Boolean Algebra Basics PDF
Document Details
Uploaded by FascinatingFresno
كلية التربية النوعية
Tags
Summary
This document provides an introduction to Boolean algebra, covering fundamental concepts like logical variables, operations (NOT, AND, OR), truth tables, and logic circuits. It also discusses the simplification of logical expressions.
Full Transcript
ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ :ﺃﺳﺎﺳﻴﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ Basics of Boolean Algebra ﳏﺘﻮﻳﺎﺕ ﺍﻟﻮﺣﺪﺓ ﲤﻬﻴﺪ...
ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ :ﺃﺳﺎﺳﻴﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ Basics of Boolean Algebra ﳏﺘﻮﻳﺎﺕ ﺍﻟﻮﺣﺪﺓ ﲤﻬﻴﺪ ﺃﻫﺪﺍﻑ ﺍﻟﻮﺣﺪﺓ ﺍﳌﺘﻐﲑ ﺍﳌﻨﻄﻘﻲ )(Logical Variable .1 ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ )(Logical Operations .2 ﺗﻐﻴﲑ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ) (Fan-Inﻟﻠﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ .3 ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ )(Logical Expression .4 ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ )(Logic Circuit .5 ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ )(Logic Diagram .6 ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ )(Truth Table .7 ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ )(Boolean Algebra Theorems .8 ﺍﺳﺘﺨﺪﺍﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰱ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ .9 ﲤﻬﻴﺪ ﻣﺮﺣﺒﺎﹰ ﺑﻚ ﻋﺰﻳﺰﻱ ﺍﻟﺪﺍﺭﺱ ﰲ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ ﻣﻦ ﻣﻘﺮﺭ "ﺃﺳﺎﺳﻴﺎﺕ ﺍﻟﺘﺼﻤﻴﻢ ﺍﳌﻨﻄﻘﻲ".ﺗﺘﻨﺎﻭﻝ ﻫﺬﻩ ﺍﻟﻮﺣﺪﺓ ﺃﺳﺎﺳﻴﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ) ،(Boolean Algebraﻭ ﻫﻮ ﺟﱪ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ.ﻭ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻫﻮ ﻧﻮﻉ ﺍﳌﺘﻐﲑﺍﺕ ﺍﻟﺬﻱ ﻳﺘﻢ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻪ ﰲ ﺍﻟﺪﻭﺍﺋﺮ ﺍﳌﻨﻄﻘﻴﺔ ).(Logic Circuitsﺣﻴﺚ ﻧﺘﻌﺮﻑ ﻋﻠﻰ ﺑﻌﺾ ﺍﳌﻔﺎﻫﻴﻢ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﱵ ﳓﺘﺎﺝ ﺇﻟﻴﻬﺎ ﰲ ﺩﺭﺍﺳﺘﻨﺎ ﻟﻸﺟﺰﺍﺀ ﺍﻟﺘﺎﻟﻴﺔ ﻣﻦ ﺍﳌﻘﺮﺭ. ﺃﻫﺪﺍﻑ ﺍﻟﻮﺣﺪﺓ ﻋﺰﻳﺰﻱ ﺍﻟﺪﺍﺭﺱ ،ﺑﻌﺪ ﺩﺭﺍﺳﺔ ﻫﺬﻩ ﺍﻟﻮﺣﺪﺓ ﻳﻨﺒﻐﻲ ﺃﻥ ﺗﻜﻮﻥ ﻗﺎﺩﺭﺍﹰ ﻋﻠﻰ: ﻛﺘﺎﺑﺔ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻭ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻬﺎ. ﺇﻧﺸﺎﺀ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻭ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ. ﻓﻬﻢ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ. ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻨﻈﺮﻳﺎﺕ. 1 PDF created with pdfFactory Pro trial version www.pdffactory.com -1ﺍﳌﺘﻐﲑ ﺍﳌﻨﻄﻘﻲ )(Logical Variable ﺍﳌﺘﻐﲑ ﺍﳌﻨﻄﻘﻲ ﻫﻮ ﺃﻱ ﻣﺘﻐﲑ ﳝﻜﻦ ﺃﻥ ﻳﺄﺧﺬ ﻗﻴﻤﺔ ﻭﺍﺣﺪﺓ ﻓﻘﻂ ﻣﻦ ﻗﻴﻤﺘﲔ.ﻣﺜﻼﹰ: ﺧﻄﺄ ﺃﻭ ﺻﻮﺍﺏ False ﺃﻭ True OFF ﺃﻭ ON 0 Volts ﺃﻭ +5 Volts Low ﺃﻭ High ﺃﺳﻮﺩ ﺃﻭ ﺃﺑﻴﺾ Female ﺃﻭ Male ﻳﺮﻣﺰ ﻹﺣﺪﻯ ﺍﻟﻘﻴﻤﺘﲔ ﺑﺎﻟﺮﻣﺰ 1ﻭ ﻟﻠﻘﻴﻤﺔ ﺍﻷﺧﺮﻯ ﺑﺎﻟﺮﻣﺰ ... 0ﻓﺄﻱ ﻣﺘﻐﲑ ﻣﻨﻄﻘﻲ ﻻ ﳝﻜﻦ ﺃﻥ ﻳﺄﺧﺬ ﺇﻻ ﺇﺣﺪﻯ ﻫﺎﺗﲔ ﺍﻟﻘﻴﻤﺘﲔ ،ﻭ ﻻ ﻳﻮﺟﺪ ﺃﻱ ﺍﺣﺘﻤﺎﻝ ﺛﺎﻟﺚ.ﻓﺈﺫﺍ ﻛﺎﻥ xﻣﺘﻐﲑ ﻣﻨﻄﻘﻲ ﻓﺈﻧﻪ ﺇﻣﺎ ﺃﻥ ﻳﻜﻮﻥ x = 1ﺃﻭ . x = 0 -2ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ )(Logical Operations ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻫﻲ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﱵ ﳝﻜﻦ ﺇﺟﺮﺍﺅﻫﺎ ﻋﻠﻰ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ.ﺑﻌﺾ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺎﺕ ﻫﻲ ﻋﻤﻠﻴﺎﺕ ﺃﺳﺎﺳﻴﺔ ،ﻭ ﻫﻲ ﻋﻤﻠﻴﺎﺕ NOTﻭ ANDﻭ ،ORﻭ ﺑﻌﻀﻬﺎ ﻋﻤﻠﻴﺎﺕ ﻏﲑ ﺃﺳﺎﺳﻴﺔ ،ﻣﺜﻞ ﻋﻤﻠﻴﺎﺕ NANDﻭ NORﻭ ،XORﻭ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺎﺕ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻨﻬﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ. 1-2ﻋﻤﻠﻴﺔ NOT ﻳﻄﻠﻖ ﻋﻠﻴﻬﺎ ﺃﻳﻀﺎﹰ ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ) ،(Logical Inversionﻭﻓﻴﻬﺎ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻋﺒﺎﺭﺓ ﻋﻦ ﻣﻌﻜﻮﺱ ﺍﻟﺪﺧﻞ ،ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺎﹰ 1ﻓﺈﻥ ﺍﳋﺮﺝ ﻳﻜﻮﻥ ﻣﺴﺎﻭﻳﺎﹰ ،0ﻭ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺎﹰ 0ﻓﺈﻥ ﺍﳋﺮﺝ ﻳﻜﻮﻥ ﻣﺴﺎﻭﻳﺎﹰ .1ﻳﺮﻣﺰ ﻟﻠﻌﻤﻠﻴﺔ ﺑﻮﺿﺢ ﺧﻂ ﻓﻮﻕ ﺍﳌﺘﻐﲑ ،ﳑﺎ ﻳﻌﲏ ﺃﻧﻪ ﻣﻌﻜﻮﺱ. x = NOT A x= A 2 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻳﺴﻤﻰ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ) ،(Truth Tableﻭﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ ،NOTﻭ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻳﻮﺿﺢ ﲨﻴﻊ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺪﺧﻞ ﻭ ﺍﳋﺮﺝ ﺍﳌﻘﺎﺑﻞ ﻟﻜﻞ ﻣﻨﻬﺎ. A x 0 1 1 0 ﻻﺣﻆ ﺃﻥ ﺍﻟﺪﺧﻞ ﻫﻨﺎ ﻫﻮ Aﻭ ﺍﳋﺮﺝ ﻫﻮ . xﻭ ﺍﻟﺪﺧﻞ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻋﺒﺎﺭﺓ ﻋﻦ ﻣﺘﻐﲑ ﻭﺍﺣﺪ ﳝﻜﻦ ﺃﻥ ﻳﺄﺧﺬ ﻭﺍﺣﺪﺓ ﻣﻦ ﻗﻴﻤﺘﲔ ،ﺇﻣﺎ 0ﺃﻭ ،1ﺃﻱ ﺃﻥ ﻫﻨﺎﻙ ﺍﺣﺘﻤﺎﻟﲔ ﻓﻘﻂ ﻟﻠﺪﺧﻞ. ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ) (Logic Gateﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻲ ﺑﻮﺍﺑﺔ ،(NOT Gate) NOTﺍﻟﱵ ﻳﻄﻠﻖ ﻋﻠﻴﻬﺎ ﺃﻳﻀﺎﹰ ﺍﻟﻌﺎﻛﺲ ﺍﳌﻨﻄﻘﻲ ).(Logic Inverterﻭ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺃﻱ ﻣﻦ ﺍﻟﺸﻜﻠﲔ ﺍﻟﺘﺎﻟﻴﲔ ﰲ ﲤﺜﻴﻞ ﺑﻮﺍﺑﺔ :NOT A x A x 2-2ﻋﻤﻠﻴﺔ ﺍﻟﺘﻜﺎﻓﺆ )(Equivalence ﰲ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻣﺴﺎﻭﻳﺎﹰ ﻟﻠﺪﺧﻞ ،ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﻌﻼﻣﺔ ﺍﻟﺘﺴﺎﻭﻱ x= A ﻭﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﻤﻠﻴﺔ ﻫﻮ A x 0 0 1 1 ﺍﻟﺒﻮﺍﺑﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺗﺴﻤﻰ ﺍﻟﻌﺎﺯﻝ ) ،(Bufferﻭ ﻳﺘﻢ ﲤﺜﻴﻠﻬﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ: A x 3 PDF created with pdfFactory Pro trial version www.pdffactory.com 3-2ﻋﻤﻠﻴﺔ AND ﰲ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻣﺴﺎﻭﻳﺎﹰ 1ﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ﲨﻴﻊ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺔ ،1ﻭ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻳﻜﻮﻥ ﻣﺴﺎﻭﻳﺎﹰ 0ﺇﺫﺍ ﻛﺎﻥ ﺃﻱ ﻣﺘﻐﲑ ﻣﻦ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺎﹰ .0ﻭ ﻳﺮﻣﺰ ﳍﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺑﺄﻱ ﻣﻦ ﺍﻟﻄﺮﻕ ﺍﻟﺘﺎﻟﻴﺔ x = A AND B x = A⋅ B x = AB )ﺍﻟﻄﺮﻳﻘﺔ ﺍﻷﺧﲑﺓ ﻫﻲ ﺍﻷﻛﺜﺮ ﺍﺳﺘﺨﺪﺍﻣﺎﹰ( ﻓﻴﻤﺎ ﻳﻠﻲ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﺒﻮﺍﺑﺔ ANDﲟﺪﺧﻠﲔ A B x 0 0 0 0 1 0 1 0 0 1 1 1 ﻻﺣﻆ ﺃﻧﻪ ﻧﻈﺮﺍﹰ ﻟﻮﺟﻮﺩ ﻣﺘﻐﲑﻳﻦ ﻟﻠﺪﺧﻞ ﻫﻨﺎ ﳘﺎ Aﻭ ، Bﻓﺄﻧﻪ ﺗﻮﺟﺪ ﺃﺭﺑﻌﺔ ﺍﺣﺘﻤﺎﻻﺕ ﻟﻠﺪﺧﻞ.ﻭ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﻌﺎﻣﺔ ﰲ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻫﻲ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻥ ﻋﺪﺩ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻫﻮ Nﻓﺈﻥ ﻋﺪﺩ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺪﺧﻞ ،ﺃﻱ ﻋﺪﺩ ﺃﺳﻄﺮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ،ﻫﻮ . 2 N ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻲ ﺑﻮﺍﺑﺔ ،ANDﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ A x B ﺑﻮﺍﺑﺔ ANDﲟﺪﺧﻠﲔ )(2-Input AND Gate 4 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻗﺪ ﻳﻜﻮﻥ ﻟﺒﻮﺍﺑﺔ ANDﺃﻛﺜﺮ ﻣﻦ ﻣﺪﺧﻠﲔ.ﻣﺜﻼﹰ A B x C ﺑﻮﺍﺑﺔ ANDﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ )(3-Input AND Gate ﺗﺪﺭﻳﺐ :1 ﻗﻢ ﺑﺈﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ) (Truth Tableﻟﺒﻮﺍﺑﺔ ANDﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ. 4-2ﻋﻤﻠﻴﺔ OR ﰲ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻣﺴﺎﻭﻳﺎﹰ 1ﺇﺫﺍ ﻛﺎﻥ ﺃﻱ ﻣﻦ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺎﹰ ،1ﻭ ﻳﻜﻮﻥ ﺍﳋﺮﺝ ﻳﻜﻮﻥ ﻣﺴﺎﻭﻳﺎﹰ 0ﺇﺫﺍ ﻛﺎﻧﺖ ﲨﻴﻊ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺴﺎﻭﻳﺔ .0ﻭ ﻳﺮﻣﺰ ﳍﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺑﺄﻱ ﻣﻦ ﺍﻟﻄﺮﻳﻘﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ x = A OR B x = A+ B ﻓﻴﻤﺎ ﻳﻠﻲ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﺒﻮﺍﺑﺔ ORﲟﺪﺧﻠﲔ A B x 0 0 0 0 1 1 1 0 1 1 1 1 ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻲ ﺑﻮﺍﺑﺔ ،ORﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ A x B ﺑﻮﺍﺑﺔ ORﲟﺪﺧﻠﲔ )(2-Input OR Gate 5 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻗﺪ ﻳﻜﻮﻥ ﻟﺒﻮﺍﺑﺔ ORﺃﻛﺜﺮ ﻣﻦ ﻣﺪﺧﻠﲔ.ﻣﺜﻼﹰ A B x C D ﺑﻮﺍﺑﺔ ORﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ )(4-Input OR Gate ﺗﺪﺭﻳﺐ :2 ﻗﻢ ﺑﺈﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ) (Truth Tableﻟﺒﻮﺍﺑﺔ ORﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ. 