Document Details

LovingKoala

Uploaded by LovingKoala

Hospital Italiano de Buenos Aires

Tags

cell biology cell transport biological processes human biology

Summary

This document discusses cell transport mechanisms, including diffusion and active transport. It details different types of transport across cell membranes. Active transport requires energy, while passive transport moves molecules along concentration gradients.

Full Transcript

Fig. 8: Reconocimiento celular mediado por receptores del glucocalix. Tipos y características generales: En los seres vivos hay dos mecanismos involucrados en el movimiento del agua y solutos: el flujo global y la difusión. El primero mueve agua y solutos de una parte a otra de un organismo plurice...

Fig. 8: Reconocimiento celular mediado por receptores del glucocalix. Tipos y características generales: En los seres vivos hay dos mecanismos involucrados en el movimiento del agua y solutos: el flujo global y la difusión. El primero mueve agua y solutos de una parte a otra de un organismo pluricelular. Las moléculas se mueven juntas en la misma dirección. El segundo mecanismo mueve moléculas e iones hacia dentro, hacia fuera o a través de la célula. Cada molécula o ión se mueve independientemente de los otros, estos movimientos son al azar y como resultado se observa una tendencia a la distribución uniforme de las moléculas. La difusión es eficiente sólo cuando las distancias son cortas. Desempeña un papel importante en el transporte de sustancias al interior y exterior de los organismos multicelulares como entre los compartimientos dentro del organismo. Los mecanismos de difusión se pueden clasificar en base a diferentes parámetros. Se consideran mecanismos activos o pasivos según si el elemento a transportar se mueve en contra o a favor de su gradiente de concentración con el consiguiente requerimiento o no de energía celular (ATP), el uso de mediadores proteicos o no, y si la membrana experimenta cambios o no en su estructura. Transporte transmembranoso a. Difusión simple: En ella el pasaje se produce a través de aberturas momentáneas resultantes de la movilidad de las moléculas de lípidos. Realizan este tipo de transporte moléculas pequeñas, no polares y solubles en lípidos, como por ejemplo el oxígeno, el dióxido de carbono y el monóxido de carbono. Las moléculas se movilizan a favor de su gradiente de concentración. [email protected] www.hospitalitaliano.edu.ar Ósmosis: es un caso particular de difusión que realiza el agua a través de una membrana selectivamente permeable; da como resultado el paso de agua de una solución con mayor potencial hídrico a una que tenga un menor potencial hídrico. b. Difusiones mediadas por proteínas: Son realizadas por el agua, moléculas hidrofílicas y cargadas o polares. Se pueden distinguir dos tipos de proteínas transportadoras: 1. Las proteínas formadoras de canales. Forman poros hidrofílicos que atraviesan la membrana permitiendo el pasaje de iones a favor de su gradiente electroquímico; no consumen ATP y no se unen al soluto pero son específicas para él. También se puede mencionar a las acuaporinas que explican la permeabilidad del agua mostrada por ejemplo las membranas del glóbulo rojo y las células del túbulo renal. Hay varios tipos de ellas descritas para diversas células animales y vegetales. 2. Las transportadoras o carriers. Los carriers son sumamente selectivos; se unen al soluto e interactúan con él. Pueden transportar solutos: » A favor de los gradientes de concentración, entonces decimos que el transporte corresponde a una Difusión Facilitada pasiva. Este mecanismo privilegia el paso de determinados azúcares y aminoácidos. « En contra de los gradientes electroquímicos, requiere siempre el gasto de energía (ATP), y se lo denomina Difusión Facilitada Activa o simplemente transporte activo o bombas. Este mecanismo involucra el paso de iones (sodio, potasio, calcio, hidrógeno, cloro), como también de glucosa y algunos aminoácidos que hacen cotransporte activo con el sodio. El mecanismo de bomba mantiene la polarización de la membrana (con predominio de sodio extracelular y de potasio intracelular) y explica por qué, si bien el sodio ingresa a la célula por las proteínas canal y el potasio sale por el mismo mecanismo, se mantienen las concentraciones diferenciales señaladas (Fig. 9). [email protected] www.hospitalitaliano.edu.ar Fig. 9: Tipos de transporte Transporte en masa Este tipo de transporte es realizado por moléculas de alto peso molecular (macromoléculas) e implica la formación o fusión de vesículas a la membrana plasmática con su consiguiente modificación. Este mecanismo de transporte consume energía celular (ATP). Podrá ser específico si requiere receptores especiales en áreas particulares de la superficie celular o inespecífico cuando prescinde de ellos. El transporte en masa: No implica que los solutos hayan atravesado la membrana, sino que han ingresado al citosol rodeados por un trozo de ella, de manera tal que lo extracelular sigue separado de lo intracelular. Endocitosis Implica el ingreso de sustancias líquidas y sólidas, y supone la formación de una invaginación de la membrana con participación de los filamentos de actina y de miosina en la proximidad de la misma. Los tipos de endocitosis son: Fagocitosis: se trata del ingreso de grandes partículas sólidas (bacterias, restos celulares); hay formación de seudópodos (grandes prolongaciones de la membrana que envuelve a la partícula). La fagocitosis es realizada