ ‭designed‬ ‭to‬ ‭estimate‬‭the‬‭contribution‬‭of‬‭multiple‬‭factors‬‭to‬‭the‬‭variability‬‭of‬‭a‬ ‭dependent‬ ‭variable‬ ‭Y.‬‭The‬‭analysis‬‭of‬‭variance‬‭is‬‭the‬‭extension‬ ‭of the t-test for independent samples to more than two groups.‬ ‭Since‬ ‭we‬ ‭deal‬ ‭with‬ ‭continuous‬ ‭response‬ ‭variables‬ ‭as‬ ‭a‬ ‭function‬ ‭of‬ ‭one‬ ‭or‬ ‭more‬ ‭predictor‬ ‭variables,‬ ‭we‬ ‭use‬ ‭the‬ ‭linear‬ ‭statistical‬ ‭model.‬ ‭The‬ ‭model‬ ‭is‬ ‭identical‬ ‭in‬ ‭structure‬ ‭to‬ ‭the‬ ‭fixed-effects‬‭case,‬‭but‬‭the‬‭parameters‬‭are‬‭interpreted‬‭differently,‬ ‭with‬ ‭the‬ ‭treatment‬ ‭effects‬ τ‭𝑖‬‭‬ ‭and‬ ‭the‬ ‭errors‬ ϵ‭𝑖𝑗‬ ‭as‬ ‭independent‬ ‭random variables.‬ ‭2‬ ‭If‬ ‭the‬ ‭variance‬ ‭of‬ ‭the‬ ‭treatment‬ ‭effects‬ τ‭𝑖‬‭‬ ‭is‬ στ ‭,‬ ‭by‬ ‭independence the variance of the response is‬ ‭2‬ ‭2‬ ( ) ‭𝑉‬ ‭𝑌‬‭𝑖𝑗‬ = στ + σ ‭2‬ ‭2‬ ‭The‬‭variances‬ στ ‭‭a ‬ nd‬ σ ‭are‬‭called‬‭variance‬‭components,‬ ‭ nd‬ ‭the‬ ‭model‬ ‭is‬ ‭called‬ ‭the‬ ‭components‬ ‭of‬ ‭the‬‭variance‬‭model‬ a ‭or the random-effects model.‬ ‭For‬‭the‬‭random-effects‬‭model,‬‭testing‬‭the‬‭hypothesis‬‭that‬ ‭the‬ ‭individual‬ ‭treatment‬ ‭effects‬ ‭are‬ ‭zero‬ ‭is‬ ‭meaningless.‬ ‭It‬ ‭is‬ ‭2‬ ‭more appropriate to test hypotheses about‬στ ‭. Specifically,‬ ‭2‬ ‭𝐻‬‭0:‬ στ = ‭0‬ ‭2‬ ‭𝐻‬‭1:‬ στ > ‭0‬ ‭Engineering Data Analysis‬ ‭Page‬‭8‬ ‭2‬ ‭2‬‭‭‬‬ ‭If‬ στ = ‭0‭,‬ ‬‭all‬‭treatments‬‭are‬‭identical;‬‭but‬‭if‬στ > ‭0‭,‬ ‬‭there‬ i‭s‬ ‭variability‬‭between‬‭treatments.‬‭The‬‭ANOVA‬‭decomposition‬‭of‬ ‭total variability is still valid.‬ ‭Furthermore,‬‭𝑀𝑆‬‭𝐸‬ ‭and‬‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭are independent.‬ ‭Consequently, the ratio‬ ( ‭𝐹‬‭0‭‬ ‬ = ‭‬‭𝐸‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝐸‬ ) ‭‬‭‬ ‭is an F random variable with‬‭𝑎‬ − ‭1‬ ‭and‬‭𝑎‬(‭𝑛‬ − ‭1‬) ‭degrees of freedom when‬‭𝐻‬‭0‬ ‭is true. The null‬‭hypothesis would‬ ‭ e rejected at the‬α ‭- level of significance if‬‭the computed value‬ b ‭of the test statistic‬‭𝑓‬‭0‬ > ‭𝑓‬α,‭𝑎‬−‭1‬,‭𝑎‬(‭𝑛‬−‭1)‬ ‭.