Boolean Algebra Basics PDF

Summary

This document provides an introduction to Boolean algebra, covering fundamental concepts like logical variables, operations (NOT, AND, OR), truth tables, and logic circuits. It also discusses the simplification of logical expressions.

Full Transcript

‫ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ‪ :‬ﺃﺳﺎﺳﻴﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ‪Basics of Boolean Algebra‬‬ ‫ﳏﺘﻮﻳﺎﺕ ﺍﻟﻮﺣﺪﺓ‬ ‫ﲤﻬﻴﺪ‬...

‫ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ‪ :‬ﺃﺳﺎﺳﻴﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ‪Basics of Boolean Algebra‬‬ ‫ﳏﺘﻮﻳﺎﺕ ﺍﻟﻮﺣﺪﺓ‬ ‫ﲤﻬﻴﺪ‬ ‫ﺃﻫﺪﺍﻑ ﺍﻟﻮﺣﺪﺓ‬ ‫ﺍﳌﺘﻐﲑ ﺍﳌﻨﻄﻘﻲ )‪(Logical Variable‬‬ ‫‪.1‬‬ ‫ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ )‪(Logical Operations‬‬ ‫‪.2‬‬ ‫ﺗﻐﻴﲑ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ )‪ (Fan-In‬ﻟﻠﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ‬ ‫‪.3‬‬ ‫ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ )‪(Logical Expression‬‬ ‫‪.4‬‬ ‫ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ )‪(Logic Circuit‬‬ ‫‪.5‬‬ ‫ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ )‪(Logic Diagram‬‬ ‫‪.6‬‬ ‫ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ )‪(Truth Table‬‬ ‫‪.7‬‬ ‫ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ )‪(Boolean Algebra Theorems‬‬ ‫‪.8‬‬ ‫ﺍﺳﺘﺨﺪﺍﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰱ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ‬ ‫‪.9‬‬ ‫ﲤﻬﻴﺪ‬ ‫ﻣﺮﺣﺒﺎﹰ ﺑﻚ ﻋﺰﻳﺰﻱ ﺍﻟﺪﺍﺭﺱ ﰲ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ ﻣﻦ ﻣﻘﺮﺭ "ﺃﺳﺎﺳﻴﺎﺕ ﺍﻟﺘﺼﻤﻴﻢ ﺍﳌﻨﻄﻘﻲ"‪.‬ﺗﺘﻨﺎﻭﻝ ﻫﺬﻩ ﺍﻟﻮﺣﺪﺓ ﺃﺳﺎﺳﻴﺎﺕ‬ ‫ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ )‪ ،(Boolean Algebra‬ﻭ ﻫﻮ ﺟﱪ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ‪.‬ﻭ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻫﻮ ﻧﻮﻉ ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﺬﻱ ﻳﺘﻢ‬ ‫ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻪ ﰲ ﺍﻟﺪﻭﺍﺋﺮ ﺍﳌﻨﻄﻘﻴﺔ )‪.(Logic Circuits‬ﺣﻴﺚ ﻧﺘﻌﺮﻑ ﻋﻠﻰ ﺑﻌﺾ ﺍﳌﻔﺎﻫﻴﻢ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﱵ ﳓﺘﺎﺝ ﺇﻟﻴﻬﺎ ﰲ‬ ‫ﺩﺭﺍﺳﺘﻨﺎ ﻟﻸﺟﺰﺍﺀ ﺍﻟﺘﺎﻟﻴﺔ ﻣﻦ ﺍﳌﻘﺮﺭ‪.‬‬ ‫ﺃﻫﺪﺍﻑ ﺍﻟﻮﺣﺪﺓ‬ ‫ﻋﺰﻳﺰﻱ ﺍﻟﺪﺍﺭﺱ‪ ،‬ﺑﻌﺪ ﺩﺭﺍﺳﺔ ﻫﺬﻩ ﺍﻟﻮﺣﺪﺓ ﻳﻨﺒﻐﻲ ﺃﻥ ﺗﻜﻮﻥ ﻗﺎﺩﺭﺍﹰ ﻋﻠﻰ‪:‬‬ ‫ ﻛﺘﺎﺑﺔ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻭ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻬﺎ‪.‬‬ ‫ ﺇﻧﺸﺎﺀ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻭ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ‪.‬‬ ‫ ﻓﻬﻢ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ‪.‬‬ ‫ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻨﻈﺮﻳﺎﺕ‪.‬‬ ‫‪1‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫‪ -1‬ﺍﳌﺘﻐﲑ ﺍﳌﻨﻄﻘﻲ )‪(Logical Variable‬‬ ‫ﺍﳌﺘﻐﲑ ﺍﳌﻨﻄﻘﻲ ﻫﻮ ﺃﻱ ﻣﺘﻐﲑ ﳝﻜﻦ ﺃﻥ ﻳﺄﺧﺬ ﻗﻴﻤﺔ ﻭﺍﺣﺪﺓ ﻓﻘﻂ ﻣﻦ ﻗﻴﻤﺘﲔ‪.‬ﻣﺜﻼﹰ‪:‬‬ ‫ﺧﻄﺄ‬ ‫ﺃﻭ‬ ‫ﺻﻮﺍﺏ‬ ‫‪False‬‬ ‫ﺃﻭ‬ ‫‪True‬‬ ‫‪OFF‬‬ ‫ﺃﻭ‬ ‫‪ON‬‬ ‫‪0 Volts‬‬ ‫ﺃﻭ‬ ‫‪+5 Volts‬‬ ‫‪Low‬‬ ‫ﺃﻭ‬ ‫‪High‬‬ ‫ﺃﺳﻮﺩ‬ ‫ﺃﻭ‬ ‫ﺃﺑﻴﺾ‬ ‫‪Female‬‬ ‫ﺃﻭ‬ ‫‪Male‬‬ ‫ﻳﺮﻣﺰ ﻹﺣﺪﻯ ﺍﻟﻘﻴﻤﺘﲔ ﺑﺎﻟﺮﻣﺰ ‪ 1‬ﻭ ﻟﻠﻘﻴﻤﺔ ﺍﻷﺧﺮﻯ ﺑﺎﻟﺮﻣﺰ ‪... 0‬ﻓﺄﻱ ﻣﺘﻐﲑ ﻣﻨﻄﻘﻲ ﻻ ﳝﻜﻦ ﺃﻥ ﻳﺄﺧﺬ ﺇﻻ ﺇﺣﺪﻯ ﻫﺎﺗﲔ‬ ‫ﺍﻟﻘﻴﻤﺘﲔ‪ ،‬ﻭ ﻻ ﻳﻮﺟﺪ ﺃﻱ ﺍﺣﺘﻤﺎﻝ ﺛﺎﻟﺚ‪.‬ﻓﺈﺫﺍ ﻛﺎﻥ ‪ x‬ﻣﺘﻐﲑ ﻣﻨﻄﻘﻲ ﻓﺈﻧﻪ ﺇﻣﺎ ﺃﻥ ﻳﻜﻮﻥ ‪ x = 1‬ﺃﻭ ‪. x = 0‬‬ ‫‪ -2‬ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ )‪(Logical Operations‬‬ ‫ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻫﻲ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﱵ ﳝﻜﻦ ﺇﺟﺮﺍﺅﻫﺎ ﻋﻠﻰ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ‪.‬ﺑﻌﺾ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺎﺕ ﻫﻲ ﻋﻤﻠﻴﺎﺕ‬ ‫ﺃﺳﺎﺳﻴﺔ‪ ،‬ﻭ ﻫﻲ ﻋﻤﻠﻴﺎﺕ ‪ NOT‬ﻭ ‪ AND‬ﻭ ‪ ،OR‬ﻭ ﺑﻌﻀﻬﺎ ﻋﻤﻠﻴﺎﺕ ﻏﲑ ﺃﺳﺎﺳﻴﺔ‪ ،‬ﻣﺜﻞ ﻋﻤﻠﻴﺎﺕ ‪ NAND‬ﻭ ‪ NOR‬ﻭ‬ ‫‪ ،XOR‬ﻭ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺎﺕ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻨﻬﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ‪.‬‬ ‫‪ 1-2‬ﻋﻤﻠﻴﺔ ‪NOT‬‬ ‫ﻳﻄﻠﻖ ﻋﻠﻴﻬﺎ ﺃﻳﻀﺎﹰ ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ )‪ ،(Logical Inversion‬ﻭﻓﻴﻬﺎ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻋﺒﺎﺭﺓ ﻋﻦ ﻣﻌﻜﻮﺱ ﺍﻟﺪﺧﻞ‪ ،‬ﻓﺈﺫﺍ‬ ‫ﻛﺎﻥ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺎﹰ ‪ 1‬ﻓﺈﻥ ﺍﳋﺮﺝ ﻳﻜﻮﻥ ﻣﺴﺎﻭﻳﺎﹰ ‪ ،0‬ﻭ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺎﹰ ‪ 0‬ﻓﺈﻥ ﺍﳋﺮﺝ ﻳﻜﻮﻥ ﻣﺴﺎﻭﻳﺎﹰ ‪.1‬ﻳﺮﻣﺰ‬ ‫ﻟﻠﻌﻤﻠﻴﺔ ﺑﻮﺿﺢ ﺧﻂ ﻓﻮﻕ ﺍﳌﺘﻐﲑ‪ ،‬ﳑﺎ ﻳﻌﲏ ﺃﻧﻪ ﻣﻌﻜﻮﺱ‪.‬‬ ‫‪x = NOT A‬‬ ‫‪x= A‬‬ ‫‪2‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻳﺴﻤﻰ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ )‪ ،(Truth Table‬ﻭﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ ‪ ،NOT‬ﻭ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ‬ ‫ﻳﻮﺿﺢ ﲨﻴﻊ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺪﺧﻞ ﻭ ﺍﳋﺮﺝ ﺍﳌﻘﺎﺑﻞ ﻟﻜﻞ ﻣﻨﻬﺎ‪.