5-2ﻋﻤﻠﻴﺔ NAND ﻋﻤﻠﻴﺔ NANDﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻦ ﻋﻤﻠﻴﺔ ANDﻣﺘﺒﻮﻋﺔ ﺑﻌﻤﻠﻴﺔ ،NOTﺃﻱ ﺃﺎ ﻋﻤﻠﻴﺔ ،NOT ANDﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺄﻱ ﻣﻦ ﺍﻟﻄﺮﻕ ﺍﻟﺘﺎﻟﻴﺔ x = A NAND B x = A AND B x = A⋅ B x = AB x = A↑ B ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ ،NANDﻭﻫﻮ ﻋﻜﺲ ﻋﻤﻠﻴﺔ ANDﻛﻤﺎ ﻫﻮ ﻣﺘﻮﻗﻊ A B x 0 0 1 0 1 1 1 0 1 1 1 0 ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻰ ﺑﻮﺍﺑﺔ ،NANDﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ A x B ﺑﻮﺍﺑﺔ NANDﲟﺪﺧﻠﲔ )(2-Input NAND Gate 6 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻛﻔﺎﻳﺔ ﻋﻤﻠﻴﺔ (Sufficiency of NAND) NAND ﺍﳌﻘﺼﻮﺩ ﺑﻜﻔﺎﻳﺔ ﻋﻤﻠﻴﺔ NANDﻫﻮ ﺃﻥ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ) (OR ،AND ،NOTﳝﻜﻦ ﺇﺟﺮﺍﺅﻫﺎ ﲨﻴﻌﹰﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ ،NANDﻭ ﺑﺎﻟﺘﺎﱄ ﳝﻜﻦ ﺑﻨﺎﺀ ﺃﻱ ﺩﺍﺋﺮﺓ ﻣﻨﻄﻘﻴﺔ ﺑﺎﻟﻜﺎﻣﻞ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ NANDﻓﻘﻂ. ﰲ ﺍﳉﺰﺀ ﺍﻟﺘﺎﱄ ﺳﻨﻮﺿﺢ ﻃﺮﻳﻘﺔ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ .NAND ﻋﻤﻠﻴﺔ :NOT ﳝﻜﻦ ﺃﻥ ﻧﻘﻮﻡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺔ NANDﻛﻌﺎﻛﺲ ﻣﻨﻄﻘﻲ ﺑﺮﺑﻂ ﲨﻴﻊ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ﳍﺎ ﰲ ﻃﺮﻑ ﻭﺍﺣﺪ A A ﻭ ﳝﻜﻦ ﺃﻥ ﻧﺮﻣﺰ ﻟﺒﻮﺍﺑﺔ NANDﺍﳌﺴﺘﺨﺪﻣﺔ ﻛﻌﺎﻛﺲ ﻣﻨﻄﻘﻲ ﺑﺒﻮﺍﺑﺔ NANDﺑﻄﺮﻑ ﺩﺧﻞ ﻭﺍﺣﺪ ،ﺃﻱ A A ﻋﻤﻠﻴﺔ :AND ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ANDﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ NANDﻣﺘﺒﻮﻋﺔ ﺑﻌﻤﻠﻴﺔ ﻋﻜﺲ ﻣﻨﻄﻘﻲ A A⋅ B B A⋅ B ﻋﻤﻠﻴﺔ :OR ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ORﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ NANDﻣﺴﺒﻮﻗﺔ ﺑﻌﻤﻠﻴﺔ ﻋﻜﺲ ﻣﻨﻄﻘﻲ ﻟﻜﻞ ﻃﺮﻑ ﻣﻦ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ A A A⋅ B = A + B B B 7 PDF created with pdfFactory Pro trial version www.pdffactory.com A⋅ B = A + B ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﺎﱄ ﻳﺜﺒﺖ ﺃﻥ A B A B A⋅ B A⋅ B A+ B 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 6-2ﻋﻤﻠﻴﺔ NOR ﻋﻤﻠﻴﺔ NORﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻦ ﻋﻤﻠﻴﺔ ORﻣﺘﺒﻮﻋﺔ ﺑﻌﻤﻠﻴﺔ ،NOTﺃﻱ ﺃﺎ ﻋﻤﻠﻴﺔ ،NOT ORﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺄﻱ ﻣﻦ ﺍﻟﻄﺮﻕ ﺍﻟﺘﺎﻟﻴﺔ x = A NOR B x = A OR B x = A+ B x = A↓ B ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ ،NORﻭ ﻫﻮ ﻋﻜﺲ ﻋﻤﻠﻴﺔ ORﻛﻤﺎ ﻫﻮ ﻣﺘﻮﻗﻊ A B x 0 0 1 0 1 0 1 0 0 1 1 0 ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻰ ﺑﻮﺍﺑﺔ ،NORﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ A x B ﺑﻮﺍﺑﺔ NORﲟﺪﺧﻠﲔ )(2-Input NOR Gate 8 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻛﻔﺎﻳﺔ ﻋﻤﻠﻴﺔ (Sufficiency of NOR) NOR ﺍﳌﻘﺼﻮﺩ ﺑﻜﻔﺎﻳﺔ ﻋﻤﻠﻴﺔ NORﻫﻮ ﺃﻥ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ) (OR ،AND ،NOTﳝﻜﻦ ﺇﺟﺮﺍﺅﻫﺎ ﲨﻴﻌﺎﹰ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ ،NORﻭ ﺑﺎﻟﺘﺎﱄ ﳝﻜﻦ ﺑﻨﺎﺀ ﺃﻱ ﺩﺍﺋﺮﺓ ﻣﻨﻄﻘﻴﺔ ﺑﺎﻟﻜﺎﻣﻞ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ NORﻓﻘﻂ. ﰲ ﺍﳉﺰﺀ ﺍﻟﺘﺎﱄ ﺳﻨﻮﺿﺢ ﻃﺮﻳﻘﺔ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺎﺕ .NOR ﻋﻤﻠﻴﺔ :NOT ﳝﻜﻦ ﺃﻥ ﻧﻘﻮﻡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻮﺍﺑﺔ NORﻛﻌﺎﻛﺲ ﻣﻨﻄﻘﻲ ﺑﺮﺑﻂ ﲨﻴﻊ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ﳍﺎ ﰲ ﻃﺮﻑ ﻭﺍﺣﺪ A A ﻭ ﳝﻜﻦ ﺃﻥ ﻧﺮﻣﺰ ﻟﺒﻮﺍﺑﺔ NORﺍﳌﺴﺘﺨﺪﻣﺔ ﻛﻌﺎﻛﺲ ﻣﻨﻄﻘﻲ ﺑﺒﻮﺍﺑﺔ NORﺑﻄﺮﻑ ﺩﺧﻞ ﻭﺍﺣﺪ ،ﺃﻱ A A ﻋﻤﻠﻴﺔ :OR ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ORﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ NORﻣﺘﺒﻮﻋﺔ ﺑﻌﻤﻠﻴﺔ ﻋﻜﺲ ﻣﻨﻄﻘﻲ A A+ B B A+ B ﻋﻤﻠﻴﺔ :AND ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ANDﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ NORﻣﺴﺒﻮﻗﺔ ﺑﻌﻤﻠﻴﺔ ﻋﻜﺲ ﻣﻨﻄﻘﻲ ﻟﻜﻞ ﻃﺮﻑ ﻣﻦ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ A A A + B = A⋅ B B B 9 PDF created with pdfFactory Pro trial version www.pdffactory.com A + B = A⋅ B ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﺎﱄ ﻳﺜﺒﺖ ﺃﻥ A B A B A+ B A+ B A⋅ B 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 ﻭ ﺗﺘﻮﻓﺮ ﺑﻮﺍﺑﺎﺕ NANDﻭ ﺑﻮﺍﺑﺎﺕ NORﺑﺄﻛﺜﺮ ﻣﻦ ﻣﺪﺧﻠﲔ ،ﻣﺜﻠﻬﺎ ﰲ ﺫﻟﻚ ﻣﺜﻞ ﺑﻮﺍﺑﺎﺕ ANDﻭ ﺑﻮﺍﺑﺎﺕ .OR 7-2ﻋﻤﻠﻴﺔ XOR XORﻫﻮ ﺍﺧﺘﺼﺎﺭ ﻟﻌﺒﺎﺭﺓ ،Exclusive ORﻭ ﺗﺴﻤﻰ ﻋﻤﻠﻴﺔ ﺍﻻﺧﺘﻼﻑ ،ﺣﻴﺚ ﺃﻥ ﺍﳋﺮﺝ ﻳﺴﺎﻭﻱ 1ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺪﺧﻼﻥ ﳐﺘﻠﻔﲔ ،ﻭ ﻳﺴﺎﻭﻱ 0ﺇﺫﺍ ﻛﺎﻧﺎ ﻣﺘﺸﺎﲔ.ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺈﺣﺪﻯ ﺍﻟﻄﺮﻳﻘﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ x = A XOR B x = A⊕ B ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ XOR A B x 0 0 0 0 1 1 1 0 1 1 1 0 ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻰ ﺑﻮﺍﺑﺔ ،XORﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ A x B ﺑﻮﺍﺑﺔ XORﲟﺪﺧﻠﲔ )(2-Input XOR Gate ﻭ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﻋﻤﻠﻴﺔ XORﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﻛﺎﻟﺘﺎﱄ A ⊕ B = AB + AB 10 PDF created with pdfFactory Pro trial version www.pdffactory.com A ⊕ B = AB + AB ﻭ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﺎﱄ ﻳﺜﺒﺖ ﺃﻥ A B A B AB AB AB + AB A⊕ B 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 8-2ﻋﻤﻠﻴﺔ XNOR ﻫﻲ ﻣﻌﻜﻮﺱ ﻋﻤﻠﻴﺔ ،XORﻭ ﺗﺴﻤﻰ ﻋﻤﻠﻴﺔ ﺍﻟﺘﺴﺎﻭﻱ ،ﺣﻴﺚ ﺃﻥ ﺍﳋﺮﺝ ﻳﺴﺎﻭﻱ 1ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺪﺧﻼﻥ ﻣﺘﺴﺎﻭﻳﲔ ،ﻭ ﻳﺴﺎﻭﻱ 0ﺇﺫﺍ ﻛﺎﻧﺎ ﳐﺘﻠﻔﲔ.ﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺈﺣﺪﻯ ﺍﻟﻄﺮﻳﻘﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ x = A XNOR B x = A⊕ B ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻫﻮ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻌﻤﻠﻴﺔ XNOR A B x 0 0 1 0 1 0 1 0 0 1 1 1 ﺍﻟﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻫﻰ ﺑﻮﺍﺑﺔ ،XNORﻭ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ A x B ﺑﻮﺍﺑﺔ XNORﲟﺪﺧﻠﲔ )(2-Input XNOR Gate ﻭ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﻋﻤﻠﻴﺔ XNORﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﻛﺎﻟﺘﺎﱄ A ⊕ B = AB + AB ﺗﺪﺭﻳﺐ :3 A ⊕ B = AB + AB ﻗﻢ ﺑﺈﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺬﻱ ﻳﺜﺒﺖ ﺃﻥ ﻭ ﲞﻼﻑ ﺑﻮﺍﺑﺎﺕ ANDﻭ ORﻭ NANDﻭ ،NORﻻ ﺗﺘﻮﻓﺮ ﺑﻮﺍﺑﺎﺕ XORﺃﻭ ﺑﻮﺍﺑﺎﺕ XNORﺑﺄﻛﺜﺮ ﻣﻦ ﻣﺪﺧﻠﲔ. 11 PDF created with pdfFactory Pro trial version www.pdffactory.com -3ﺗﻐﻴﲑ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ) (Fan-Inﻟﻠﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﰲ ﻛﺜﲑ ﻣﻦ ﺍﻷﺣﻴﺎﻥ ﻗﺪ ﺗﺘﻮﻓﺮ ﻟﻨﺎ ﺑﻮﺍﺑﺎﺕ ﻣﻨﻄﻘﻴﺔ ﺑﻌﺪﺩ ﻣﻦ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ) (Fan-Inﺃﻛﱪ ﺃﻭ ﺃﻗﻞ ﳑﺎ ﳓﺘﺎﺝ ﺇﻟﻴﻪ. ﺳﻨﻮﺿﺢ ﰲ ﻫﺬﺍ ﺍﳉﺰﺀ ﺍﻷﺳﺎﻟﻴﺐ ﺍﳌﺨﺘﻠﻔﺔ ﺍﻟﱵ ﳝﻜﻨﻨﺎ ﺇﺗﺒﺎﻋﻬﺎ ﻟﺘﻐﻴﲑ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ﻟﻠﺒﻮﺍﺑﺔ ﺍﳌﻨﻄﻘﻴﺔ ﺑﺎﻟﺰﻳﺎﺩﺓ ﺃﻭ ﺑﺎﻟﻨﻘﺼﺎﻥ. ﺗﻘﻠﻴﻞ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ: ﻳﺘﻢ ﺫﻟﻚ ﺑﺮﺑﻂ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪ ﺑﺄﺣﺪ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ ﺍﳌﺴﺘﺨﺪﻣﺔ ،ﻣﺜﻼﹰ A B A⋅B A B A+B A B C A⋅B⋅C A A ﰲ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﺔ ANDﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ ﻛﺒﻮﺍﺑﺔ ANDﲟﺪﺧﻠﲔ ،ﻭ ﺫﻟﻚ ﺑﺎﻟﺘﺨﻠﺺ ﻣﻦ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺜﺎﻟﺚ ﻏﲑ ﺍﳌﺮﻏﻮﺏ ﻓﻴﻪ ﺑﺮﺑﻄﻪ ﺑﺄﺣﺪ ﻃﺮﰲ ﺍﻟﺪﺧﻞ ﺍﳌﺴﺘﺨﺪﻣﲔ.ﻭ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﺔ ORﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ ﻛﺒﻮﺍﺑﺔ ORﲟﺪﺧﻠﲔ. ﻛﻤﺎ ﳝﻜﻦ ﺃﻥ ﻳﺘﻢ ﺍﻟﺘﺨﻠﺺ ﻣﻦ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪ ﺑﻮﺿﻊ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻄﻘﻴﺔ 1ﰲ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪ ﰲ ﺑﻮﺍﺑﺎﺕ ANDﻭ ،NANDﻭ ﻭﺿﻊ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻄﻘﻴﺔ 0ﰲ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪ ﰲ ﺑﻮﺍﺑﺎﺕ ORﻭ ،NORﻣﺜﻼﹰ A B A⋅B 1 A B 0 A+B 0 A B C A ⋅B⋅C 1 A 0 0 A 0 12 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻫﻨﺎ ﺃﻳﻀﺎﹰ ﰲ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﺔ ANDﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ ﻛﺒﻮﺍﺑﺔ ANDﲟﺪﺧﻠﲔ ،ﻭ ﺫﻟﻚ ﺑﺎﻟﺘﺨﻠﺺ ﻣﻦ ﻃﺮﻑ ﺍﻟﺪﺧﻞ ﺍﻟﺜﺎﻟﺚ ﻏﲑ ﺍﳌﺮﻏﻮﺏ ﻓﻴﻪ ﺑﻮﺿﻊ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻄﻘﻴﺔ 1ﻓﻴﻪ.ﻭ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﺔ ORﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ ﻛﺒﻮﺍﺑﺔ ORﲟﺪﺧﻠﲔ ،ﻭ ﺫﻟﻚ ﺑﻮﺿﻊ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻨﻄﻘﻴﺔ 0ﰲ ﻃﺮﰲ ﺍﻟﺪﺧﻞ ﺍﻟﺰﺍﺋﺪﻳﻦ. ﺯﻳﺎﺩﺓ ﻋﺪﺩ ﺃﻃﺮﺍﻑ ﺍﻟﺪﺧﻞ: ﻳﺘﻢ ﺫﻟﻚ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺃﻛﺜﺮ ﻣﻦ ﺑﻮﺍﺑﺔ ﻭﺍﺣﺪﺓ ﻭ ﺍﺳﺘﺨﺪﺍﻡ ﺧﺮﺝ ﺍﻟﺒﻮﺍﺑﺔ ﺍﻷﻭﱃ ﻛﺪﺧﻞ ﻟﻠﺒﻮﺍﺑﺔ ﺍﻟﺜﺎﻧﻴﺔ ،ﻣﺜﻼﹸ A B A⋅ B ⋅ C C A B A+ B + C + D C D A B A⊕ B ⊕ C ⊕ D C D ﰲ ﺍﳊﺎﻟﺔ ﺍﻷﻭﱃ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺑﻮﺍﺑﱵ ،ANDﻛﻞ ﻣﻨﻬﻤﺎ ﲟﺪﺧﻠﲔ ،ﻛﻮﺍﺑﺔ ANDﺑﺜﻼﺛﺔ ﻣﺪﺍﺧﻞ.ﻭ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺛﻼﺛﺔ ﺑﻮﺍﺑﺎﺕ ،ORﻛﻞ ﺑﻮﺍﺑﺔ ﻣﻨﻬﺎ ﲟﺪﺧﻠﲔ ،ﻛﺒﻮﺍﺑﺔ ORﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ.ﻭ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﺜﺎﻟﺜﺔ ﺍﺳﺘﺨﺪﻣﻨﺎ ﺛﻼﺛﺔ ﺑﻮﺍﺑﺎﺕ ،XORﻛﻞ ﺑﻮﺍﺑﺔ ﻣﻨﻬﺎ ﲟﺪﺧﻠﲔ ،ﻛﺒﻮﺍﺑﺔ XORﺑﺄﺭﺑﻌﺔ ﻣﺪﺍﺧﻞ. -4ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ )(Logical Expression ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﳎﻤﻮﻋﺔ ﻣﻦ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﺮﺗﺒﻄﺔ ﻣﻊ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﺑﻌﻤﻠﻴﺎﺕ ﻣﻨﻄﻘﻴﺔ.