‬ ‭ quating‬ ‭Observed‬ ‭and‬ ‭Expected‬ ‭Mean‬ ‭Squares‬ ‭in‬ ‭the‬ E ‭One-way Classification Random-Effects Model:‬ ‭2‬ ‭2‬ ‭2‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ = σ + ‭𝑛‬στ ‭‬‭‬‭‬ ‭and‬ ‭𝑀𝑆‬‭𝐸‬ = σ ‭‬‭‬‭‭‬‬‭‬ ‭Variance Components Estimates‬ ‭2‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬−‭𝑀𝑆‬‭𝐸‬ ‭2‬ στ ‭‭‬‬‭‬‭=‬ ‭𝑛‬ ‭and‬ σ = ‭𝑀𝑆‬‭𝐸‭‬ ‬‭‬‭‭‬‬‭‬ ‭The‬ ‭only‬ ‭condition‬ ‭that‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭can‬ ‭be‬ ‭rejected‬ ‭is‬ ‭where‬ ‭the‬ ‭expected‬ ‭value‬ ‭of‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭is‬ ‭greater‬ ‭than‬ ‭the‬ ‭expected‬ ‭value‬ ‭of‬ ‭𝑀𝑆‬‭𝐸‬‭,‬‭implying‬‭an‬‭upper-tail,‬‭one-tail‬ ‭critical‬ ‭region.‬ ‭Reject‬ ‭𝐻‬‭0‬ ‭if‬ ‭𝑓‬‭0‬ > ‭𝑓‬α,‭‬‭𝑎‬−‭1‬,‭‬‭𝑎‬(‭𝑛− ‬ ‭1‬) ‭,‬ ‭where‬ ‭𝑓‬‭0‬ ‭is‬ ‭the‬ ‭computed value from the test statistic.‬ ‭C. Randomized Complete Block Design‬ ‭a.‬ ‭Design and Statistical Analysis‬ ‭Experimental‬‭design‬‭is‬‭a‬‭structured‬‭approach‬‭to‬‭planning‬ ‭and‬ ‭conducting‬ ‭experiments‬ ‭with‬ ‭the‬ ‭goal‬ ‭of‬ ‭obtaining‬ ‭valid,‬ ‭reliable,‬‭and‬‭interpretable‬‭results.‬‭It‬‭involves‬‭carefully‬‭controlling‬ ‭and‬ ‭manipulating‬ ‭variables‬ ‭to‬ ‭determine‬ ‭their‬ ‭effects‬ ‭while‬ ‭minimizing‬ ‭the‬ ‭impact‬ ‭of‬ ‭confounding‬ ‭factors.‬ ‭It‬ ‭helps‬ ‭ensure‬ ‭that‬ ‭the‬ ‭results‬ ‭of‬ ‭an‬ ‭experiment‬ ‭are‬ ‭reliable‬ ‭and‬ ‭can‬ ‭be‬ ‭attributed‬‭to‬‭the‬‭factors‬‭being‬‭tested,‬‭rather‬‭than‬‭other‬‭unrelated‬ ‭variables.‬ ‭Then‬ ‭a‬ ‭statistical‬ ‭analysis‬ ‭involves‬ ‭the‬ ‭process‬ ‭of‬ ‭collecting,‬ ‭analyzing,‬ ‭interpreting,‬ ‭presenting,‬ ‭and‬ ‭organizing‬ ‭Engineering Data Analysis‬ ‭Page‬‭9‬ ‭ ata.‬ ‭It‬ ‭uses‬ ‭mathematical‬ ‭theories‬ ‭and‬ ‭formulas‬ ‭to‬ ‭derive‬ d ‭insights and make decisions based on data.