‬‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫ﻻﺣﻆ ﺃﻥ ﺍﻟﺪﺧﻞ ﻫﻨﺎ ﻫﻮ ‪ A‬ﻭ ﺍﳋﺮﺝ ﻫﻮ ‪. x‬ﻭ ﺍﻟﺪﺧﻞ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻋﺒﺎﺭﺓ ﻋﻦ ﻣﺘﻐﲑ ﻭﺍﺣﺪ ﳝﻜﻦ ﺃﻥ ﻳﺄﺧﺬ ﻭﺍﺣﺪﺓ ﻣﻦ‬ ‫ﻗﻴﻤﺘﲔ‪ ،‬ﺇﻣﺎ ‪ 0‬ﺃﻭ ‪ ،1‬ﺃﻱ ﺃﻥ ﻫﻨﺎﻙ ﺍﺣﺘﻤﺎﻟﲔ ﻓﻘﻂ ﻟﻠﺪﺧﻞ‪.‬‬ ‫ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ )‪ (Logic Gate‬ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻲ ﺑﻮﺍﺑﺔ ‪ ،(NOT Gate) NOT‬ﺍﻟﱵ ﻳﻄﻠﻖ ﻋﻠﻴﻬﺎ ﺃﻳﻀﺎﹰ‬ ‫ﺍﻟﻌﺎﻛﺲ ﺍﳌﻨﻄﻘﻲ )‪.(Logic Inverter‬ﻭ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺃﻱ ﻣﻦ ﺍﻟﺸﻜﻠﲔ ﺍﻟﺘﺎﻟﻴﲔ ﰲ ﲤﺜﻴﻞ ﺑﻮﺍﺑﺔ ‪:NOT‬‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪ 2-2‬ﻋﻤﻠﻴﺔ ﺍﻟﺘﻜﺎﻓﺆ )‪(Equivalence‬‬ ‫ﰲ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻣﺴﺎﻭﻳﺎﹰ ﻟﻠﺪﺧﻞ‪ ،‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﻌﻼﻣﺔ ﺍﻟﺘﺴﺎﻭﻱ‬ ‫‪x= A‬‬ ‫ﻭﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﻤﻠﻴﺔ ﻫﻮ‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫ﺍﻟﺒﻮﺍﺑﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺗﺴﻤﻰ ﺍﻟﻌﺎﺯﻝ )‪ ،(Buffer‬ﻭ ﻳﺘﻢ ﲤﺜﻴﻠﻬﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‪:‬‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪3‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫‪ 3-2‬ﻋﻤﻠﻴﺔ ‪AND‬‬ ‫ﰲ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻣﺴﺎﻭﻳﺎﹰ ‪ 1‬ﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ﲨﻴﻊ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺔ ‪ ،1‬ﻭ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻳﻜﻮﻥ ﻣﺴﺎﻭﻳﺎﹰ‬ ‫‪ 0‬ﺇﺫﺍ ﻛﺎﻥ ﺃﻱ ﻣﺘﻐﲑ ﻣﻦ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺎﹰ ‪.0‬ﻭ ﻳﺮﻣﺰ ﳍﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺑﺄﻱ ﻣﻦ ﺍﻟﻄﺮﻕ ﺍﻟﺘﺎﻟﻴﺔ‬ ‫‪x = A AND B‬‬ ‫‪x = A⋅ B‬‬ ‫‪x = AB‬‬ ‫)ﺍﻟﻄﺮﻳﻘﺔ ﺍﻷﺧﲑﺓ ﻫﻲ ﺍﻷﻛﺜﺮ ﺍﺳﺘﺨﺪﺍﻣﺎﹰ(‬ ‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﺒﻮﺍﺑﺔ ‪ AND‬ﲟﺪﺧﻠﲔ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫ﻻﺣﻆ ﺃﻧﻪ ﻧﻈﺮﺍﹰ ﻟﻮﺟﻮﺩ ﻣﺘﻐﲑﻳﻦ ﻟﻠﺪﺧﻞ ﻫﻨﺎ ﳘﺎ ‪ A‬ﻭ ‪ ، B‬ﻓﺄﻧﻪ ﺗﻮﺟﺪ ﺃﺭﺑﻌﺔ ﺍﺣﺘﻤﺎﻻﺕ ﻟﻠﺪﺧﻞ‪.‬ﻭ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﻌﺎﻣﺔ ﰲ‬ ‫ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻫﻲ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻥ ﻋﺪﺩ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻫﻮ ‪ N‬ﻓﺈﻥ ﻋﺪﺩ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺪﺧﻞ‪ ،‬ﺃﻱ ﻋﺪﺩ ﺃﺳﻄﺮ ﺟﺪﻭﻝ‬ ‫ﺍﻟﺼﻮﺍﺏ‪ ،‬ﻫﻮ ‪. 2 N‬‬ ‫ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻲ ﺑﻮﺍﺑﺔ ‪ ،AND‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪B‬‬ ‫ﺑﻮﺍﺑﺔ ‪ AND‬ﲟﺪﺧﻠﲔ‬ ‫)‪(2-Input AND Gate‬‬ ‫‪4‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻗﺪ ﻳﻜﻮﻥ ﻟﺒﻮﺍﺑﺔ ‪ AND‬ﺃﻛﺜﺮ ﻣﻦ ﻣﺪﺧﻠﲔ‪.‬ﻣﺜﻼﹰ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪C‬‬ ‫ﺑﻮﺍﺑﺔ ‪ AND‬ﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ‬ ‫)‪(3-Input AND Gate‬‬ ‫ﺗﺪﺭﻳﺐ ‪:1‬‬ ‫ﻗﻢ ﺑﺈﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ )‪ (Truth Table‬ﻟﺒﻮﺍﺑﺔ ‪ AND‬ﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ‪.‬‬ ‫‪ 4-2‬ﻋﻤﻠﻴﺔ ‪OR‬‬ ‫ﰲ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻣﺴﺎﻭﻳﺎﹰ ‪ 1‬ﺇﺫﺍ ﻛﺎﻥ ﺃﻱ ﻣﻦ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺎﹰ ‪ ،1‬ﻭ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻳﻜﻮﻥ ﻣﺴﺎﻭﻳﺎﹰ ‪ 0‬ﺇﺫﺍ‬ ‫ﻛﺎﻧﺖ ﲨﻴﻊ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺔ ‪.0‬ﻭ ﻳﺮﻣﺰ ﳍﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺑﺄﻱ ﻣﻦ ﺍﻟﻄﺮﻳﻘﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ‬ ‫‪x = A OR B‬‬ ‫‪x = A+ B‬‬ ‫ﻓﻴﻤﺎ ﻳﻠﻲ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﺒﻮﺍﺑﺔ ‪ OR‬ﲟﺪﺧﻠﲔ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻲ ﺑﻮﺍﺑﺔ ‪ ،OR‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪B‬‬ ‫ﺑﻮﺍﺑﺔ ‪ OR‬ﲟﺪﺧﻠﲔ‬ ‫)‪(2-Input OR Gate‬‬ ‫‪5‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻗﺪ ﻳﻜﻮﻥ ﻟﺒﻮﺍﺑﺔ ‪ OR‬ﺃﻛﺜﺮ ﻣﻦ ﻣﺪﺧﻠﲔ‪.‬ﻣﺜﻼﹰ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪C‬‬ ‫‪D‬‬ ‫ﺑﻮﺍﺑﺔ ‪ OR‬ﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ‬ ‫)‪(4-Input OR Gate‬‬ ‫ﺗﺪﺭﻳﺐ ‪:2‬‬ ‫ﻗﻢ ﺑﺈﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ )‪ (Truth Table‬ﻟﺒﻮﺍﺑﺔ ‪ OR‬ﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ‪.‬‬ ‫‪ 5-2‬ﻋﻤﻠﻴﺔ ‪NAND‬‬ ‫ﻋﻤﻠﻴﺔ ‪ NAND‬ﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻦ ﻋﻤﻠﻴﺔ ‪ AND‬ﻣﺘﺒﻮﻋﺔ ﺑﻌﻤﻠﻴﺔ ‪ ،NOT‬ﺃﻱ ﺃ‪‬ﺎ ﻋﻤﻠﻴﺔ ‪ ،NOT AND‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺄﻱ‬ ‫ﻣﻦ ﺍﻟﻄﺮﻕ ﺍﻟﺘﺎﻟﻴﺔ‬ ‫‪x = A NAND B‬‬ ‫‪x = A AND B‬‬ ‫‪x = A⋅ B‬‬ ‫‪x = AB‬‬ ‫‪x = A↑ B‬‬ ‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ ‪ ،NAND‬ﻭﻫﻮ ﻋﻜﺲ ﻋﻤﻠﻴﺔ ‪ AND‬ﻛﻤﺎ ﻫﻮ ﻣﺘﻮﻗﻊ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻰ ﺑﻮﺍﺑﺔ ‪ ،NAND‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪B‬‬ ‫ﺑﻮﺍﺑﺔ ‪ NAND‬ﲟﺪﺧﻠﲔ‬ ‫)‪(2-Input NAND Gate‬‬ ‫‪6‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻛﻔﺎﻳﺔ ﻋﻤﻠﻴﺔ ‪(Sufficiency of NAND) NAND‬‬ ‫ﺍﳌﻘﺼﻮﺩ ﺑﻜﻔﺎﻳﺔ ﻋﻤﻠﻴﺔ ‪ NAND‬ﻫﻮ ﺃﻥ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ )‪ (OR ،AND ،NOT‬ﳝﻜﻦ ﺇﺟﺮﺍﺅﻫﺎ‬ ‫ﲨﻴﻌﹰﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ ‪ ،NAND‬ﻭ ﺑﺎﻟﺘﺎﱄ ﳝﻜﻦ ﺑﻨﺎﺀ ﺃﻱ ﺩﺍﺋﺮﺓ ﻣﻨﻄﻘﻴﺔ ﺑﺎﻟﻜﺎﻣﻞ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ ‪ NAND‬ﻓﻘﻂ‪.