ﻣﺜﻞ x = A+ B ⋅ C ﻳﺘﻜﻮﻥ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻫﻨﺎ ﻣﻦ ﺃﺭﺑﻌﺔ ﻣﺘﻐﲑﺍﺕ ﻫﻲ Aﻭ Bﻭ Cﻭ ، xﺗﺮﺑﻂ ﺑﻴﻨﻬﺎ ﻋﻤﻠﻴﺎﺕ NOTﻭ ANDﻭ OR ﻭ ﻋﻤﻠﻴﺔ ﺍﻟﺘﻜﺎﻓﺆ )=(. 13 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺃﺳﺒﻘﻴﺔ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ):(Operation Precedence ﻳﺘﻢ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﺑﺎﻟﺘﺮﺗﻴﺐ ﺍﻟﺘﺎﱄ: -1ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ NOT -2ﻋﻤﻠﻴﺔ AND -3ﻋﻤﻠﻴﺔ OR ﻓﻔﻲ ﺍﻟﺘﻌﺒﲑ ﺃﻋﻼﻩ ،ﻣﺜﻼﹰ ،ﻳﺘﻢ ﺃﻭﻻﹰ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﻟﻠﻤﺘﻐﲑﻳﻦ Bﻭ Cﺍﻭﻻﹰ ،ﰒ ﻋﻤﻠﻴﺔ ANDﺑﲔ Bﻭ ، Cﻭ ﺃﺧﲑﺍﹰ ﻋﻤﻠﻴﺔ .OR ﰲ ﺣﺎﻟﺔ ﻇﻬﻮﺭ ﻋﺪﺓ ﻋﻤﻠﻴﺎﺕ ﻣﺘﺴﺎﻭﻳﺔ ﻣﻦ ﺣﻴﺚ ﺍﻷﺳﺒﻘﻴﺔ ﰲ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻳﺘﻢ ﺇﺟﺮﺍﺅﻫﺎ ﺑﺎﻟﺘﺮﺗﻴﺐ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﻟﻠﻴﻤﲔ. ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻷﻗﻮﺍﺱ ﻟﻠﺘﺤﻜﻢ ﰲ ﺗﺮﺗﻴﺐ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ،ﺣﻴﺚ ﺃﻥ ﺍﻷﻗﻮﺍﺱ ﳍﺎ ﺍﻷﺳﺒﻘﻴﺔ ﺍﻟﻌﻠﻴﺎ ،ﺃﻱ ﺃﻥ ﻣﺎ ﺑﲔ ﺍﻷﻗﻮﺍﺱ ﻳﺘﻢ ﺣﺴﺎﺑﻪ ﺩﺍﺋﻤﺎﹰ ﺃﻭﻻﹰ.ﻣﺜﻼﹰ ﺇﺫﺍ ﻗﻤﻨﺎ ﰲ ﺍﻟﺘﻌﺒﲑ ﺍﻟﺴﺎﺑﻖ ﺑﺈﺿﺎﻓﺔ ﻗﻮﺳﲔ ﻛﺎﻟﺘﺎﱄ x = ( A + B) ⋅ C ﻓﺈﻧﻪ ﻳﺘﻢ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ORﺍﳌﻮﺟﻮﺩﺓ ﺑﲔ ﺍﻟﻘﻮﺳﲔ ﻗﺒﻞ ﻋﻤﻠﻴﺔ ،ANDﻭ ﺫﻟﻚ ﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﺃﻥ ﻋﻤﻠﻴﺔ ANDﳍﺎ ﺃﺳﺒﻘﻴﺔ ﺃﻋﻠﻰ ﻣﻦ ﻋﻤﻠﻴﺔ .ORﻭ ﺍﻟﺴﺒﺐ ﰲ ﺫﻟﻚ ﻫﻮ ﻭﺟﻮﺩ ﻋﻤﻠﻴﺔ ORﻣﺎ ﺑﲔ ﺍﻟﻘﻮﺳﲔ.ﺣﻴﺚ ﻳﺘﻢ ﺃﻭﻻﹰ ﺣﺴﺎﺏ ﻣﺎ ﺑﲔ ﺍﻟﻘﻮﺳﲔ ،ﻓﻴﺘﻢ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﻟﻠﻤﺘﻐﲑ ، Bﰒ ﻋﻤﻠﻴﺔ ORﺑﲔ Aﻭ ، Bﻭ ﺑﻌﺪ ﺍﻻﻧﺘﻬﺎﺀ ﻣﻦ ﺍﻷﻗﻮﺍﺱ ﻳﺘﻢ ﺇﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺧﺎﺭﺟﻬﺎ ،ﻓﻴﺘﻢ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﻟﻠﻤﺘﻐﲑ ، Cﰒ ﻋﻤﻠﻴﺔ ANDﳌﺎ ﺑﲔ ﺍﻟﻘﻮﺳﲔ ﻭ . C -5ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ )(Logic Circuit ﳝﻜﻦ ﲤﺜﻴﻞ ﺃﻱ ﺗﻌﺒﲑ ﻣﻨﻄﻘﻲ ﺑﺪﺍﺋﺮﺓ ﻣﻨﻄﻘﻴﺔ ،ﺣﻴﺚ ﻧﻨﻈﺮ ﻟﻠﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﻮﺟﻮﺩﺓ ﺑﺎﻟﺘﻌﺒﲑ ﻭ ﻧﻘﻮﻡ ﺑﺮﺑﻂ ﺍﻟﺒﻮﺍﺑﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﺗﻠﻚ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺑﺎﻷﺳﻠﻮﺏ ﺍﳌﻨﺎﺳﺐ.ﻣﺜﻼ ً،ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ x = A+ B ⋅ C ﳝﻜﻦ ﲤﺜﻴﻠﻪ ﺑﺎﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ A x B C 14 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻭ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ x = ( A + B) ⋅ C ﳝﻜﻦ ﲤﺜﻴﻠﻪ ﺑﺎﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ A B x C -6ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ )(Logic Diagram ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﳐﻄﻂ ﻣﺒﺴﻂ ﻳﻮﺿﺢ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻟﻠﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻭ ﻣﺴﻤﻴﺎﺎ ﻭ ﻣﺘﻐﲑﺍﺕ ﺍﳋﺮﺝ ﻭﻣﺴﻤﻴﺎﺎ ،ﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺍﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﻭﻇﻴﻔﺘﻬﺎ. ﻣﺜﻼﹰ ،ﻛﻼ ﺍﻟﺪﺍﺋﺮﺗﲔ ﺍﳌﻨﻄﻘﻴﺘﲔ ﺃﻋﻼﻩ ﳝﻜﻦ ﲤﺜﻴﻠﻬﻤﺎ ﺑﺎﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ ﺍﻟﺘﺎﱄ: A B ﺍﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ x C ﻭ ﻧﻘﻮﻡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﳌﺨﻄﻄﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻛﺒﺪﻳﻞ ﻟﻠﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﻔﺼﻠﺔ ﻛﻨﻮﻉ ﻣﻦ ﺍﻟﺘﺒﺴﻴﻂ ،ﻭ ﺫﻟﻚ ﻋﻨﺪﻣﺎ ﻻ ﻧﻜﻮﻥ ﲝﺎﺟﺔ ﻟﻠﺘﻔﺎﺻﻴﻞ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﻠﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ.ﻛﻤﺎ ﰲ ﺍﻟﺪﻭﺍﺋﺮ ﺍﳌﻌﻘﺪﺓ ﺍﳌﻜﻮﻧﺔ ﻣﻦ ﻋﺪﺩ ﻣﻦ ﺍﻟﺪﻭﺍﺋﺮ ﺍﻟﺼﻐﲑﺓ ﺍﳌﺮﺑﻮﻃﺔ ﻣﻊ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ،ﺣﻴﺚ ﻧﻘﻮﻡ ﺑﺘﻤﺜﻴﻞ ﺗﻠﻚ ﺍﻟﺪﻭﺍﺋﺮ ﺍﻟﺼﻐﲑﺓ ﲟﺨﻄﻄﺎﺎ ﺍﳌﻨﻄﻘﻴﺔ. -7ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ )(Truth Table ﻋﺒﺎﺭﺓ ﻋﻦ ﺟﺪﻭﻝ ﻳﻮﺿﺢ ﲨﻴﻊ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺪﺧﻞ ﻟﻠﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻭ ﻗﻴﻢ ﺍﳋﺮﺝ ﺍﳌﻘﺎﺑﻞ ﻟﻜﻞ ﻣﻨﻬﺎ.ﻣﺜﻼﹰ ،ﻹﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺻﻮﺍﺏ ﻟﻠﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ x = A+ B ⋅ C ﻧﺒﺪﺃ ﺑﺘﺤﺪﻳﺪ ﻋﺪﺩ ﺍﻟﺼﻔﻮﻑ ﻭ ﻋﺪﺩ ﺍﻷﻋﻤﺪﺓ ﰲ ﺍﳉﺪﻭﻝ.ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻫﻲ Aﻭ Bﻭ ، Cﻭ ﻋﺪﺩﻫﺎ ،3ﺃﻱ ﻋﻦ ﻋﺪﺩ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺪﺧﻞ ﻫﻮ ، 2 3 = 8ﻭ ﻫﻮ ﻋﺪﺩ ﺃﺳﻄﺮ )ﺻﻔﻮﻑ( ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ.ﺃﻣﺎ ﻋﻦ ﺍﻷﻋﻤﺪﺓ ﻓﻨﺤﺘﺎﺝ ﻋﻤﻮﺩﺍﹰ 15 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻟﻜﻞ ﻣﺘﻐﲑ ﻣﻦ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻭ ﻋﻤﻮﺩﺍﹰ ﻟﻜﻞ ﻣﺘﻐﲑ ﻣﻦ ﻣﺘﻐﲑﺍﺕ ﺍﳋﺮﺝ.ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻋﺪﺩﻫﺎ ،3ﻛﻤﺎ ﺫﻛﺮﻧﺎ ﻣﻦ ﻗﺒﻞ ،ﻭ ﻫﻨﺎﻙ ﻣﺘﻐﲑ ﺧﺮﺝ ﻭﺍﺣﺪ ﻫﻮ ، xﺃﻱ ﳓﺘﺎﺝ ﺇﱃ ﺃﺭﺑﻌﺔ ﺃﻋﻤﺪﺓ ﳌﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻭ ﻣﺘﻐﲑﺍﺕ ﺍﳋﺮﺝ.ﻛﻤﺎ ﳓﺘﺎﺝ ﺇﱃ ﺃﻋﻤﺪﺓ ﺇﺿﺎﻓﻴﺔ ﻹﺟﺮﺍﺀ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ،ﺣﻴﺚ ﳓﺘﺎﺝ ﻋﻤﻮﺩﺍﹰ ﻹﳚﺎﺩ ، Bﻭ ﻋﻤﻮﺩﺍﹰ ﺁﺧﺮ ﻹﳚﺎﺩ ، Cﻛﻤﺎ ﳓﺘﺎﺝ ﻋﻤﻮﺩﺍﹰ ﻹﳚﺎﺩ ، B ⋅ Cﻭ ﺃﺧﲑﺍﹰ ﳓﺘﺎﺝ ﻋﻤﻮﺩﺍﹰ ﻹﳚﺎﺩ ، A + B ⋅ Cﻭ ﻫﻮ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻧﻔﺲ ﻋﻤﻮﺩ ﺍﳋﺮﺝ . x A B C B = C B⋅C x A+ B ⋅ C 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 ﻭ ﺑﺎﳌﺜﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ x = ( A + B) ⋅ C ﻫﻮ A B C B C A+ B x = ( A + B) ⋅ C 0 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 ﻣﺜﺎﻝ: ﺍﺭﺳﻢ ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ ،ﻭ ﺃﻛﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ،ﰒ ﺍﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻟﻠﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ y = ABC + AB ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ A B ﺍﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ y C 16 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ A B C A B ABC AB ABC + AB x = ABC + AB 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ A B x = ABC + AB C ﺗﺪﺭﻳﺐ :4 ﺍﺭﺳﻢ ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ ،ﻭ ﺃﻛﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ،ﰒ ﺍﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻟﻜﻞ ﺗﻌﺒﲑ ﻣﻦ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ: x = A( B + C ) -1 y = AB( A + C ) -2 z = AB + C D -3 -8ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ )(Boolean Algebra Theorems ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﻫﻮ ﺟﱪ ﺍﳌﺘﻐﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ،ﻭ ﺍﳍﺪﻑ ﺍﻷﺳﺎﺳﻲ ﻣﻦ ﺩﺭﺍﺳﺘﻨﺎ ﻟﻨﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﻫﻮ ﺍﺳﺘﺨﺪﺍﻡ ﺗﻠﻚ ﺍﻟﻨﻈﺮﻳﺎﺕ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ. ﻟﻜﻞ ﻧﻈﺮﻳﺔ ) (Theoremﻣﻦ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﻧﻈﺮﻳﺔ ﻣﻘﺎﺑﻠﺔ ﺃﻭ ﻣﻨﺎﻇﺮﺓ ﳍﺎ ).(Dual Theoremﻭ ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ ﺍﻟﻨﻈﺮﻳﺔ ﺍﳌﻘﺎﺑﻠﺔ ﻷﻱ ﻧﻈﺮﻳﺔ ﻧﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﺍﻟﺘﺒﺪﻳﻼﺕ ﺍﻟﺘﺎﻟﻴﺔ ﰲ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻷﺻﻠﻴﺔ: ﺍﺳﺘﺒﺪﺍﻝ ﺃﻱ 0ﺑـ 1 ﺍﺳﺘﺒﺪﺍﻝ ﺃﻱ 1ﺑـ 0 ﺍﺳﺘﺒﺪﺍﻝ ﺃﻱ ﻋﻤﻠﻴﺔ ANDﺑﻌﻤﻠﻴﺔ OR ﺍﺳﺘﺒﺪﺍﻝ ﺃﻱ ﻋﻤﻠﻴﺔ ORﺑﻌﻤﻠﻴﺔ AND 17 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻭﻋﻤﻮﻣﺎﹰ ﳝﻜﻦ ﺇﺛﺒﺎﺕ ﺻﺤﺔ ﺃﻱ ﻧﻈﺮﻳﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ.ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ﻳﻮﺿﺢ ﺍﻟﻨﻈﺮﻳﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﳌﺴﺘﺨﺪﻣﺔ ﰲ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﳌﻘﺎﺑﻠﺔ ﺍﻟﻨﻈﺮﻳﺔ ﺍﺳﻢ ﺍﻟﻨﻈﺮﻳﺔ A= A A= A ﻋﻜﺲ ﺍﻟﻌﻜﺲ A⋅ 0 = 0 A+ 1 = 1 ﺍﻟﻌﻤﻠﻴﺎﺕ ﻣﻊ 1ﻭ 0 A⋅ 1 = A A+ 0 = A A⋅ A = A A+ A = A ﺍﳌﺘﻐﲑ ﻣﻊ ﻧﻔﺴﻪ A⋅ A = 0 A+ A = 1 ﺍﳌﺘﻐﲑ ﻣﻊ ﻋﻜﺴﻪ A⋅ B = B ⋅ A A+ B = B + A ﺍﻟﻨﻈﺮﻳﺔ ﺍﻹﺑﺪﺍﻟﻴﺔ ) ( A ⋅ B) ⋅ C = A ⋅ ( B ⋅ C ) ( A + B) + C = A + ( B + C ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﺠﻤﻴﻌﻴﺔ ) A + B ⋅ C = ( A + B) ⋅ ( A + C A ⋅ (B + C) = A⋅ B + A⋅ C ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻮﺯﻳﻌﻴﺔ A ⋅ ( A + B) = A A+ A⋅ B = A ﺍﻻﻣﺘﺼﺎﺹ ﺃﻭ ﺍﻻﺑﺘﻼﻉ A ⋅ ( A + B) = A ⋅ B A+ A⋅ B = A+ B A ⋅ B = A+ B A+ B = A⋅ B ﺩﻱ ﻣﻮﺭﻏﺎﻥ )(De Morgan -9ﺍﺳﺘﺨﺪﺍﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰱ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳍﺪﻑ ﻣﻦ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻫﻮ ﺗﺒﺴﻴﻂ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ،ﺃﻱ ﺗﻘﻠﻴﻞ ﻋﺪﺩ ﺍﻟﺒﻮﺍﺑﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﺪﺍﺧﻠﺔ ﰱ ﺑﻨﺎﺋﻬﺎ ،ﻭ ﺫﻟﻚ ﻟﺘﻘﻠﻴﻞ ﺗﻜﻠﻔﺘﻬﺎ.