‬ ‭Moreover,‬ ‭a‬ ‭randomized‬ ‭block‬ ‭design‬ ‭is‬ ‭an‬‭extension‬‭of‬ ‭the‬ ‭paired‬ ‭t-test‬ ‭to‬ ‭situations‬ ‭where‬ ‭the‬ ‭factor‬ ‭of‬ ‭interest‬ ‭has‬ ‭more‬‭than‬‭two‬‭levels;‬‭that‬‭is,‬‭more‬‭than‬‭two‬‭treatments‬‭must‬‭be‬ ‭compared.‬ ‭The observations for randomized complete block design‬ ‭may be represented by the linear statistical model‬ ‭𝑌‬‭𝑖𝑗‬ ‭=‬µ‭‬ + τ‭𝑖‬‭‬ ‭+‬ β‭𝑗‬ ‭+‬ϵ‭𝑖𝑗‬ { ‭𝑖‭‬‬=‭‭1 } ‬ ‬‭,‬‭‬‭2‭‬‬,‭.‬..‭‬,‭‬‭𝑎‬ ‭𝑗‬‭‬=‭‭1 ‬ ‭‬‬,‭‬‭2‬‭‬,‭‬...‭‬,‭‬‭𝑏‬ ‭where‬ ‭µ‬ ‭an‬ ‭overall‬ ‭mean,‬ τ‭𝑖‬‭‬ ‭is‬ ‭the‬ ‭effect‬ ‭of‬ ‭the‬ ‭th‬ ‭treatment,‬ β‭𝑗‬ ‭is‬‭the‬‭effect‬‭of‬‭the‬‭th‬ ‭block,‬‭and‬ ϵ‭𝑖𝑗‬‭‭‬‬‭is‬‭the‬‭random‬ ‭error‬ ‭term,‬ ‭which‬ ‭is‬‭assumed‬‭to‬‭be‬‭normally‬‭and‬‭independently‬ ‭2‬ ‭distributed with mean zero and variance‬σ ‭.‬ I‭n‬ ‭a‬ ‭randomized‬ ‭block‬ ‭experiment,‬ ‭it‬ ‭uses‬ ‭a‬ ‭sum‬ ‭of‬ ‭squares‬ ‭identity‬ ‭that‬ ‭partitions‬ ‭the‬ ‭total‬ ‭sum‬ ‭of‬ ‭squares‬ ‭into‬ ‭three components‬ ‭𝑏‬ ‭𝑎‬ ‭2‬ ‭𝑏‬ ‭2‬ ( ) ( ∑ ‭𝑦‭𝑖‬𝑗‬ − ‭𝑦‬‭‬.. = ‭‬‭𝑏‬ ∑ ‭‬ ‭‬‭𝑦‬‭𝑖‬‭‬ − ‭𝑦‬‭‬.. ‭𝑗‬‭‬=‭‭1 ‬‬ ‭𝑖‬‭‬=‭‬‭1‬ ) ( + ‭𝑎‬ ∑ ‭‬‭‬ ‭𝑦‬‭𝑗‬ − ‭𝑦‬‭‬.. ‭‬‭‬‭‬‭‬ ‭𝑗‬‭‬=‭‭1 ‬‬ ) ‭𝑎‬ ‭𝑏‬ ‭2‬ + ∑ ∑ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‬‭𝑗‬‭‬=‭‬‭1‬ ( ‭‬‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬‭𝑗‬ − ‭𝑦‬‭𝑖‬‭‬ − ‭𝑦‬‭‬.. ) ‭symbolically :‬ ‭𝑆𝑆‬‭𝑇‬ ‭=‬‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭+‬‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭+‬‭𝑆𝑆‬‭𝐸‭‬‬ ‭Where the degrees of freedom corresponding to the‬ ‭sums of squares are‬ ‭ab - 1 = ( a - 1) + ( b - 1) + ( a - 1)( b - 1)‬ ‭ his follows the relevant mean square for a randomized‬ T ‭block design:‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ = ‭𝑎‬‭‬−‭‬‭1‭‬‬ ‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬ ‭𝑀𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ = ‭𝑏‭‬‬−‭‬‭1‭‬‬ ‭𝑆𝑆‬‭𝐸‬ ‭𝑀𝑆‬‭𝐸‭‬ ‬ = (‭𝑎‬‭‬−‭‬‭1)‬ ‭‬(‭‬‭𝑏‬‭‬−‭‬‭1)‬ ‭‬ ‭Engineering Data Analysis‬ ‭Page‬‭10‬ ‭ lso,‬ ‭the‬ ‭expected‬ ‭values‬ ‭of‬ ‭this‬ ‭mean‬ ‭squares‬ ‭are‬ A ‭shown as‬ ‭𝑎‬ ‭2‬ ‭𝑏‬‭‬ ∑ ‭‬τ‭𝑖‬ ‭2‬ ‭𝐸‬(‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬)‭‬ = ‭‬σ ‭+‬ ‭𝑖‬‭= ‭𝑎‬‭− ‬ ‭‬‭1‬ ‬ ‭‬‭1‬ ‭𝑎‬ ‭2‬ ‭𝑏‬‭‬ ∑ ‭‬β‭𝑗‬ ‭2‬ ‬ ‭+‬ ‭‬‭𝐸‬(‭𝑀𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬)‭‬ = ‭σ ‭𝑗‬‭= ‭𝑏‬‭− ‬ ‭‭1 ‬ ‭‬‭1‬ ‬‬ ‭2‬ ‭𝐸‬(‭𝑀𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬)‭‬ = ‭σ ‬ ‭To‬ ‭test‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭that‬ ‭the‬ ‭treatment‬‭effects‬‭are‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭all‬ ‭zero,‬ ‭we‬ ‭use‬ ‭the‬ ‭ratio‬ ‭𝐹‬‭0‭‬ ‬ = ‭‬ ‭𝑀𝑆‬‭𝐸‬ ‭which‬ ‭has‬ ‭an‬ ‭ -distribution‬‭with‬‭a‬‭-‬‭1‬‭and‬‭(a‬ ‭1)(b‬ ‭1)‬‭degrees‬‭of‬‭freedom‬‭if‬‭the‬ F ‭null‬ ‭hypothesis‬ ‭is‬ ‭true.‬ ‭We‬ ‭would‬ ‭reject‬ ‭the‬ ‭null‬ ‭hypothesis‬ ‭at‬ ‭the‬ α‭level‬ ‭of‬ ‭significance‬ ‭if‬ ‭the‬ ‭computed‬ ‭value‬ ‭of‬ ‭the‬ ‭test‬ ‭statistic in equation is‬‭𝑓‬‭0‬ ‭=‬ ‭𝑓‬α,‭‭𝑎‬ ‬‭‬−‭‬‭1‬‭,‬(‭𝑎‬‭− ‬ ‭‭1 ‬ ‬)(‭𝑎‬‭‬−‭‬‭𝑏‬) ‭.‬ ‭Additionally,‬ ‭the‬ ‭appropriate‬ ‭computing‬ ‭formulas‬ ‭of‬ s‭ quares‬ ‭in‬ ‭the‬ ‭analysis‬ ‭of‬ ‭variance‬ ‭for‬ ‭a‬ ‭randomized‬ ‭block‬ ‭experiment are:‬ ‭𝑎‬ ‭𝑏‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭2‬ ‭𝑆𝑆‬‭𝑇‬ ‭=‬ ∑ ∑ ‭𝑦‬‭𝑖𝑗‬‭‬ − ‭‬ ‭𝑎𝑏‬ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‭𝑗‬ ‬‭‬=‭‭1 ‬‬ ‭𝑎‬ ‭2‬ ‭𝑦‬ ‭‬ ‭ ‬‭‬ 1 ‭2‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭=‬ ‭𝑏‬ ∑ ‭𝑦‬‭𝑖‬. ‭-‬ ‭𝑎.‭𝑏‬.‬ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‬ ‭𝑎‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭ ‬‭‬ 1 ‭2‬ ‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭=‬ ‭𝑎‬ ∑ ‭𝑦‬‭𝑗‬. ‭-‬ ‭𝑎𝑏‬ ‭𝑗‬‭‬=‭‭1 ‬ ‬‭‭‬‬ ‭𝑆𝑆‬‭𝐸‭‬‬ ‭=‬‭𝑆𝑆‬‭𝑇‬ ‭-‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭-‬‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭b.