‬‬ ‫ﰲ ﺍﳉﺰﺀ ﺍﻟﺘﺎﱄ ﺳﻨﻮﺿﺢ ﻃﺮﻳﻘﺔ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ ‪.NAND‬‬ ‫ﻋﻤﻠﻴﺔ ‪:NOT‬‬ ‫ﳝﻜﻦ ﺃﻥ ﻧﻘﻮﻡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺔ ‪ NAND‬ﻛﻌﺎﻛﺲ ﻣﻨﻄﻘﻲ ﺑﺮﺑﻂ ﲨﻴﻊ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ﳍﺎ ﰲ ﻃﺮﻑ ﻭﺍﺣﺪ‬ ‫‪A‬‬ ‫‪A‬‬ ‫ﻭ ﳝﻜﻦ ﺃﻥ ﻧﺮﻣﺰ ﻟﺒﻮﺍﺑﺔ ‪ NAND‬ﺍﳌﺴﺘﺨﺪﻣﺔ ﻛﻌﺎﻛﺲ ﻣﻨﻄﻘﻲ ﺑﺒﻮﺍﺑﺔ ‪ NAND‬ﺑﻄﺮﻑ ﺩﺧﻞ ﻭﺍﺣﺪ‪ ،‬ﺃﻱ‬ ‫‪A‬‬ ‫‪A‬‬ ‫ﻋﻤﻠﻴﺔ ‪:AND‬‬ ‫ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ AND‬ﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ NAND‬ﻣﺘﺒﻮﻋﺔ ﺑﻌﻤﻠﻴﺔ ﻋﻜﺲ ﻣﻨﻄﻘﻲ‬ ‫‪A‬‬ ‫‪A⋅ B‬‬ ‫‪B‬‬ ‫‪A⋅ B‬‬ ‫ﻋﻤﻠﻴﺔ ‪:OR‬‬ ‫ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ OR‬ﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ NAND‬ﻣﺴﺒﻮﻗﺔ ﺑﻌﻤﻠﻴﺔ ﻋﻜﺲ ﻣﻨﻄﻘﻲ ﻟﻜﻞ ﻃﺮﻑ ﻣﻦ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ‬ ‫‪A‬‬ ‫‪A‬‬ ‫‪A⋅ B = A + B‬‬ ‫‪B‬‬ ‫‪B‬‬ ‫‪7‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫‪A⋅ B = A + B‬‬ ‫ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﺎﱄ ﻳﺜﺒﺖ ﺃﻥ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A‬‬ ‫‪B A⋅ B A⋅ B A+ B‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪ 6-2‬ﻋﻤﻠﻴﺔ ‪NOR‬‬ ‫ﻋﻤﻠﻴﺔ ‪ NOR‬ﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻦ ﻋﻤﻠﻴﺔ ‪ OR‬ﻣﺘﺒﻮﻋﺔ ﺑﻌﻤﻠﻴﺔ ‪ ،NOT‬ﺃﻱ ﺃ‪‬ﺎ ﻋﻤﻠﻴﺔ ‪ ،NOT OR‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺄﻱ ﻣﻦ‬ ‫ﺍﻟﻄﺮﻕ ﺍﻟﺘﺎﻟﻴﺔ‬ ‫‪x = A NOR B‬‬ ‫‪x = A OR B‬‬ ‫‪x = A+ B‬‬ ‫‪x = A↓ B‬‬ ‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ ‪ ،NOR‬ﻭ ﻫﻮ ﻋﻜﺲ ﻋﻤﻠﻴﺔ ‪ OR‬ﻛﻤﺎ ﻫﻮ ﻣﺘﻮﻗﻊ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻰ ﺑﻮﺍﺑﺔ ‪ ،NOR‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪B‬‬ ‫ﺑﻮﺍﺑﺔ ‪ NOR‬ﲟﺪﺧﻠﲔ‬ ‫)‪(2-Input NOR Gate‬‬ ‫‪8‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻛﻔﺎﻳﺔ ﻋﻤﻠﻴﺔ ‪(Sufficiency of NOR) NOR‬‬ ‫ﺍﳌﻘﺼﻮﺩ ﺑﻜﻔﺎﻳﺔ ﻋﻤﻠﻴﺔ ‪ NOR‬ﻫﻮ ﺃﻥ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ )‪ (OR ،AND ،NOT‬ﳝﻜﻦ ﺇﺟﺮﺍﺅﻫﺎ ﲨﻴﻌﺎﹰ‬ ‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ ‪ ،NOR‬ﻭ ﺑﺎﻟﺘﺎﱄ ﳝﻜﻦ ﺑﻨﺎﺀ ﺃﻱ ﺩﺍﺋﺮﺓ ﻣﻨﻄﻘﻴﺔ ﺑﺎﻟﻜﺎﻣﻞ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ ‪ NOR‬ﻓﻘﻂ‪.‬‬ ‫ﰲ ﺍﳉﺰﺀ ﺍﻟﺘﺎﱄ ﺳﻨﻮﺿﺢ ﻃﺮﻳﻘﺔ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ ‪.NOR‬‬ ‫ﻋﻤﻠﻴﺔ ‪:NOT‬‬ ‫ﳝﻜﻦ ﺃﻥ ﻧﻘﻮﻡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺔ ‪ NOR‬ﻛﻌﺎﻛﺲ ﻣﻨﻄﻘﻲ ﺑﺮﺑﻂ ﲨﻴﻊ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ﳍﺎ ﰲ ﻃﺮﻑ ﻭﺍﺣﺪ‬ ‫‪A‬‬ ‫‪A‬‬ ‫ﻭ ﳝﻜﻦ ﺃﻥ ﻧﺮﻣﺰ ﻟﺒﻮﺍﺑﺔ ‪ NOR‬ﺍﳌﺴﺘﺨﺪﻣﺔ ﻛﻌﺎﻛﺲ ﻣﻨﻄﻘﻲ ﺑﺒﻮﺍﺑﺔ ‪ NOR‬ﺑﻄﺮﻑ ﺩﺧﻞ ﻭﺍﺣﺪ‪ ،‬ﺃﻱ‬ ‫‪A‬‬ ‫‪A‬‬ ‫ﻋﻤﻠﻴﺔ ‪:OR‬‬ ‫ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ OR‬ﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ NOR‬ﻣﺘﺒﻮﻋﺔ ﺑﻌﻤﻠﻴﺔ ﻋﻜﺲ ﻣﻨﻄﻘﻲ‬ ‫‪A‬‬ ‫‪A+ B‬‬ ‫‪B‬‬ ‫‪A+ B‬‬ ‫ﻋﻤﻠﻴﺔ ‪:AND‬‬ ‫ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ AND‬ﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ NOR‬ﻣﺴﺒﻮﻗﺔ ﺑﻌﻤﻠﻴﺔ ﻋﻜﺲ ﻣﻨﻄﻘﻲ ﻟﻜﻞ ﻃﺮﻑ ﻣﻦ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ‬ ‫‪A‬‬ ‫‪A‬‬ ‫‪A + B = A⋅ B‬‬ ‫‪B‬‬ ‫‪B‬‬ ‫‪9‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫‪A + B = A⋅ B‬‬ ‫ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﺎﱄ ﻳﺜﺒﺖ ﺃﻥ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A‬‬ ‫‪B A+ B A+ B‬‬ ‫‪A⋅ B‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫ﻭ ﺗﺘﻮﻓﺮ ﺑﻮﺍﺑﺎﺕ ‪ NAND‬ﻭ ﺑﻮﺍﺑﺎﺕ ‪ NOR‬ﺑﺄﻛﺜﺮ ﻣﻦ ﻣﺪﺧﻠﲔ‪ ،‬ﻣﺜﻠﻬﺎ ﰲ ﺫﻟﻚ ﻣﺜﻞ ﺑﻮﺍﺑﺎﺕ ‪ AND‬ﻭ ﺑﻮﺍﺑﺎﺕ ‪.OR‬‬ ‫‪ 7-2‬ﻋﻤﻠﻴﺔ ‪XOR‬‬ ‫‪ XOR‬ﻫﻮ ﺍﺧﺘﺼﺎﺭ ﻟﻌﺒﺎﺭﺓ ‪ ،Exclusive OR‬ﻭ ﺗﺴﻤﻰ ﻋﻤﻠﻴﺔ ﺍﻻﺧﺘﻼﻑ‪ ،‬ﺣﻴﺚ ﺃﻥ ﺍﳋﺮﺝ ﻳﺴﺎﻭﻱ ‪ 1‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺪﺧﻼﻥ‬ ‫ﳐﺘﻠﻔﲔ‪ ،‬ﻭ ﻳﺴﺎﻭﻱ ‪ 0‬ﺇﺫﺍ ﻛﺎﻧﺎ ﻣﺘﺸﺎ‪‬ﲔ‪.‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺈﺣﺪﻯ ﺍﻟﻄﺮﻳﻘﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ‬ ‫‪x = A XOR B‬‬ ‫‪x = A⊕ B‬‬ ‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ ‪XOR‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻰ ﺑﻮﺍﺑﺔ ‪ ،XOR‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪B‬‬ ‫ﺑﻮﺍﺑﺔ ‪ XOR‬ﲟﺪﺧﻠﲔ‬ ‫)‪(2-Input XOR Gate‬‬ ‫ﻭ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﻋﻤﻠﻴﺔ ‪ XOR‬ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﻛﺎﻟﺘﺎﱄ‬ ‫‪A ⊕ B = AB + AB‬‬ ‫‪10‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫‪A ⊕ B = AB + AB‬‬ ‫ﻭ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﺎﱄ ﻳﺜﺒﺖ ﺃﻥ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪AB AB‬‬ ‫‪AB + AB‬‬ ‫‪A⊕ B‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪ 8-2‬ﻋﻤﻠﻴﺔ ‪XNOR‬‬ ‫ﻫﻲ ﻣﻌﻜﻮﺱ ﻋﻤﻠﻴﺔ ‪ ،XOR‬ﻭ ﺗﺴﻤﻰ ﻋﻤﻠﻴﺔ ﺍﻟﺘﺴﺎﻭﻱ‪ ،‬ﺣﻴﺚ ﺃﻥ ﺍﳋﺮﺝ ﻳﺴﺎﻭﻱ ‪ 1‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺪﺧﻼﻥ ﻣﺘﺴﺎﻭﻳﲔ‪ ،‬ﻭ‬ ‫ﻳﺴﺎﻭﻱ ‪ 0‬ﺇﺫﺍ ﻛﺎﻧﺎ ﳐﺘﻠﻔﲔ‪.‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺈﺣﺪﻯ ﺍﻟﻄﺮﻳﻘﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ‬ ‫‪x = A XNOR B‬‬ ‫‪x = A⊕ B‬‬ ‫ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ ‪XNOR‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻰ ﺑﻮﺍﺑﺔ ‪ ،XNOR‬ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪B‬‬ ‫ﺑﻮﺍﺑﺔ ‪ XNOR‬ﲟﺪﺧﻠﲔ‬ ‫)‪(2-Input XNOR Gate‬‬ ‫ﻭ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﻋﻤﻠﻴﺔ ‪ XNOR‬ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﻛﺎﻟﺘﺎﱄ‬ ‫‪A ⊕ B = AB + AB‬‬ ‫ﺗﺪﺭﻳﺐ ‪:3‬‬ ‫‪A ⊕ B = AB + AB‬‬ ‫ﻗﻢ ﺑﺈﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺬﻱ ﻳﺜﺒﺖ ﺃﻥ‬ ‫ﻭ ﲞﻼﻑ ﺑﻮﺍﺑﺎﺕ ‪ AND‬ﻭ ‪ OR‬ﻭ ‪ NAND‬ﻭ ‪ ،NOR‬ﻻ ﺗﺘﻮﻓﺮ ﺑﻮﺍﺑﺎﺕ ‪ XOR‬ﺃﻭ ﺑﻮﺍﺑﺎﺕ ‪ XNOR‬ﺑﺄﻛﺜﺮ ﻣﻦ‬ ‫ﻣﺪﺧﻠﲔ‪.‬‬ ‫‪11‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫‪ -3‬ﺗﻐﻴﲑ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ )‪ (Fan-In‬ﻟﻠﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ‬ ‫ﰲ ﻛﺜﲑ ﻣﻦ ﺍﻷﺣﻴﺎﻥ ﻗﺪ ﺗﺘﻮﻓﺮ ﻟﻨﺎ ﺑﻮﺍﺑﺎﺕ ﻣﻨﻄﻘﻴﺔ ﺑﻌﺪﺩ ﻣﻦ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ )‪ (Fan-In‬ﺃﻛﱪ ﺃﻭ ﺃﻗﻞ ﳑﺎ ﳓﺘﺎﺝ ﺇﻟﻴﻪ‪.‬‬ ‫ﺳﻨﻮﺿﺢ ﰲ ﻫﺬﺍ ﺍﳉﺰﺀ ﺍﻷﺳﺎﻟﻴﺐ ﺍﳌﺨﺘﻠﻔﺔ ﺍﻟﱵ ﳝﻜﻨﻨﺎ ﺇﺗﺒﺎﻋﻬﺎ ﻟﺘﻐﻴﲑ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ﻟﻠﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺑﺎﻟﺰﻳﺎﺩﺓ ﺃﻭ‬ ‫ﺑﺎﻟﻨﻘﺼﺎﻥ‪.‬‬ ‫ﺗﻘﻠﻴﻞ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ‪:‬‬ ‫ﻳﺘﻢ ﺫﻟﻚ ﺑﺮﺑﻂ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪ ﺑﺄﺣﺪ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ﺍﳌﺴﺘﺨﺪﻣﺔ‪ ،‬ﻣﺜﻼﹰ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A⋅B‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A+B‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫‪A⋅B⋅C‬‬ ‫‪A‬‬ ‫‪A‬‬ ‫ﰲ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﺔ ‪ AND‬ﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ ﻛﺒﻮﺍﺑﺔ ‪ AND‬ﲟﺪﺧﻠﲔ‪ ،‬ﻭ ﺫﻟﻚ ﺑﺎﻟﺘﺨﻠﺺ ﻣﻦ ﻃﺮﻑ ﺍﻟﺪﺧﻞ‬ ‫ﺍﻟﺜﺎﻟﺚ ﻏﲑ ﺍﳌﺮﻏﻮﺏ ﻓﻴﻪ ﺑﺮﺑﻄﻪ ﺑﺄﺣﺪ ﻃﺮﰲ ﺍﻟﺪﺧﻞ ﺍﳌﺴﺘﺨﺪﻣﲔ‪.‬ﻭ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﺔ ‪ OR‬ﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ‬ ‫ﻛﺒﻮﺍﺑﺔ ‪ OR‬ﲟﺪﺧﻠﲔ‪.‬‬ ‫ﻛﻤﺎ ﳝﻜﻦ ﺃﻥ ﻳﺘﻢ ﺍﻟﺘﺨﻠﺺ ﻣﻦ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪ ﺑﻮﺿﻊ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻄﻘﻴﺔ ‪ 1‬ﰲ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪ ﰲ ﺑﻮﺍﺑﺎﺕ ‪ AND‬ﻭ‬ ‫‪ ،NAND‬ﻭ ﻭﺿﻊ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻄﻘﻴﺔ ‪ 0‬ﰲ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪ ﰲ ﺑﻮﺍﺑﺎﺕ ‪ OR‬ﻭ ‪ ،NOR‬ﻣﺜﻼﹰ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A⋅B‬‬ ‫‪1‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪0‬‬ ‫‪A+B‬‬ ‫‪0‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫‪A ⋅B⋅C‬‬ ‫‪1‬‬ ‫‪A‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪A‬‬ ‫‪0‬‬ ‫‪12‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻫﻨﺎ ﺃﻳﻀﺎﹰ ﰲ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﺔ ‪ AND‬ﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ ﻛﺒﻮﺍﺑﺔ ‪ AND‬ﲟﺪﺧﻠﲔ‪ ،‬ﻭ ﺫﻟﻚ ﺑﺎﻟﺘﺨﻠﺺ ﻣﻦ ﻃﺮﻑ‬ ‫ﺍﻟﺪﺧﻞ ﺍﻟﺜﺎﻟﺚ ﻏﲑ ﺍﳌﺮﻏﻮﺏ ﻓﻴﻪ ﺑﻮﺿﻊ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻄﻘﻴﺔ ‪ 1‬ﻓﻴﻪ‪.‬ﻭ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﺔ ‪ OR‬ﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ‬ ‫ﻛﺒﻮﺍﺑﺔ ‪ OR‬ﲟﺪﺧﻠﲔ‪ ،‬ﻭ ﺫﻟﻚ ﺑﻮﺿﻊ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻄﻘﻴﺔ ‪ 0‬ﰲ ﻃﺮﰲ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪﻳﻦ‪.‬‬ ‫ﺯﻳﺎﺩﺓ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ‪:‬‬ ‫ﻳﺘﻢ ﺫﻟﻚ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺃﻛﺜﺮ ﻣﻦ ﺑﻮﺍﺑﺔ ﻭﺍﺣﺪﺓ ﻭ ﺍﺳﺘﺨﺪﺍﻡ ﺧﺮﺝ ﺍﻟﺒﻮﺍﺑﺔ ﺍﻷﻭﱃ ﻛﺪﺧﻞ ﻟﻠﺒﻮﺍﺑﺔ ﺍﻟﺜﺎﻧﻴﺔ‪ ،‬ﻣﺜﻼﹸ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A⋅ B ⋅ C‬‬ ‫‪C‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A+ B + C + D‬‬ ‫‪C‬‬ ‫‪D‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪A⊕ B ⊕ C ⊕ D‬‬ ‫‪C‬‬ ‫‪D‬‬ ‫ﰲ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﱵ ‪ ،AND‬ﻛﻞ ﻣﻨﻬﻤﺎ ﲟﺪﺧﻠﲔ‪ ،‬ﻛﻮﺍﺑﺔ ‪ AND‬ﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ‪.‬ﻭ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ‬ ‫ﺍﺳﺘﺨﺪﻣﻨﺎ ﺛﻼﺛﺔ ﺑﻮﺍﺑﺎﺕ ‪ ،OR‬ﻛﻞ ﺑﻮﺍﺑﺔ ﻣﻨﻬﺎ ﲟﺪﺧﻠﲔ‪ ،‬ﻛﺒﻮﺍﺑﺔ ‪ OR‬ﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ‪.‬ﻭ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻟﺜﺔ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺛﻼﺛﺔ‬ ‫ﺑﻮﺍﺑﺎﺕ ‪ ،XOR‬ﻛﻞ ﺑﻮﺍﺑﺔ ﻣﻨﻬﺎ ﲟﺪﺧﻠﲔ‪ ،‬ﻛﺒﻮﺍﺑﺔ ‪ XOR‬ﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ‪.