ﻛﻤﺎ ﻳﻌﺘﱪ ﺗﻘﻠﻴﻞ ﺗﻔﺮﻉ ﺍﻟﺪﺧﻞ ﻟﻠﺒﻮﺍﺑﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﺴﺘﺨﺪﻣﺔ ﰱ ﺑﻨﺎﺀ ﺍﻟﺪﺍﺋﺮﺓ ﻧﻮﻋﺎﹰ ﻣﻦ ﺍﻟﺘﺒﺴﻴﻂ ﺃﻳﻀﺎﹰ. ﺳﻨﻌﺮﺽ ﰲ ﻫﺬﺍ ﺍﳉﺰﺀ ﻋﺪﺩﺍﹰ ﻣﻦ ﺍﻷﻣﺜﻠﺔ ﻟﺘﻮﺿﻴﺢ ﻃﺮﻳﻘﺔ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻨﻈﺮﻳﺎﺕ.ﻭ ﻧﺬﻛﺮ ﺍﻟﻘﺎﺭﺉ ﺑﻀﺮﻭﺭﺓ ﺍﻟﺘﺪﺭﺏ ﻋﻠﻰ ﻋﻤﻠﻴﺔ ﺍﻟﺘﺒﺴﻴﻂ ﺑﻔﻬﻢ ﺍﻷﻣﺜﻠﺔ ﺟﻴﺪﺍﹰ ﻭ ﺇﻋﺎﺩﺓ ﺣﻠﻬﺎ ﻭ ﺣﻞ ﺍﻟﺘﺪﺭﻳﺒﺎﺕ. ﻣﺜﺎﻝ: ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰱ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ y = ABC + AB ﰒ ﺍﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ ﻭ ﺑﻌﺪﻩ. ﺍﳊﻞ: y = ABC + AB )y = ( A+ B + C ) ⋅ ( A+ B ﺩﻱ ﻣﻮﺭﻏﺎﻥ )y = ( A + B + C ) ⋅ ( A + B ﻋﻜﺲ ﺍﻟﻌﻜﺲ y = A+ ( B + C ) ⋅ B ﺍﻟﺘﻮﺯﻳﻌﻴﺔ y = A+ C B ﺍﻻﺑﺘﻼﻉ 18 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺣﻞ ﺁﺧﺮ: y = ABC + AB )y = A ⋅ ( BC + B ﺍﻟﺘﻮﺯﻳﻌﻴﺔ )y = A ⋅ (C + B ﺍﻻﺑﺘﻼﻉ y = A+ C B ﺩﻱ ﻣﻮﺭﻏﺎﻥ y = A+ C B ﻋﻜﺲ ﺍﻟﻌﻜﺲ ﺍﻟﺪﺍﺋﺮﺓ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ: A B y C ﺍﻟﺪﺍﺋﺮﺓ ﺑﻌﺪ ﺍﻟﺘﺒﺴﻴﻂ: A y B C ﻻﺣﻆ ﺃﻥ ﺍﻟﺪﺍﺋﺮﺓ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ ﻣﻜﻮﻧﺔ ﻣﻦ 6ﺑﻮﺍﺑﺎﺕ ،ﻭ ﺑﻌﺪ ﺍﻟﺘﺒﺴﻴﻂ ﺃﺻﺒﺤﺖ ﻣﻜﻮﻧﺔ ﻣﻦ 4ﺑﻮﺍﺑﺎﺕ ﻓﻘﻂ. ﻣﺜﺎﻝ: ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰱ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ y = A( A + B) + C + CB ﰒ ﺍﺭﺳﻢ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ ﻭ ﺑﻌﺪﻩ. ﺍﳊﻞ: y = A( A + B) + C + CB y = AB + C + CB ﺍﻻﺑﺘﻼﻉ y = AB + C + B ﺍﻻﺑﺘﻼﻉ y = AB + B + C ﺍﻹﺑﺪﺍﻟﻴﺔ y = B+C ﺍﻻﺑﺘﻼﻉ 19 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺍﻟﺪﺍﺋﺮﺓ ﻗﺒﻞ ﺍﻟﺘﺒﺴﻴﻂ A B y C ﺍﻟﺪﺍﺋﺮﺓ ﺑﻌﺪ ﺍﻟﺘﺒﺴﻴﻂ B y C ﻣﺜﺎﻝ: ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ y = ABC + ABC + ABC + ABC ﺍﳊﻞ: ﳍﺬﺍ ﺍﳌﺜﺎﻝ ﺃﳘﻴﺔ ﺧﺎﺻﺔ ،ﻭ ﺫﻟﻚ ﻧﻈﺮﺍﹰ ﺇﱃ ﺃﻥ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻳﻈﻬﺮ ﰲ ﺻﻮﺭﺓ ﳑﻴﺰﺓ ﺗﺴﻤﻰ ﺻﻮﺭﺓ ﳎﻤﻮﻉ ﺍﳊﺪﻭﺩ ﺍﻟﺼﻐﺮﻯ ).(Sum of mintermsﻭ ﰲ ﻫﺬﻩ ﺍﻟﺼﻮﺭﺓ ﻳﺘﻜﻮﻥ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ ﻣﻦ ﳎﻤﻮﻋﺔ ﻣﻦ ﺍﳊﺪﻭﺩ ﺍﳌﺮﺗﺒﻄﺔ ﻣﻊ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﺑﻌﻤﻠﻴﺎﺕ .ORﻭ ﻳﺴﻤﻰ ﻛﻞ ﺣﺪ ﻣﻨﻬﺎ ﺑﺎﳊﺪ ﺍﻷﺻﻐﺮ ).(mintermﻭ ﺍﳊﺪ ﺍﻷﺻﻐﺮ ﺗﻈﻬﺮ ﻓﻴﻪ ﲨﻴﻊ ﻣﺘﻐﲑﺍﺕ ﺍﻟﺪﺧﻞ ﻣﺮﺗﺒﻄﺔ ﻣﻊ ﺑﻌﻀﻬﺎ ﺍﻟﺒﻌﺾ ﺑﻌﻤﻠﻴﺎﺕ ،ANDﻭ ﻳﻜﻮﻥ ﺑﻌﺾ ﻫﺬﻩ ﺍﳌﺘﻐﲑﺍﺕ ﻣﻌﻜﻮﺳﺎﹰ ﻭ ﺑﻌﻀﻬﺎ ﺍﻵﺧﺮ ﻏﲑ ﻣﻌﻜﻮﺱ. ﻟﺘﺒﺴﻴﻂ ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻟﺘﻌﺒﲑﺍﺕ ﻧﺒﺤﺚ ﻋﻦ ﺍﻟﺘﺸﺎﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ.ﻭ ﺍﳊﺪﺍﻥ ﺍﳌﺘﺸﺎﺎﻥ ﳘﺎ ﺣﺪﻳﻦ ﻳﺘﻔﻘﺎﻥ ﰱ ﻛﻞ ﺷﻲﺀ ﻋﺪﺍ ﻣﺘﻐﲑ ﻭﺍﺣﺪ ﻳﻈﻬﺮ ﰱ ﺃﺣﺪﳘﺎ ﻣﻌﻜﻮﺳﺎﹰ ﻭ ﰲ ﺍﻵﺧﺮ ﺑﺪﻭﻥ ﻋﻜﺲ.ﻣﺜﻼﹰ ،ﰲ ﺍﻟﺘﻌﺒﲑ ﺃﻋﻼﻩ ﺍﳊﺪ ﺍﻷﻭﻝ ABC ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﻟﺜﺎﱐ ، ABCﺣﻴﺚ ﻳﺘﻔﻖ ﺍﳊﺪﺍﻥ ﰲ ﻛﻞ ﺷﻲﺀ ﻋﺪﺍ ﺍﳌﺘﻐﲑ Cﺍﻟﺬﻱ ﻳﻈﻬﺮ ﰲ ﺍﳊﺪ ﺍﻷﻭﻝ ﻣﻌﻜﻮﺳﺎﹰ ﻭ ﰲ ﺍﳊﺪ ﺍﻟﺜﺎﱐ ﺑﺪﻭﻥ ﻋﻜﺲ.ﻭ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻳﺘﺸﺎﺑﻪ ﺍﳊﺪﺍﻥ ﺍﻟﺜﺎﻟﺚ ABCﻭ ﺍﻟﺮﺍﺑﻊ ، ABCﺣﻴﺚ ﻳﺘﻔﻘﺎﻥ ﰲ ﻛﻞ ﺷﻲﺀ ﻋﺪﺍ ﺍﳌﺘﻐﲑ Aﺍﻟﺬﻱ ﻳﻈﻬﺮ ﰲ ﺍﳊﺪ ﺍﻟﺜﺎﻟﺚ ﻣﻌﻜﻮﺳﺎﹰ ﻭ ﰲ ﺍﳊﺪ ﺍﻟﺮﺍﺑﻊ ﺑﺪﻭﻥ ﻋﻜﺲ. y = ABC + ABC + ABC + ABC ﻻﺣﻆ ﺃﻥ ﺍﻹﺧﺘﻼﻑ ﻣﺎ ﺑﲔ ﺍﳊﺪﻳﻦ ﺍﳌﺘﺸﺎﲔ ﳚﺐ ﺃﻥ ﻳﻜﻮﻥ ﰲ ﻣﺘﻐﲑ ﻭﺍﺣﺪ ﻓﻘﻂ ﻭ ﻻ ﳚﻮﺯ ﺃﻥ ﻳﻜﻮﻥ ﰲ ﺃﻛﺜﺮ ﻣﻦ ﻣﺘﻐﲑ. 20 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺑﻌﺪ ﺇﳚﺎﺩ ﺍﻟﺘﺸﺎﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ ﻧﻘﻮﻡ ﲜﻤﻊ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎﲔ ﰲ ﺣﺪ ﻭﺍﺣﺪ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺍﻟﻌﺎﻣﻞ ﺍﳌﺸﺘﺮﻙ ﻣﺎ ﺑﲔ ﺍﳊﺪﻳﻦ ،ﺃﻣﺎ ﺍﳌﺘﻐﲑ ﺍﳌﺨﺘﻠﻒ ﻓﻴﺘﻢ ﺍﺧﺘﺼﺎﺭﻩ. y = ABC + ABC + ABC + ABC )y = AB(C + C ) + BC ( A + A ﺑﺈﺧﺮﺍﺝ ﺍﻟﻌﺎﻣﻞ ﺍﳌﺸﺘﺮﻙ ﰲ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎﲔ )y = AB(1) + BC (1 ﲜﻤﻊ ﺍﳌﺘﻐﲑ ﻣﻊ ﻋﻜﺴﻪ y = AB + BC ﺑﺎﻟﻌﻤﻠﻴﺎﺕ ﻣﻊ 1 ﻻﺣﻆ ﰲ ﺍﳌﺜﺎﻝ ﺍﻟﺴﺎﺑﻖ ﻭﺟﻮﺩ ﺗﺸﺎﺑﻪ ﺇﺿﺎﰲ ﺑﲔ ﺍﳊﺪﻭﺩ ،ﺣﻴﺚ ﺃﻥ ﺍﳊﺪ ﺍﻟﺜﺎﱐ ABCﻳﺸﺒﻪ ﺍﳊﺪ ﺍﻟﺜﺎﻟﺚ ، ABCﻭ ﻟﻜﻦ ﱂ ﻧﻜﻦ ﰲ ﺣﺎﺟﺔ ﻻﺳﺘﺨﺪﺍﻡ ﻫﺬﺍ ﺍﻟﺘﺸﺎﺑﻪ ﰲ ﻋﻤﻠﻴﺔ ﺍﻟﺘﺒﺴﻴﻂ. ﻣﺜﺎﻝ: ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ y = ABC + ABC + ABC + ABC + ABC ﺍﳊﻞ: ﺍﻟﺘﻌﺒﲑ ﻫﻨﺎ ﰲ ﺻﻮﺭﺓ ﳎﻤﻮﻉ ﺍﳊﺪﻭﺩ ﺍﻟﺼﻐﺮﻯ ،ﻟﺬﻟﻚ ﻧﺒﺤﺚ ﻋﻦ ﺍﻟﺘﺸﺎﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ. ﺍﳊﺪ ﺍﻷﻭﻝ ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﻟﺜﺎﱐ ،ﻭ ﺍﳊﺪ ﺍﻟﺮﺍﺑﻊ ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﳋﺎﻣﺲ ،ﻭ ﺍﳊﺪ ﺍﻟﺜﺎﻟﺚ ﻳﺸﺒﻪ ﺍﳊﺪ ﺍﻷﻭﻝ. y = ABC + ABC + ABC + ABC + ABC ﻧﻼﺣﻆ ﻫﻨﺎ ﻭﺟﻮﺩ ﻣﺸﻜﻠﺔ ﺗﺘﻤﺜﻞ ﰲ ﺃﻥ ﺍﳊﺪ ﺍﻷﻭﻝ ﻳﺘﺸﺎﺑﻪ ﰲ ﻧﻔﺲ ﺍﻟﻮﻗﺖ ﻣﻊ ﻛﻞ ﻣﻦ ﺍﳊﺪﻳﻦ ﺍﻟﺜﺎﱐ ﻭ ﺍﻟﺜﺎﻟﺚ.