‬ ‭Multiple Comparisons‬ ‭In‬ ‭the‬ ‭context‬ ‭of‬ ‭a‬ ‭Randomized‬ ‭Complete‬ ‭Block‬ ‭Design‬ ‭(RCBD),‬ ‭multiple‬ ‭comparisons‬ ‭refer‬ ‭to‬ ‭statistical‬ ‭procedures‬ ‭used‬ ‭to‬ ‭determine‬ ‭which‬ ‭treatment‬ ‭means‬ ‭are‬ ‭significantly‬ ‭different‬ ‭from‬ ‭each‬ ‭other‬ ‭after‬ ‭conducting‬ ‭an‬‭ANOVA‬‭(Analysis‬ ‭of‬ ‭Variance).‬ ‭The‬ ‭RCBD‬ ‭is‬ ‭commonly‬ ‭used‬ ‭to‬ ‭control‬ ‭for‬ ‭variability‬ ‭among‬ ‭experimental‬ ‭units‬ ‭by‬ ‭grouping‬ ‭them‬ ‭into‬ ‭blocks, with each block containing a complete set of treatments.‬ ‭When‬ ‭ANOVA‬ ‭indicates‬ ‭significant‬ ‭differences‬ ‭between‬ ‭treatment‬ ‭means,‬ ‭it‬ ‭may‬ ‭be‬ ‭necessary‬ ‭to‬ ‭conduct‬ ‭additional‬ ‭tests‬ ‭to‬ ‭pinpoint‬ ‭the‬ ‭specific‬ ‭differences.‬ ‭Multiple‬ ‭comparison‬ ‭Engineering Data Analysis‬ ‭Page‬‭11‬ ‭ ethods,‬ ‭such‬ ‭as‬ ‭Fisher’s‬ ‭LSD‬ ‭method,‬ ‭can‬ ‭be‬ ‭employed‬ ‭for‬ m ‭this purpose.‬ ‭Computing‬ ‭Formulas‬ ‭for‬ ‭Multiple‬ ‭Comparisons‬ ‭in‬ ‭Randomized Complete Block Design:‬ ‭Sum of Squares (SS) Calculations:‬ ‭𝑎‬ ‭𝑏‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭2‬ ‭𝑆𝑆‬‭𝑇‬ ‭=‬ ∑ ∑ ‭𝑦‬‭𝑖𝑗‬‭‬ − ‭‬ ‭𝑎𝑏‬ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‭𝑗‬ ‬‭‬=‭‭1 ‬‬ ‭𝑎‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭ ‬‭‬ 1 ‭2‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭=‬ ‭𝑏‬ ∑ ‭𝑦‬‭𝑖‬. ‭-‬ ‭𝑎𝑏‬ ‭𝑖‬‭‬=‭‬‭1‭‬‬‭‬ ‭𝑎‬ ‭2‬ ‭𝑦‬.‭.‬‭‬ ‭ ‬‭‬ 1 ‭2‬ ‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭=‬ ‭𝑎‬ ∑ ‭𝑦‬‭𝑗‬. ‭-‬ ‭𝑎𝑏‬ ‭𝑗‬‭‬=‭‭1 ‬ ‬‭‭‬‬ ‭𝑆𝑆‬‭𝐸‭‬‬ ‭=‬‭𝑆𝑆‬‭𝑇‬ ‭-‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ ‭-‬‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ ‭Least Significant Difference:‬ ‭2‬‭𝑀𝑆‬‭𝐸‬ ‭𝐿 𝑆𝐷‬ = ‭𝑡‬α‭/2‬,α(‭𝑛‬−‭1)‬ ‭𝑛‬ ‭Degrees of Freedom (df):‬ ‭Total:‬ ‭𝑎𝑏‬ − ‭1‬ ‭Treatments:‬ ‭𝑎‬ − ‭1‬ ‭Blocks:‬ ‭𝑏‬ − ‭1‬ ‭Error:‬ (‭𝑎‬ − ‭1‬)(‭𝑏‬ − ‭1‬) ‭Mean Square‬ ‭𝑆𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬ ‭𝑀𝑆‬‭𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠‬‭‬ = ‭𝑎‬‭‬−‭‬‭1‭‬‬ ‭𝑆𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬ ‭𝑀𝑆‬‭𝐵𝑙𝑜𝑐𝑘𝑠‬‭‬ = ‭𝑏‭‬‬−‭‬‭1‭‬‬ ‭𝑆𝑆‬‭𝐸‬ ‭𝑀𝑆‬‭𝐸‭‬ ‬ = (‭𝑎‬‭‬−‭‬‭1)‬ ‭‬(‭‬‭𝑏‬‭‬−‭‬‭1)‬ ‭‬ ‭c.