‬‬ ‫‪ -4‬ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ )‪(Logical Expression‬‬ ‫ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﳎﻤﻮﻋﺔ ﻣﻦ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﺮﺗﺒﻄﺔ ﻣﻊ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﺑﻌﻤﻠﻴﺎﺕ ﻣﻨﻄﻘﻴﺔ‪.‬ﻣﺜﻞ‬ ‫‪x = A+ B ⋅ C‬‬ ‫ﻳﺘﻜﻮﻥ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻫﻨﺎ ﻣﻦ ﺃﺭﺑﻌﺔ ﻣﺘﻐﲑﺍﺕ ﻫﻲ ‪ A‬ﻭ ‪ B‬ﻭ ‪ C‬ﻭ ‪ ، x‬ﺗﺮﺑﻂ ﺑﻴﻨﻬﺎ ﻋﻤﻠﻴﺎﺕ ‪ NOT‬ﻭ ‪ AND‬ﻭ ‪OR‬‬ ‫ﻭ ﻋﻤﻠﻴﺔ ﺍﻟﺘﻜﺎﻓﺆ )=(‪.‬‬ ‫‪13‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﺃﺳﺒﻘﻴﺔ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ )‪:(Operation Precedence‬‬ ‫ﻳﺘﻢ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﺑﺎﻟﺘﺮﺗﻴﺐ ﺍﻟﺘﺎﱄ‪:‬‬ ‫‪ -1‬ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ‪NOT‬‬ ‫‪ -2‬ﻋﻤﻠﻴﺔ ‪AND‬‬ ‫‪ -3‬ﻋﻤﻠﻴﺔ ‪OR‬‬ ‫ﻓﻔﻲ ﺍﻟﺘﻌﺒﲑ ﺃﻋﻼﻩ‪ ،‬ﻣﺜﻼﹰ‪ ،‬ﻳﺘﻢ ﺃﻭﻻﹰ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﻟﻠﻤﺘﻐﲑﻳﻦ ‪ B‬ﻭ ‪ C‬ﺍﻭﻻﹰ‪ ،‬ﰒ ﻋﻤﻠﻴﺔ ‪ AND‬ﺑﲔ ‪ B‬ﻭ‬ ‫‪ ، C‬ﻭ ﺃﺧﲑﺍﹰ ﻋﻤﻠﻴﺔ ‪.OR‬‬ ‫ﰲ ﺣﺎﻟﺔ ﻇﻬﻮﺭ ﻋﺪﺓ ﻋﻤﻠﻴﺎﺕ ﻣﺘﺴﺎﻭﻳﺔ ﻣﻦ ﺣﻴﺚ ﺍﻷﺳﺒﻘﻴﺔ ﰲ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻳﺘﻢ ﺇﺟﺮﺍﺅﻫﺎ ﺑﺎﻟﺘﺮﺗﻴﺐ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﻟﻠﻴﻤﲔ‪.‬‬ ‫ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻷﻗﻮﺍﺱ ﻟﻠﺘﺤﻜﻢ ﰲ ﺗﺮﺗﻴﺐ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ‪ ،‬ﺣﻴﺚ ﺃﻥ ﺍﻷﻗﻮﺍﺱ ﳍﺎ ﺍﻷﺳﺒﻘﻴﺔ ﺍﻟﻌﻠﻴﺎ‪ ،‬ﺃﻱ ﺃﻥ ﻣﺎ ﺑﲔ ﺍﻷﻗﻮﺍﺱ‬ ‫ﻳﺘﻢ ﺣﺴﺎﺑﻪ ﺩﺍﺋﻤﺎﹰ ﺃﻭﻻﹰ‪.‬ﻣﺜﻼﹰ ﺇﺫﺍ ﻗﻤﻨﺎ ﰲ ﺍﻟﺘﻌﺒﲑ ﺍﻟﺴﺎﺑﻖ ﺑﺈﺿﺎﻓﺔ ﻗﻮﺳﲔ ﻛﺎﻟﺘﺎﱄ‬ ‫‪x = ( A + B) ⋅ C‬‬ ‫ﻓﺈﻧﻪ ﻳﺘﻢ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ‪ OR‬ﺍﳌﻮﺟﻮﺩﺓ ﺑﲔ ﺍﻟﻘﻮﺳﲔ ﻗﺒﻞ ﻋﻤﻠﻴﺔ ‪ ،AND‬ﻭ ﺫﻟﻚ ﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﺃﻥ ﻋﻤﻠﻴﺔ ‪ AND‬ﳍﺎ ﺃﺳﺒﻘﻴﺔ‬ ‫ﺃﻋﻠﻰ ﻣﻦ ﻋﻤﻠﻴﺔ ‪.OR‬ﻭ ﺍﻟﺴﺒﺐ ﰲ ﺫﻟﻚ ﻫﻮ ﻭﺟﻮﺩ ﻋﻤﻠﻴﺔ ‪ OR‬ﻣﺎ ﺑﲔ ﺍﻟﻘﻮﺳﲔ‪.‬ﺣﻴﺚ ﻳﺘﻢ ﺃﻭﻻﹰ ﺣﺴﺎﺏ ﻣﺎ ﺑﲔ‬ ‫ﺍﻟﻘﻮﺳﲔ‪ ،‬ﻓﻴﺘﻢ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﻟﻠﻤﺘﻐﲑ ‪ ، B‬ﰒ ﻋﻤﻠﻴﺔ ‪ OR‬ﺑﲔ ‪ A‬ﻭ ‪ ، B‬ﻭ ﺑﻌﺪ ﺍﻻﻧﺘﻬﺎﺀ ﻣﻦ ﺍﻷﻗﻮﺍﺱ ﻳﺘﻢ‬ ‫ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺧﺎﺭﺟﻬﺎ‪ ،‬ﻓﻴﺘﻢ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﻟﻠﻤﺘﻐﲑ ‪ ، C‬ﰒ ﻋﻤﻠﻴﺔ ‪ AND‬ﳌﺎ ﺑﲔ ﺍﻟﻘﻮﺳﲔ ﻭ ‪. C‬‬ ‫‪ -5‬ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ )‪(Logic Circuit‬‬ ‫ﳝﻜﻦ ﲤﺜﻴﻞ ﺃﻱ ﺗﻌﺒﲑ ﻣﻨﻄﻘﻲ ﺑﺪﺍﺋﺮﺓ ﻣﻨﻄﻘﻴﺔ‪ ،‬ﺣﻴﺚ ﻧﻨﻈﺮ ﻟﻠﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﻮﺟﻮﺩﺓ ﺑﺎﻟﺘﻌﺒﲑ ﻭ ﻧﻘﻮﻡ ﺑﺮﺑﻂ ﺍﻟﺒﻮﺍﺑﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ‬ ‫ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﺗﻠﻚ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺑﺎﻷﺳﻠﻮﺏ ﺍﳌﻨﺎﺳﺐ‪.‬ﻣﺜﻼ‪ ً،‬ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪x = A+ B ⋅ C‬‬ ‫ﳝﻜﻦ ﲤﺜﻴﻠﻪ ﺑﺎﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ‬ ‫‪A‬‬ ‫‪x‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫‪14‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻭ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪x = ( A + B) ⋅ C‬‬ ‫ﳝﻜﻦ ﲤﺜﻴﻠﻪ ﺑﺎﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x‬‬ ‫‪C‬‬ ‫‪ -6‬ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ )‪(Logic Diagram‬‬ ‫ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﳐﻄﻂ ﻣﺒﺴﻂ ﻳﻮﺿﺢ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻟﻠﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻭ ﻣﺴﻤﻴﺎ‪‬ﺎ ﻭ ﻣﺘﻐﲑﺍﺕ ﺍﳋﺮﺝ ﻭﻣﺴﻤﻴﺎ‪‬ﺎ‪ ،‬ﺑﺎﻹﺿﺎﻓﺔ‬ ‫ﺇﱃ ﺍﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﻭﻇﻴﻔﺘﻬﺎ‪.‬‬ ‫ﻣﺜﻼﹰ‪ ،‬ﻛﻼ ﺍﻟﺪﺍﺋﺮﺗﲔ ﺍﳌﻨﻄﻘﻴﺘﲔ ﺃﻋﻼﻩ ﳝﻜﻦ ﲤﺜﻴﻠﻬﻤﺎ ﺑﺎﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ ﺍﻟﺘﺎﱄ‪:‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫ﺍﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ‬ ‫‪x‬‬ ‫‪C‬‬ ‫ﻭ ﻧﻘﻮﻡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﺨﻄﻄﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻛﺒﺪﻳﻞ ﻟﻠﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﻔﺼﻠﺔ ﻛﻨﻮﻉ ﻣﻦ ﺍﻟﺘﺒﺴﻴﻂ‪ ،‬ﻭ ﺫﻟﻚ ﻋﻨﺪﻣﺎ ﻻ ﻧﻜﻮﻥ ﲝﺎﺟﺔ‬ ‫ﻟﻠﺘﻔﺎﺻﻴﻞ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﻠﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ‪.‬ﻛﻤﺎ ﰲ ﺍﻟﺪﻭﺍﺋﺮ ﺍﳌﻌﻘﺪﺓ ﺍﳌﻜﻮﻧﺔ ﻣﻦ ﻋﺪﺩ ﻣﻦ ﺍﻟﺪﻭﺍﺋﺮ ﺍﻟﺼﻐﲑﺓ ﺍﳌﺮﺑﻮﻃﺔ ﻣﻊ ﺑﻌﻀﻬﺎ‬ ‫ﺍﻟﺒﻌﺾ‪ ،‬ﺣﻴﺚ ﻧﻘﻮﻡ ﺑﺘﻤﺜﻴﻞ ﺗﻠﻚ ﺍﻟﺪﻭﺍﺋﺮ ﺍﻟﺼﻐﲑﺓ ﲟﺨﻄﻄﺎ‪‬ﺎ ﺍﳌﻨﻄﻘﻴﺔ‪.‬‬ ‫‪ -7‬ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ )‪(Truth Table‬‬ ‫ﻋﺒﺎﺭﺓ ﻋﻦ ﺟﺪﻭﻝ ﻳﻮﺿﺢ ﲨﻴﻊ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺪﺧﻞ ﻟﻠﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻭ ﻗﻴﻢ ﺍﳋﺮﺝ ﺍﳌﻘﺎﺑﻞ ﻟﻜﻞ ﻣﻨﻬﺎ‪.‬ﻣﺜﻼﹰ‪ ،‬ﻹﻧﺸﺎﺀ ﺟﺪﻭﻝ‬ ‫ﺻﻮﺍﺏ ﻟﻠﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪x = A+ B ⋅ C‬‬ ‫ﻧﺒﺪﺃ ﺑﺘﺤﺪﻳﺪ ﻋﺪﺩ ﺍﻟﺼﻔﻮﻑ ﻭ ﻋﺪﺩ ﺍﻷﻋﻤﺪﺓ ﰲ ﺍﳉﺪﻭﻝ‪.‬ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻫﻲ ‪ A‬ﻭ ‪ B‬ﻭ ‪ ، C‬ﻭ ﻋﺪﺩﻫﺎ ‪ ،3‬ﺃﻱ ﻋﻦ‬ ‫ﻋﺪﺩ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺪﺧﻞ ﻫﻮ ‪ ، 2 3 = 8‬ﻭ ﻫﻮ ﻋﺪﺩ ﺃﺳﻄﺮ )ﺻﻔﻮﻑ( ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ‪.