ﰲ ﻣﺜﻞ ﻫﺬﻩ ﺍﳊﺎﻻﺕ ﻧﻘﻮﻡ ﺑﺘﻜﺮﺍﺭ ﺍﳊﺪ ﺍﻷﻭﻝ )ﻣﺴﺘﺨﺪﻣﲔ ﻧﻈﺮﻳﺔ ﺍﳌﺘﻐﲑ ﻣﻊ ﻧﻔﺴﻪ( ﲝﻴﺚ ﻳﺘﻢ ﲨﻌﻪ ﻣﻊ ﻛﻼ ﺍﳊﺪﻳﻦ ﺍﻟﺜﺎﱐ ﻭ ﺍﻟﺜﺎﻟﺚ. y = ABC + ABC + ABC + ABC + ABC y = ABC + ABC + ABC + ABC + ABC + ABC ﺑﺘﻜﺮﺍﺭ ﺍﳊﺪ ﺍﻷﻭﻝ y = AB + AC + AB ﲜﻤﻊ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎﲔ y = AB + AB + AC ﺑﺎﻟﻨﻈﺮﻳﺔ ﺍﻹﺑﺪﺍﻟﻴﺔ y = B + AC ﲜﻤﻊ ﺍﳊﺪﻳﻦ ﺍﳌﺘﺸﺎﲔ 21 PDF created with pdfFactory Pro trial version www.pdffactory.com ﻣﺜﺎﻝ: ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ y = ABC + ABC + ABC + ABC ﺍﳊﻞ: ﻧﻼﺣﻆ ﺃﻥ ﻣﺎ ﺃﺳﻔﻞ ﺧﻂ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﺍﳋﺎﺭﺟﻲ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺗﻌﺒﲑ ﰲ ﺻﻮﺭﺓ ﳎﻤﻮﻉ ﺍﳊﺪﻭﺩ ﺍﻟﺼﻐﺮﻯ ،ﻟﺬﻟﻚ ﻧﺒﺤﺚ ﻋﻦ ﺍﻟﺘﺸﺎﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ. y = ABC + ABC + ABC + ABC y = ABC + ABC + ABC + ABC y = BC + AB ﲜﻤﻊ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎﲔ )y = ( BC ) ⋅ ( AB ﺑﻨﻈﺮﻳﺔ ﺩﻱ ﻣﻮﺭﻏﺎﻥ )y = ( B + C ) ⋅ ( A + B ﺑﻨﻈﺮﻳﺔ ﺩﻱ ﻣﻮﺭﻏﺎﻥ ﻣﺜﺎﻝ: ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﺍﻟﺘﻌﺒﲑ ﺍﳌﻨﻄﻘﻲ y = ABC + ABC + ABC ﺍﳊﻞ: ﻧﻼﺣﻆ ﺃﻥ ﻣﺎ ﺃﺳﻔﻞ ﺧﻂ ﺍﻟﻌﻜﺲ ﺍﳌﻨﻄﻘﻲ ﺍﳋﺎﺭﺟﻲ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺗﻌﺒﲑ ﰲ ﺻﻮﺭﺓ ﳎﻤﻮﻉ ﺍﳊﺪﻭﺩ ﺍﻟﺼﻐﺮﻯ ،ﻟﺬﻟﻚ ﻧﺒﺤﺚ ﻋﻦ ﺍﻟﺘﺸﺎﺎﺕ ﻣﺎ ﺑﲔ ﺍﳊﺪﻭﺩ. y = ABC + ABC + ABC y = ABC + ABC + ABC y = ABC + ABC + ABC + ABC ﺑﺘﻜﺮﺍﺭ ﺍﳊﺪ ﺍﻟﺜﺎﻟﺚ y = BC + AB ﲜﻤﻊ ﻛﻞ ﺣﺪﻳﻦ ﻣﺘﺸﺎﲔ )y = B(C + A ﺑﺄﺧﺬ ﺍﻟﻌﺎﻣﻞ ﺍﳌﺸﺘﺮﻙ )y = B + (C + A ﺑﻨﻈﺮﻳﺔ ﺩﻱ ﻣﻮﺭﻏﺎﻥ y = B+CA ﺑﻨﻈﺮﻳﺔ ﺩﻱ ﻣﻮﺭﻏﺎﻥ 22 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺗﺪﺭﻳﺐ :5 ﺍﺳﺘﺨﺪﻡ ﻧﻈﺮﻳﺎﺕ ﺍﳉﱪ ﺍﻟﺒﻮﻟﻴﺎﱐ ﰲ ﺗﺒﺴﻴﻂ ﻛﻞ ﻣﻦ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ A = x + xyz + x yz + xw + x w + x y -1 B = ( x + y + xy)( x + y) xy -2 )C = ( x + y + x y)( xy + xz + yz -3 ﺍﳋﻼﺻﺔ ﻋﺰﻳﺰﻱ ﺍﻟﺪﺍﺭﺱ ،ﺗﻌﻠﻤﻨﺎ ﰲ ﻫﺬﻩ ﺍﻟﻮﺣﺪﺓ ﺑﻌﺾ ﺍﳌﻬﺎﺭﺍﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﱵ ﺳﻨﺤﺘﺎﺝ ﺇﻟﻴﻬﺎ ﰲ ﺩﺭﺍﺳﺘﻨﺎ ﻟﺒﻘﻴﺔ ﺍﳌﻘﺮﺭ.ﺣﻴﺚ ﺗﻌﺮﻓﻨﺎ ﻋﻠﻰ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳌﻨﻄﻘﻴﺔ ﺍﳌﺨﺘﻠﻔﺔ ﻭ ﺍﻟﺒﻮﺍﺑﺎﺕ ﺍﻟﱵ ﺗﻘﻮﻡ ﺑﺈﺟﺮﺍﺀ ﺗﻠﻚ ﺍﻟﻌﻤﻠﻴﺎﺕ ،ﻭ ﺗﻌﻠﻤﻨﺎ ﻛﻴﻔﻴﺔ ﻛﺘﺎﺑﺔ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻭ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻌﻬﺎ ﻭ ﺍﻟﻘﻴﺎﻡ ﺑﺘﺒﺴﻴﻄﻬﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻨﻈﺮﻳﺎﺕ ،ﻛﻤﺎ ﺗﻌﻠﻤﻨﺎ ﻛﻴﻔﻴﺔ ﺇﻧﺸﺎﺀ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻭ ﺑﻨﺎﺀ ﺍﻟﺪﻭﺍﺋﺮ ﺍﳌﻨﻄﻘﻴﺔ. ﶈﺔ ﻣﺴﺒﻘﺔ ﻋﻦ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺘﺎﻟﻴﺔ ﰲ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺘﺎﻟﻴﺔ ﺳﻨﺘﻨﺎﻭﻝ ﺍﳋﻄﻮﺍﺕ ﺍﳌﺘﺒﻌﺔ ﰲ ﺗﺼﻤﻴﻢ ﺍﻟﺪﻭﺍﺋﺮ ﺍﳌﻨﻄﻘﻴﺔ ،ﺍﺑﺘﺪﺍﺀﺍﹰ ﻣﻦ ﲢﺪﻳﺪ ﻣﻮﺍﺻﻔﺎﺕ ﺍﻟﺪﺍﺋﺮﺓ ،ﰒ ﻛﺘﺎﺑﺔ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ﻟﻠﺪﺍﺋﺮﺓ ﰲ ﺍﻟﺼﻮﺭﺓ ﺍﳌﻨﺎﺳﺒﺔ ،ﻓﺘﺒﺴﻴﻂ ﺗﻠﻚ ﺍﻟﺘﻌﺒﲑﺍﺕ ﺍﳌﻨﻄﻘﻴﺔ ،ﻭﺧﺘﺎﻣﺎﹰ ﺑﻨﺎﺀ ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ ،ﺇﻣﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﺒﻮﺍﺑﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ NOTﻭ ANDﻭ ،ORﺃﻭ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻧﻮﻉ ﻭﺍﺣﺪ ﻣﻦ ﺍﻟﺒﻮﺍﺑﺎﺕ ) NANDﺃﻭ .(NOR ﺇﺟﺎﺑﺎﺕ ﺍﻟﺘﺪﺭﻳﺒﺎﺕ ﺗﺪﺭﻳﺐ :1 A B =C x A⋅ B ⋅ C 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 23 PDF created with pdfFactory Pro trial version www.pdffactory.com :2 ﺗﺪﺭﻳﺐ A B C D x = A+ B + C + D 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 :3 ﺗﺪﺭﻳﺐ A B A B AB AB AB + AB A⊕ B 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 :4 ﺗﺪﺭﻳﺐ ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ -1 A B x C 24 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ A B C B B + C A( B + C ) x = A( B + C ) 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ A B x C ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ -2 A B y C ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ A B C A C AB A+ C y = AB( A + C ) 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 25 PDF created with pdfFactory Pro trial version www.pdffactory.com ﺍﻟﺪﺍﺋﺮﺓ ﺍﳌﻨﻄﻘﻴﺔ A y B C ﺍﳌﺨﻄﻂ ﺍﳌﻨﻄﻘﻲ -3 A B z C D ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ A B C D B D AB C D AB + C D y = AB + C D 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 26 PDF created with pdfFactory Pro trial version www.pdffactory.com :5 ﺗﺪﺭﻳﺐ A= x+ y -1 B=0 -2 C = xy + x yz -3 ﺍﳌﺼﺎﺩﺭ ﻭ ﺍﳌﺮﺍﺟﻊ Fredrick J. Hill & Gerald R. Peterson, “Introduction to Switching Theory & Logical Design”, Third Edition, John Wiley & Sons, 1981 27 PDF created with pdfFactory Pro trial version www.pdffactory.com