‬ ‭Residual Analysis and Model Checking‬ ‭Residual‬‭analysis‬‭is‬‭a‬‭statistical‬‭method‬‭used‬‭to‬‭evaluate‬ ‭a‬‭linear‬‭regression‬‭model's‬‭performance‬‭by‬‭analyzing‬‭residuals.‬ ‭It‬ ‭helps‬ ‭identify‬ ‭and‬ ‭rectify‬ ‭model‬ ‭issues,‬ ‭assess‬ ‭assumptions,‬ ‭and‬ ‭detect‬ ‭outliers‬ ‭for‬ ‭improved‬ ‭efficiency.‬ ‭Residual‬ ‭analysis‬ ‭involves‬ ‭understanding‬ ‭residuals.‬ ‭This‬ ‭includes‬ ‭collecting‬ ‭data,‬ ‭Engineering Data Analysis‬ ‭Page‬‭12‬ c‭ onstructing‬ ‭a‬ ‭regression‬ ‭model,‬ ‭calculating‬ ‭residuals,‬ ‭visualizing‬ ‭residuals,‬ ‭analyzing‬ ‭residuals,‬ ‭assessing‬ ‭model‬ ‭assumptions,‬ ‭refining‬ ‭the‬ ‭model‬ ‭if‬ ‭necessary,‬ ‭and‬ ‭interpreting‬ ‭results.‬ ‭This‬ ‭analysis‬ ‭aims‬ ‭to‬ ‭evaluate‬ ‭the‬ ‭goodness‬ ‭of‬ ‭fit‬ ‭of‬‭a‬ ‭statistical model to the observed data.‬ ‭In‬‭any‬‭designed‬‭experiment,‬‭examining‬‭the‬‭residuals‬‭and‬ ‭checking‬‭for‬‭violations‬‭of‬‭basic‬‭assumptions‬‭that‬‭could‬‭invalidate‬ ‭the‬ ‭results‬ ‭is‬ ‭always‬ ‭important.‬ ‭As‬ ‭usual,‬ ‭the‬ ‭residuals‬ ‭for‬ ‭the‬ ‭RCBD‬ ‭are‬ ‭simply‬ ‭the‬ ‭difference‬ ‭between‬ ‭the‬ ‭observed‬ ‭and‬ ‭estimated (or fitted) values from the statistical model, say,‬ ^ ‭𝑒‬‭𝑖𝑗‬ = ‭𝑦‬‭𝑖𝑗‬ − ‭𝑦‬‭𝑖𝑗‬ ‭and the fitted values are represented by the equation:‬ ^ ‭𝑦‬‭𝑖𝑗‬ = ‭𝑦‬‭𝑖‬· + ‭𝑦‬·‭𝑗‬ − ‭𝑦‬·· ‭ he‬ ‭fitted‬ ‭value‬ ‭represents‬ ‭the‬ ‭estimate‬ ‭of‬ ‭the‬ ‭mean‬ T ‭response‬ ‭when‬ ‭the‬ ‭𝑖‬‭th‬ ‭treatment‬ ‭is‬ ‭run‬ ‭in‬ ‭the‬ ‭𝑗‬‭th‬ ‭block.‬ ‭Then,‬ ‭the‬ ‭residuals‬ ‭would‬ ‭be‬ ‭best‬ ‭identified‬ ‭by‬ ‭examining‬ ‭them‬ ‭in‬ ‭a‬ ‭table.‬‭Hence,‬‭residual‬‭plots‬‭are‬‭usually‬‭constructed‬‭by‬‭computer‬ ‭software packages.