‬ﺃﻣﺎ ﻋﻦ ﺍﻷﻋﻤﺪﺓ ﻓﻨﺤﺘﺎﺝ ﻋﻤﻮﺩﺍﹰ‬ ‫‪15‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻟﻜﻞ ﻣﺘﻐﲑ ﻣﻦ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻭ ﻋﻤﻮﺩﺍﹰ ﻟﻜﻞ ﻣﺘﻐﲑ ﻣﻦ ﻣﺘﻐﲑﺍﺕ ﺍﳋﺮﺝ‪.‬ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻋﺪﺩﻫﺎ ‪ ،3‬ﻛﻤﺎ ﺫﻛﺮﻧﺎ ﻣﻦ‬ ‫ﻗﺒﻞ‪ ،‬ﻭ ﻫﻨﺎﻙ ﻣﺘﻐﲑ ﺧﺮﺝ ﻭﺍﺣﺪ ﻫﻮ ‪ ، x‬ﺃﻱ ﳓﺘﺎﺝ ﺇﱃ ﺃﺭﺑﻌﺔ ﺃﻋﻤﺪﺓ ﳌﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻭ ﻣﺘﻐﲑﺍﺕ ﺍﳋﺮﺝ‪.‬ﻛﻤﺎ ﳓﺘﺎﺝ ﺇﱃ‬ ‫ﺃﻋﻤﺪﺓ ﺇﺿﺎﻓﻴﺔ ﻹﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ‪ ،‬ﺣﻴﺚ ﳓﺘﺎﺝ ﻋﻤﻮﺩﺍﹰ ﻹﳚﺎﺩ ‪ ، B‬ﻭ ﻋﻤﻮﺩﺍﹰ ﺁﺧﺮ ﻹﳚﺎﺩ ‪ ، C‬ﻛﻤﺎ ﳓﺘﺎﺝ ﻋﻤﻮﺩﺍﹰ‬ ‫ﻹﳚﺎﺩ ‪ ، B ⋅ C‬ﻭ ﺃﺧﲑﺍﹰ ﳓﺘﺎﺝ ﻋﻤﻮﺩﺍﹰ ﻹﳚﺎﺩ ‪ ، A + B ⋅ C‬ﻭ ﻫﻮ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻧﻔﺲ ﻋﻤﻮﺩ ﺍﳋﺮﺝ ‪. x‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫‪B‬‬ ‫= ‪C B⋅C x‬‬ ‫‪A+ B ⋅ C‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫ﻭ ﺑﺎﳌﺜﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪x = ( A + B) ⋅ C‬‬ ‫ﻫﻮ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫‪A+ B x = ( A + B) ⋅ C‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫ﻣﺜﺎﻝ‪:‬‬ ‫ﺍﺭﺳﻢ ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ‪ ،‬ﻭ ﺃﻛﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ‪ ،‬ﰒ ﺍﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻟﻠﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪y = ABC + AB‬‬ ‫ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ‬ ‫‪A‬‬ ‫‪B‬‬ ‫ﺍﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ‬ ‫‪y‬‬ ‫‪C‬‬ ‫‪16‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪ABC AB ABC + AB x = ABC + AB‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪x = ABC + AB‬‬ ‫‪C‬‬ ‫ﺗﺪﺭﻳﺐ ‪:4‬‬ ‫ﺍﺭﺳﻢ ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ‪ ،‬ﻭ ﺃﻛﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ‪ ،‬ﰒ ﺍﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻟﻜﻞ ﺗﻌﺒﲑ ﻣﻦ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫‪x = A( B + C ) -1‬‬ ‫‪y = AB( A + C ) -2‬‬ ‫‪z = AB + C D -3‬‬ ‫‪ -8‬ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ )‪(Boolean Algebra Theorems‬‬ ‫ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﻫﻮ ﺟﱪ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ‪ ،‬ﻭ ﺍﳍﺪﻑ ﺍﻷﺳﺎﺳﻲ ﻣﻦ ﺩﺭﺍﺳﺘﻨﺎ ﻟﻨﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﻫﻮ ﺍﺳﺘﺨﺪﺍﻡ ﺗﻠﻚ‬ ‫ﺍﻟﻨﻈﺮﻳﺎﺕ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ‪.‬‬ ‫ﻟﻜﻞ ﻧﻈﺮﻳﺔ )‪ (Theorem‬ﻣﻦ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﻧﻈﺮﻳﺔ ﻣﻘﺎﺑﻠﺔ ﺃﻭ ﻣﻨﺎﻇﺮﺓ ﳍﺎ )‪.(Dual Theorem‬ﻭ ﻟﻠﺤﺼﻮﻝ‬ ‫ﻋﻠﻰ ﺍﻟﻨﻈﺮﻳﺔ ﺍﳌﻘﺎﺑﻠﺔ ﻷﻱ ﻧﻈﺮﻳﺔ ﻧﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﺍﻟﺘﺒﺪﻳﻼﺕ ﺍﻟﺘﺎﻟﻴﺔ ﰲ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻷﺻﻠﻴﺔ‪:‬‬ ‫ ﺍﺳﺘﺒﺪﺍﻝ ﺃﻱ ‪ 0‬ﺑـ ‪1‬‬ ‫ ﺍﺳﺘﺒﺪﺍﻝ ﺃﻱ ‪ 1‬ﺑـ ‪0‬‬ ‫ ﺍﺳﺘﺒﺪﺍﻝ ﺃﻱ ﻋﻤﻠﻴﺔ ‪ AND‬ﺑﻌﻤﻠﻴﺔ ‪OR‬‬ ‫ ﺍﺳﺘﺒﺪﺍﻝ ﺃﻱ ﻋﻤﻠﻴﺔ ‪ OR‬ﺑﻌﻤﻠﻴﺔ ‪AND‬‬ ‫‪17‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻭﻋﻤﻮﻣﺎﹰ ﳝﻜﻦ ﺇﺛﺒﺎﺕ ﺻﺤﺔ ﺃﻱ ﻧﻈﺮﻳﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ‪.‬ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻳﻮﺿﺢ ﺍﻟﻨﻈﺮﻳﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﳌﺴﺘﺨﺪﻣﺔ ﰲ‬ ‫ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ‬ ‫ﺍﻟﻨﻈﺮﻳﺔ ﺍﳌﻘﺎﺑﻠﺔ‬ ‫ﺍﻟﻨﻈﺮﻳﺔ‬ ‫ﺍﺳﻢ ﺍﻟﻨﻈﺮﻳﺔ‬ ‫‪A= A‬‬ ‫‪A= A‬‬ ‫ﻋﻜﺲ ﺍﻟﻌﻜﺲ‬ ‫‪A⋅ 0 = 0‬‬ ‫‪A+ 1 = 1‬‬ ‫ﺍﻟﻌﻤﻠﻴﺎﺕ ﻣﻊ ‪ 1‬ﻭ ‪0‬‬ ‫‪A⋅ 1 = A‬‬ ‫‪A+ 0 = A‬‬ ‫‪A⋅ A = A‬‬ ‫‪A+ A = A‬‬ ‫ﺍﳌﺘﻐﲑ ﻣﻊ ﻧﻔﺴﻪ‬ ‫‪A⋅ A = 0‬‬ ‫‪A+ A = 1‬‬ ‫ﺍﳌﺘﻐﲑ ﻣﻊ ﻋﻜﺴﻪ‬ ‫‪A⋅ B = B ⋅ A‬‬ ‫‪A+ B = B + A‬‬ ‫ﺍﻟﻨﻈﺮﻳﺔ ﺍﻹﺑﺪﺍﻟﻴﺔ‬ ‫) ‪( A ⋅ B) ⋅ C = A ⋅ ( B ⋅ C‬‬ ‫) ‪( A + B) + C = A + ( B + C‬‬ ‫ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﺠﻤﻴﻌﻴﺔ‬ ‫) ‪A + B ⋅ C = ( A + B) ⋅ ( A + C‬‬ ‫‪A ⋅ (B + C) = A⋅ B + A⋅ C‬‬ ‫ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻮﺯﻳﻌﻴﺔ‬ ‫‪A ⋅ ( A + B) = A‬‬ ‫‪A+ A⋅ B = A‬‬ ‫ﺍﻻﻣﺘﺼﺎﺹ ﺃﻭ ﺍﻻﺑﺘﻼﻉ‬ ‫‪A ⋅ ( A + B) = A ⋅ B‬‬ ‫‪A+ A⋅ B = A+ B‬‬ ‫‪A ⋅ B = A+ B‬‬ ‫‪A+ B = A⋅ B‬‬ ‫ﺩﻱ ﻣﻮﺭﻏﺎﻥ )‪(De Morgan‬‬ ‫‪ -9‬ﺍﺳﺘﺨﺪﺍﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰱ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ‬ ‫ﺍﳍﺪﻑ ﻣﻦ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻫﻮ ﺗﺒﺴﻴﻂ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ‪ ،‬ﺃﻱ ﺗﻘﻠﻴﻞ ﻋﺪﺩ ﺍﻟﺒﻮﺍﺑﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﺪﺍﺧﻠﺔ ﰱ ﺑﻨﺎﺋﻬﺎ‪ ،‬ﻭ ﺫﻟﻚ‬ ‫ﻟﺘﻘﻠﻴﻞ ﺗﻜﻠﻔﺘﻬﺎ‪.‬ﻛﻤﺎ ﻳﻌﺘﱪ ﺗﻘﻠﻴﻞ ﺗﻔﺮﻉ ﺍﻟﺪﺧﻞ ﻟﻠﺒﻮﺍﺑﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﺴﺘﺨﺪﻣﺔ ﰱ ﺑﻨﺎﺀ ﺍﻟﺪﺍﺋﺮﺓ ﻧﻮﻋﺎﹰ ﻣﻦ ﺍﻟﺘﺒﺴﻴﻂ ﺃﻳﻀﺎﹰ‪.‬‬ ‫ﺳﻨﻌﺮﺽ ﰲ ﻫﺬﺍ ﺍﳉﺰﺀ ﻋﺪﺩﺍﹰ ﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻟﺘﻮﺿﻴﺢ ﻃﺮﻳﻘﺔ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻨﻈﺮﻳﺎﺕ‪.‬ﻭ ﻧﺬﻛﺮ ﺍﻟﻘﺎﺭﺉ‬ ‫ﺑﻀﺮﻭﺭﺓ ﺍﻟﺘﺪﺭﺏ ﻋﻠﻰ ﻋﻤﻠﻴﺔ ﺍﻟﺘﺒﺴﻴﻂ ﺑﻔﻬﻢ ﺍﻷﻣﺜﻠﺔ ﺟﻴﺪﺍﹰ ﻭ ﺇﻋﺎﺩﺓ ﺣﻠﻬﺎ ﻭ ﺣﻞ ﺍﻟﺘﺪﺭﻳﺒﺎﺕ‪.