‬ ‭Engineering Data Analysis‬ ‭Page‬‭13‬ ‭GLOSSARY‬ ‭ nalysis‬ ‭of‬ ‭variance‬ ‭(ANOVA):‬ ‭A‬ ‭method‬ ‭of‬ ‭decomposing‬ ‭the‬ ‭total‬ A ‭variability‬‭in‬‭a‬‭set‬‭of‬‭observations,‬‭as‬‭measured‬‭by‬‭the‬‭sum‬‭of‬‭the‬‭squares‬‭of‬ ‭these‬ ‭observations‬ ‭from‬ ‭their‬‭average,‬‭into‬‭component‬‭sums‬‭of‬‭squares‬‭that‬ ‭are associated with specific defined sources of variation.‬ ‭ isher’s‬ ‭least‬ ‭significant‬ ‭difference‬ ‭(LSD)‬ ‭method:‬ ‭A‬ ‭series‬ ‭of‬ ‭pairwise‬ F ‭hypothesis‬ ‭tests‬ ‭of‬ ‭treatment‬ ‭means‬ ‭in‬ ‭an‬ ‭experiment‬ ‭to‬ ‭determine‬ ‭which‬ ‭means differ.‬ ‭ evels‬ ‭of‬ ‭a‬ ‭factor:‬ ‭The‬ ‭settings‬ ‭(or‬ ‭conditions)‬ ‭used‬ ‭for‬ ‭a‬ ‭factor‬ ‭in‬ ‭an‬ L ‭experiment.‬ ‭ andomized‬ ‭complete‬ ‭block‬ ‭design:‬ ‭A‬ ‭type‬ ‭of‬ ‭experimental‬ ‭design‬ ‭in‬ R ‭which treatment or factor levels are assigned to blocks in a random manner.‬ ‭ eplicates:‬ ‭One‬ ‭of‬ ‭the‬ ‭independent‬ ‭repetitions‬ ‭of‬ ‭one‬ ‭or‬ ‭more‬ ‭treatment‬ R ‭combinations in an experiment.‬ ‭ esidual:‬ ‭a‬‭difference‬‭between‬‭a‬‭value‬‭measured‬‭in‬‭a‬‭scientific‬‭experiment‬ R ‭and the theoretical or true value.‬ ‭REFERENCES‬ ‭McHugh, M. (2011). Multiple comparison analysis testing in ANOVA.‬ ‭Biochemia Media, 21‬‭(3),‬‭203 - 209.‬ ‭https://doi.org/10.11613/BM.2011.029‬ ‭Montgomery, D. C., & Runger, G. C. (2010). Applied Statistics and Probability‬ ‭for Engineers. John Wiley & Sons.‬ ‭Multiple Comparisons (2024).‬ ‭https://online.stat.psu.edu/stat500/lesson/10/10.3#:~:text=Multiple%20c‬ ‭omparisns%20conducts%20an%20analysis,Brand%20A%20to%20Bra‬ ‭nd%20B‬ ‭Engineering Data Analysis‬ ‭Page‬‭14‬ ‭Submitted by:‬ ‭1.‬ ‭Atazan, Kyla Mei Q.‬ ‭2.‬ ‭Bantaculo, Lorie Jane A.‬ ‭3.‬ ‭Baroy, Britney Dawn Q.‬ ‭4.‬ ‭Dadang, Carlrienyle‬ ‭5.‬ ‭Dinlayan, Princess Hannah D.‬ ‭6.‬ ‭Dueñas, Felix E.‬ ‭7.‬ ‭Fabre, Angela P.‬ ‭8.‬ ‭Miano, Kaye Roxette S.‬ ‭9.‬ ‭Piloton, Marithe M.‬ ‭10.‬‭Roz, James Michael‬ ‭11.‬‭Tabor, Lex Aine June D.‬ ‭Engineering Data Analysis‬ ‭Page‬‭15‬

Use Quizgecko on...
Browser
Browser