‬‬ ‫ﻣﺜﺎﻝ‪:‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰱ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪y = ABC + AB‬‬ ‫ﰒ ﺍﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ ﻭ ﺑﻌﺪﻩ‪.‬‬ ‫ﺍﳊﻞ‪:‬‬ ‫‪y = ABC + AB‬‬ ‫)‪y = ( A+ B + C ) ⋅ ( A+ B‬‬ ‫ﺩﻱ ﻣﻮﺭﻏﺎﻥ‬ ‫)‪y = ( A + B + C ) ⋅ ( A + B‬‬ ‫ﻋﻜﺲ ﺍﻟﻌﻜﺲ‬ ‫‪y = A+ ( B + C ) ⋅ B‬‬ ‫ﺍﻟﺘﻮﺯﻳﻌﻴﺔ‬ ‫‪y = A+ C B‬‬ ‫ﺍﻻﺑﺘﻼﻉ‬ ‫‪18‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﺣﻞ ﺁﺧﺮ‪:‬‬ ‫‪y = ABC + AB‬‬ ‫)‪y = A ⋅ ( BC + B‬‬ ‫ﺍﻟﺘﻮﺯﻳﻌﻴﺔ‬ ‫)‪y = A ⋅ (C + B‬‬ ‫ﺍﻻﺑﺘﻼﻉ‬ ‫‪y = A+ C B‬‬ ‫ﺩﻱ ﻣﻮﺭﻏﺎﻥ‬ ‫‪y = A+ C B‬‬ ‫ﻋﻜﺲ ﺍﻟﻌﻜﺲ‬ ‫ﺍﻟﺪﺍﺋﺮﺓ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ‪:‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪y‬‬ ‫‪C‬‬ ‫ﺍﻟﺪﺍﺋﺮﺓ ﺑﻌﺪ ﺍﻟﺘﺒﺴﻴﻂ‪:‬‬ ‫‪A‬‬ ‫‪y‬‬ ‫‪B‬‬ ‫‪C‬‬ ‫ﻻﺣﻆ ﺃﻥ ﺍﻟﺪﺍﺋﺮﺓ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ ﻣﻜﻮﻧﺔ ﻣﻦ ‪ 6‬ﺑﻮﺍﺑﺎﺕ‪ ،‬ﻭ ﺑﻌﺪ ﺍﻟﺘﺒﺴﻴﻂ ﺃﺻﺒﺤﺖ ﻣﻜﻮﻧﺔ ﻣﻦ ‪ 4‬ﺑﻮﺍﺑﺎﺕ ﻓﻘﻂ‪.‬‬ ‫ﻣﺜﺎﻝ‪:‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰱ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪y = A( A + B) + C + CB‬‬ ‫ﰒ ﺍﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ ﻭ ﺑﻌﺪﻩ‪.‬‬ ‫ﺍﳊﻞ‪:‬‬ ‫‪y = A( A + B) + C + CB‬‬ ‫‪y = AB + C + CB‬‬ ‫ﺍﻻﺑﺘﻼﻉ‬ ‫‪y = AB + C + B‬‬ ‫ﺍﻻﺑﺘﻼﻉ‬ ‫‪y = AB + B + C‬‬ ‫ﺍﻹﺑﺪﺍﻟﻴﺔ‬ ‫‪y = B+C‬‬ ‫ﺍﻻﺑﺘﻼﻉ‬ ‫‪19‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﺍﻟﺪﺍﺋﺮﺓ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ‬ ‫‪A‬‬ ‫‪B‬‬ ‫‪y‬‬ ‫‪C‬‬ ‫ﺍﻟﺪﺍﺋﺮﺓ ﺑﻌﺪ ﺍﻟﺘﺒﺴﻴﻂ‬ ‫‪B‬‬ ‫‪y‬‬ ‫‪C‬‬ ‫ﻣﺜﺎﻝ‪:‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪y = ABC + ABC + ABC + ABC‬‬ ‫ﺍﳊﻞ‪:‬‬ ‫ﳍﺬﺍ ﺍﳌﺜﺎﻝ ﺃﳘﻴﺔ ﺧﺎﺻﺔ‪ ،‬ﻭ ﺫﻟﻚ ﻧﻈﺮﺍﹰ ﺇﱃ ﺃﻥ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻳﻈﻬﺮ ﰲ ﺻﻮﺭﺓ ﳑﻴﺰﺓ ﺗﺴﻤﻰ ﺻﻮﺭﺓ ﳎﻤﻮﻉ ﺍﳊﺪﻭﺩ ﺍﻟﺼﻐﺮﻯ‬ ‫)‪.(Sum of minterms‬ﻭ ﰲ ﻫﺬﻩ ﺍﻟﺼﻮﺭﺓ ﻳﺘﻜﻮﻥ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻣﻦ ﳎﻤﻮﻋﺔ ﻣﻦ ﺍﳊﺪﻭﺩ ﺍﳌﺮﺗﺒﻄﺔ ﻣﻊ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ‬ ‫ﺑﻌﻤﻠﻴﺎﺕ ‪.OR‬ﻭ ﻳﺴﻤﻰ ﻛﻞ ﺣﺪ ﻣﻨﻬﺎ ﺑﺎﳊﺪ ﺍﻷﺻﻐﺮ )‪.(minterm‬ﻭ ﺍﳊﺪ ﺍﻷﺻﻐﺮ ﺗﻈﻬﺮ ﻓﻴﻪ ﲨﻴﻊ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ‬ ‫ﻣﺮﺗﺒﻄﺔ ﻣﻊ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﺑﻌﻤﻠﻴﺎﺕ ‪ ،AND‬ﻭ ﻳﻜﻮﻥ ﺑﻌﺾ ﻫﺬﻩ ﺍﳌﺘﻐﲑﺍﺕ ﻣﻌﻜﻮﺳﺎﹰ ﻭ ﺑﻌﻀﻬﺎ ﺍﻵﺧﺮ ﻏﲑ ﻣﻌﻜﻮﺱ‪.‬‬ ‫ﻟﺘﺒﺴﻴﻂ ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻟﺘﻌﺒﲑﺍﺕ ﻧﺒﺤﺚ ﻋﻦ ﺍﻟﺘﺸﺎ‪‬ﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ‪.‬ﻭ ﺍﳊﺪﺍﻥ ﺍﳌﺘﺸﺎ‪‬ﺎﻥ ﳘﺎ ﺣﺪﻳﻦ ﻳﺘﻔﻘﺎﻥ ﰱ ﻛﻞ‬ ‫ﺷﻲﺀ ﻋﺪﺍ ﻣﺘﻐﲑ ﻭﺍﺣﺪ ﻳﻈﻬﺮ ﰱ ﺃﺣﺪﳘﺎ ﻣﻌﻜﻮﺳﺎﹰ ﻭ ﰲ ﺍﻵﺧﺮ ﺑﺪﻭﻥ ﻋﻜﺲ‪.‬ﻣﺜﻼﹰ‪ ،‬ﰲ ﺍﻟﺘﻌﺒﲑ ﺃﻋﻼﻩ ﺍﳊﺪ ﺍﻷﻭﻝ ‪ABC‬‬ ‫ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﻟﺜﺎﱐ ‪ ، ABC‬ﺣﻴﺚ ﻳﺘﻔﻖ ﺍﳊﺪﺍﻥ ﰲ ﻛﻞ ﺷﻲﺀ ﻋﺪﺍ ﺍﳌﺘﻐﲑ ‪ C‬ﺍﻟﺬﻱ ﻳﻈﻬﺮ ﰲ ﺍﳊﺪ ﺍﻷﻭﻝ ﻣﻌﻜﻮﺳﺎﹰ ﻭ ﰲ ﺍﳊﺪ‬ ‫ﺍﻟﺜﺎﱐ ﺑﺪﻭﻥ ﻋﻜﺲ‪.‬ﻭ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻳﺘﺸﺎﺑﻪ ﺍﳊﺪﺍﻥ ﺍﻟﺜﺎﻟﺚ ‪ ABC‬ﻭ ﺍﻟﺮﺍﺑﻊ ‪ ، ABC‬ﺣﻴﺚ ﻳﺘﻔﻘﺎﻥ ﰲ ﻛﻞ ﺷﻲﺀ ﻋﺪﺍ‬ ‫ﺍﳌﺘﻐﲑ ‪ A‬ﺍﻟﺬﻱ ﻳﻈﻬﺮ ﰲ ﺍﳊﺪ ﺍﻟﺜﺎﻟﺚ ﻣﻌﻜﻮﺳﺎﹰ ﻭ ﰲ ﺍﳊﺪ ﺍﻟﺮﺍﺑﻊ ﺑﺪﻭﻥ ﻋﻜﺲ‪.‬‬ ‫‪y = ABC + ABC + ABC + ABC‬‬ ‫ﻻﺣﻆ ﺃﻥ ﺍﻹﺧﺘﻼﻑ ﻣﺎ ﺑﲔ ﺍﳊﺪﻳﻦ ﺍﳌﺘﺸﺎ‪‬ﲔ ﳚﺐ ﺃﻥ ﻳﻜﻮﻥ ﰲ ﻣﺘﻐﲑ ﻭﺍﺣﺪ ﻓﻘﻂ ﻭ ﻻ ﳚﻮﺯ ﺃﻥ ﻳﻜﻮﻥ ﰲ ﺃﻛﺜﺮ ﻣﻦ ﻣﺘﻐﲑ‪.‬‬ ‫‪20‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﺑﻌﺪ ﺇﳚﺎﺩ ﺍﻟﺘﺸﺎ‪‬ﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ ﻧﻘﻮﻡ ﲜﻤﻊ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎ‪‬ﲔ ﰲ ﺣﺪ ﻭﺍﺣﺪ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺍﻟﻌﺎﻣﻞ ﺍﳌﺸﺘﺮﻙ ﻣﺎ ﺑﲔ‬ ‫ﺍﳊﺪﻳﻦ‪ ،‬ﺃﻣﺎ ﺍﳌﺘﻐﲑ ﺍﳌﺨﺘﻠﻒ ﻓﻴﺘﻢ ﺍﺧﺘﺼﺎﺭﻩ‪.‬‬ ‫‪y = ABC + ABC + ABC + ABC‬‬ ‫)‪y = AB(C + C ) + BC ( A + A‬‬ ‫ﺑﺈﺧﺮﺍﺝ ﺍﻟﻌﺎﻣﻞ ﺍﳌﺸﺘﺮﻙ ﰲ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎ‪‬ﲔ‬ ‫)‪y = AB(1) + BC (1‬‬ ‫ﲜﻤﻊ ﺍﳌﺘﻐﲑ ﻣﻊ ﻋﻜﺴﻪ‬ ‫‪y = AB + BC‬‬ ‫ﺑﺎﻟﻌﻤﻠﻴﺎﺕ ﻣﻊ ‪1‬‬ ‫ﻻﺣﻆ ﰲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ﻭﺟﻮﺩ ﺗﺸﺎﺑﻪ ﺇﺿﺎﰲ ﺑﲔ ﺍﳊﺪﻭﺩ‪ ،‬ﺣﻴﺚ ﺃﻥ ﺍﳊﺪ ﺍﻟﺜﺎﱐ ‪ ABC‬ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﻟﺜﺎﻟﺚ ‪ ، ABC‬ﻭ ﻟﻜﻦ‬ ‫ﱂ ﻧﻜﻦ ﰲ ﺣﺎﺟﺔ ﻻﺳﺘﺨﺪﺍﻡ ﻫﺬﺍ ﺍﻟﺘﺸﺎﺑﻪ ﰲ ﻋﻤﻠﻴﺔ ﺍﻟﺘﺒﺴﻴﻂ‪.‬‬ ‫ﻣﺜﺎﻝ‪:‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪y = ABC + ABC + ABC + ABC + ABC‬‬ ‫ﺍﳊﻞ‪:‬‬ ‫ﺍﻟﺘﻌﺒﲑ ﻫﻨﺎ ﰲ ﺻﻮﺭﺓ ﳎﻤﻮﻉ ﺍﳊﺪﻭﺩ ﺍﻟﺼﻐﺮﻯ‪ ،‬ﻟﺬﻟﻚ ﻧﺒﺤﺚ ﻋﻦ ﺍﻟﺘﺸﺎ‪‬ﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ‪.‬‬ ‫ﺍﳊﺪ ﺍﻷﻭﻝ ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﻟﺜﺎﱐ‪ ،‬ﻭ ﺍﳊﺪ ﺍﻟﺮﺍﺑﻊ ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﳋﺎﻣﺲ‪ ،‬ﻭ ﺍﳊﺪ ﺍﻟﺜﺎﻟﺚ ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﻷﻭﻝ‪.‬‬ ‫‪y = ABC + ABC + ABC + ABC + ABC‬‬ ‫ﻧﻼﺣﻆ ﻫﻨﺎ ﻭﺟﻮﺩ ﻣﺸﻜﻠﺔ ﺗﺘﻤﺜﻞ ﰲ ﺃﻥ ﺍﳊﺪ ﺍﻷﻭﻝ ﻳﺘﺸﺎﺑﻪ ﰲ ﻧﻔﺲ ﺍﻟﻮﻗﺖ ﻣﻊ ﻛﻞ ﻣﻦ ﺍﳊﺪﻳﻦ ﺍﻟﺜﺎﱐ ﻭ ﺍﻟﺜﺎﻟﺚ‪.‬ﰲ ﻣﺜﻞ‬ ‫ﻫﺬﻩ ﺍﳊﺎﻻﺕ ﻧﻘﻮﻡ ﺑﺘﻜﺮﺍﺭ ﺍﳊﺪ ﺍﻷﻭﻝ )ﻣﺴﺘﺨﺪﻣﲔ ﻧﻈﺮﻳﺔ ﺍﳌﺘﻐﲑ ﻣﻊ ﻧﻔﺴﻪ( ﲝﻴﺚ ﻳﺘﻢ ﲨﻌﻪ ﻣﻊ ﻛﻼ ﺍﳊﺪﻳﻦ ﺍﻟﺜﺎﱐ ﻭ‬ ‫ﺍﻟﺜﺎﻟﺚ‪.‬‬ ‫‪y = ABC + ABC + ABC + ABC + ABC‬‬ ‫‪y = ABC + ABC + ABC + ABC + ABC + ABC‬‬ ‫ﺑﺘﻜﺮﺍﺭ ﺍﳊﺪ ﺍﻷﻭﻝ‬ ‫‪y = AB + AC + AB‬‬ ‫ﲜﻤﻊ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎ‪‬ﲔ‬ ‫‪y = AB + AB + AC‬‬ ‫ﺑﺎﻟﻨﻈﺮﻳﺔ ﺍﻹﺑﺪﺍﻟﻴﺔ‬ ‫‪y = B + AC‬‬ ‫ﲜﻤﻊ ﺍﳊﺪﻳﻦ ﺍﳌﺘﺸﺎ‪‬ﲔ‬ ‫‪21‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﻣﺜﺎﻝ‪:‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪y = ABC + ABC + ABC + ABC‬‬ ‫ﺍﳊﻞ‪:‬‬ ‫ﻧﻼﺣﻆ ﺃﻥ ﻣﺎ ﺃﺳﻔﻞ ﺧﻂ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﺍﳋﺎﺭﺟﻲ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺗﻌﺒﲑ ﰲ ﺻﻮﺭﺓ ﳎﻤﻮﻉ ﺍﳊﺪﻭﺩ ﺍﻟﺼﻐﺮﻯ‪ ،‬ﻟﺬﻟﻚ ﻧﺒﺤﺚ‬ ‫ﻋﻦ ﺍﻟﺘﺸﺎ‪‬ﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ‪.‬‬ ‫‪y = ABC + ABC + ABC + ABC‬‬ ‫‪y = ABC + ABC + ABC + ABC‬‬ ‫‪y = BC + AB‬‬ ‫ﲜﻤﻊ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎ‪‬ﲔ‬ ‫)‪y = ( BC ) ⋅ ( AB‬‬ ‫ﺑﻨﻈﺮﻳﺔ ﺩﻱ ﻣﻮﺭﻏﺎﻥ‬ ‫)‪y = ( B + C ) ⋅ ( A + B‬‬ ‫ﺑﻨﻈﺮﻳﺔ ﺩﻱ ﻣﻮﺭﻏﺎﻥ‬ ‫ﻣﺜﺎﻝ‪:‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ‬ ‫‪y = ABC + ABC + ABC‬‬ ‫ﺍﳊﻞ‪:‬‬ ‫ﻧﻼﺣﻆ ﺃﻥ ﻣﺎ ﺃﺳﻔﻞ ﺧﻂ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﺍﳋﺎﺭﺟﻲ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺗﻌﺒﲑ ﰲ ﺻﻮﺭﺓ ﳎﻤﻮﻉ ﺍﳊﺪﻭﺩ ﺍﻟﺼﻐﺮﻯ‪ ،‬ﻟﺬﻟﻚ ﻧﺒﺤﺚ‬ ‫ﻋﻦ ﺍﻟﺘﺸﺎ‪‬ﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ‪.‬‬ ‫‪y = ABC + ABC + ABC‬‬ ‫‪y = ABC + ABC + ABC‬‬ ‫‪y = ABC + ABC + ABC + ABC‬‬ ‫ﺑﺘﻜﺮﺍﺭ ﺍﳊﺪ ﺍﻟﺜﺎﻟﺚ‬ ‫‪y = BC + AB‬‬ ‫ﲜﻤﻊ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎ‪‬ﲔ‬ ‫)‪y = B(C + A‬‬ ‫ﺑﺄﺧﺬ ﺍﻟﻌﺎﻣﻞ ﺍﳌﺸﺘﺮﻙ‬ ‫)‪y = B + (C + A‬‬ ‫ﺑﻨﻈﺮﻳﺔ ﺩﻱ ﻣﻮﺭﻏﺎﻥ‬ ‫‪y = B+CA‬‬ ‫ﺑﻨﻈﺮﻳﺔ ﺩﻱ ﻣﻮﺭﻏﺎﻥ‬ ‫‪22‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ ‫ﺗﺪﺭﻳﺐ ‪:5‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﻛﻞ ﻣﻦ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ‬ ‫‪A = x + xyz + x yz + xw + x w + x y‬‬ ‫‪-1‬‬ ‫‪B = ( x + y + xy)( x + y) xy‬‬ ‫‪-2‬‬ ‫)‪C = ( x + y + x y)( xy + xz + yz‬‬ ‫‪-3‬‬ ‫ﺍﳋﻼﺻﺔ‬ ‫ﻋﺰﻳﺰﻱ ﺍﻟﺪﺍﺭﺱ‪ ،‬ﺗﻌﻠﻤﻨﺎ ﰲ ﻫﺬﻩ ﺍﻟﻮﺣﺪﺓ ﺑﻌﺾ ﺍﳌﻬﺎﺭﺍﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﱵ ﺳﻨﺤﺘﺎﺝ ﺇﻟﻴﻬﺎ ﰲ ﺩﺭﺍﺳﺘﻨﺎ ﻟﺒﻘﻴﺔ ﺍﳌﻘﺮﺭ‪.‬ﺣﻴﺚ ﺗﻌﺮﻓﻨﺎ‬ ‫ﻋﻠﻰ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﺨﺘﻠﻔﺔ ﻭ ﺍﻟﺒﻮﺍﺑﺎﺕ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﺗﻠﻚ ﺍﻟﻌﻤﻠﻴﺎﺕ‪ ،‬ﻭ ﺗﻌﻠﻤﻨﺎ ﻛﻴﻔﻴﺔ ﻛﺘﺎﺑﺔ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻭ‬ ‫ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻬﺎ ﻭ ﺍﻟﻘﻴﺎﻡ ﺑﺘﺒﺴﻴﻄﻬﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻨﻈﺮﻳﺎﺕ‪ ،‬ﻛﻤﺎ ﺗﻌﻠﻤﻨﺎ ﻛﻴﻔﻴﺔ ﺇﻧﺸﺎﺀ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻭ ﺑﻨﺎﺀ ﺍﻟﺪﻭﺍﺋﺮ ﺍﳌﻨﻄﻘﻴﺔ‪.‬‬ ‫ﶈﺔ ﻣﺴﺒﻘﺔ ﻋﻦ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺘﺎﻟﻴﺔ‬ ‫ﰲ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺘﺎﻟﻴﺔ ﺳﻨﺘﻨﺎﻭﻝ ﺍﳋﻄﻮﺍﺕ ﺍﳌﺘﺒﻌﺔ ﰲ ﺗﺼﻤﻴﻢ ﺍﻟﺪﻭﺍﺋﺮ ﺍﳌﻨﻄﻘﻴﺔ‪ ،‬ﺍﺑﺘﺪﺍﺀﺍﹰ ﻣﻦ ﲢﺪﻳﺪ ﻣﻮﺍﺻﻔﺎﺕ ﺍﻟﺪﺍﺋﺮﺓ‪ ،‬ﰒ ﻛﺘﺎﺑﺔ‬ ‫ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻟﻠﺪﺍﺋﺮﺓ ﰲ ﺍﻟﺼﻮﺭﺓ ﺍﳌﻨﺎﺳﺒﺔ‪ ،‬ﻓﺘﺒﺴﻴﻂ ﺗﻠﻚ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ‪ ،‬ﻭﺧﺘﺎﻣﺎﹰ ﺑﻨﺎﺀ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ‪ ،‬ﺇﻣﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ‬ ‫ﺍﻟﺒﻮﺍﺑﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ‪ NOT‬ﻭ ‪ AND‬ﻭ ‪ ،OR‬ﺃﻭ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻧﻮﻉ ﻭﺍﺣﺪ ﻣﻦ ﺍﻟﺒﻮﺍﺑﺎﺕ )‪ NAND‬ﺃﻭ ‪.(NOR‬‬ ‫ﺇﺟﺎﺑﺎﺕ ﺍﻟﺘﺪﺭﻳﺒﺎﺕ‬ ‫ﺗﺪﺭﻳﺐ ‪:1‬‬ ‫‪A‬‬ ‫‪B‬‬ ‫=‪C x‬‬ ‫‪A⋅ B ⋅ C‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪23‬‬ ‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬ :2 ‫ﺗﺪﺭﻳﺐ‬ A B C D x = A+ B + C + D 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 :3 ‫ﺗﺪﺭﻳﺐ‬ A B A B AB AB AB + AB A⊕ B 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 :4 ‫ﺗﺪﺭﻳﺐ‬ ‫ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ‬ -1 A B x C 24 PDF created with pdfFactory Pro trial version www.pdffactory.com ‫ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ‬ A B C B B + C A( B + C ) x = A( B + C ) 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 ‫ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ‬ A B x C ‫ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ‬ -2 A B y C ‫ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ‬ A B C A C AB A+ C y = AB( A + C ) 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 25 PDF created with pdfFactory Pro trial version www.pdffactory.com ‫ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ‬ A y B C ‫ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ‬ -3 A B z C D ‫ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ‬ A B C D B D AB C D AB + C D y = AB + C D 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 26 PDF created with pdfFactory Pro trial version www.pdffactory.com :5 ‫ﺗﺪﺭﻳﺐ‬ A= x+ y -1 B=0 -2 C = xy + x yz -3 ‫ﺍﳌﺼﺎﺩﺭ ﻭ ﺍﳌﺮﺍﺟﻊ‬ Fredrick J. Hill & Gerald R. Peterson, “Introduction to Switching Theory & Logical Design”, Third Edition, John Wiley & Sons, 1981 27 PDF created with pdfFactory Pro trial version www.pdffactory.com

Use Quizgecko on...
Browser
Browser