por las amebas y en los macrófagos. Pinocitosis: se trata de líquidos con macromoléculas en suspensión; la membrana se invagina formando una depresión que envuelve a la partícula originando una vesícula. En ambos casos el contenido de la vesícula va a ser degradado por los lisosomas. Cuando la endocitosis requiere receptores específicos, las vesículas que se forman están recubiertas por una proteína especial llamada clatrina; éstas pasan por el compartimiento endosomal en el cual se se- [email protected] www.hospitalitaliano.edu.ar para la partícula endocitada de su receptor y éste es reciclado hacia la membrana plasmática. (Ver Fig. 10) Fig. 10 Pinocitosis Exocitosis Proceso que implica la fusión de vesículas internas provenientes del Aparato de Golgi con la membrana y la liberación de su contenido al medio extracelular, dinámica corriente en los procesos de secreción y excreción. (Ver Fig. 11) Transcitosis En este tipo de transporte en masa la vesícula que se forma por endocitosis es trasladada hacia otra región de la membrana y allí se fusiona y descarga su contenido nuevamente al exterior de la célula. Fig. 11. Exocitosis Citoplasma. Componentes sub-celulares El citoplasma celular presenta una organización ultraestructural muy compleja puesto que la presencia de membranas internas lo divide en numerosas secciones o compartimientos en los cuales se realizan funciones o actividades particulares que hacen, en su totalidad, a la prosecución de la [email protected] www.hospitalitaliano.edu.ar vida. A los fines didácticos podemos analizar al citoplasma mediante los siguientes componentes: o Citosol o Orgánulos No membranosos o Orgánulos Membranosos Citosol Es el verdadero medio interno de la célula; es un coloide constituido por una fase líquida (agua) con compuestos en solución entre los que podemos mencionar sales ionizadas con predominio de potasio y magnesio (cationes) y fosfatos y bicarbonato (aniones), elementos que se relacionan con la presión osmótica, el pH, cofactores enzimáticos. También es rico en glúcidos, lípidos, proteínas, ácidos nucleicos, que se relacionan con funciones tales como la glucólisis anaeróbica, glucogenogénesis (síntesis de glucógeno) y glucogenólisis (degradación de glucógeno), activación de aminoácidos y procesos de traducción o síntesis proteica, es decir, procesos relacionados con el metabolismo celular o actividades bioquímicas de los seres vivos. Transita entre los estados de sol-gel y gel-sol. Orgánulos no membranosos: Citoesqueleto Es un componente del citosol formado por filamentos proteicos de diferente diámetro que se disponen tridimensionalmente en el citoplasma. Es muy dinámico y capaz de una rápida reorganización. Sus elementos son: * Microtúbulos, químicamente compuestos por tubulina, proteína constituida por moléculas de alfa y beta tubulina. Son filamentos cilíndricos huecos de 25 nm de diámetro y longitud variable que participan en la forma celular, controlan el movimiento de orgánulos, vesículas e inclusiones, e intervienen en los movimientos direccionales no aleatorios de la célula (cilios y flagelos). Forman el huso mitótico e interactúan con la membrana plasmática en el anclaje y movimiento de proteínas y receptores. * Microfilamentos: también llamados filamentos de actina, son los filamentos más delgados del sistema, su diámetro es de 6 a 7nm y su proteína constitutiva es la actina, la cual en estados filamentosos tiene la propiedad de generar energía contráctil. En las células musculares estriadas se asocian con otros filamentos gruesos de miosina de15nm. Cabe señalar que la miosina se encuentra en todos los tipos celulares pero en el muscular forma estas asociaciones complejas. [email protected] www.hospitalitaliano.edu.ar Estos microfilamentos se asocian a las membranas y participan en el anclaje y movimientos de las proteínas de la misma. Estos movimientos pueden ocurrir en la membrana plasmática (lamelipodios, microespinas, seudópodos, invaginaciones, disco contráctil en el clivaje celular), como en la endocitosis y exocitosis, y movimientos intracitoplasmáticos(ciclosis). Son estructuras transitorias o pueden permanecer formadas. * Filamentos intermedios: Son filamentos proteicos químicamente formados por diferentes proteínas según la célula en que se encuentren. El grupo de las citoqueratinas, integrantes de los tonofilamentos de los desmosomas, la vimentina característica de las células mesenquimatosas, la desmina que se encuentra en los discos Z de las células musculares estriadas, la proteína ácida de las fibras gliales y las proteínas que forman los neurofilamentos. Su función se relaciona con el sostén y la tracción indispensables para mantener la forma celular y la unión entre ellas en la organización de los tejidos (Fig.12). Fig. 12: Filamentos intermedios Elementos del citoesqueleto Centríolos Este orgánulo no membranoso es exclusivo de las células eucariotas animales. En estas células durante la interfase se encuentran dos centríolos que se disponen perpendicularmente uno respecto del otro, constituyen un diplosoma, que se ubica en cercanías del núcleo y adyacente al complejo de Golgi. Con el MET se observa que cada centríolo está formado por 9 tripletes de microtúbulos, dispuestos de manera tal que forman una estructura cilíndrica de 0,3 a 0,5 µ de largo y con un extremo abierto [email protected] www.hospitalitaliano.edu.ar y el otro cerrado por material electrodenso. En cada triplete al microtúbulo que se orienta hacia el centro del cilindro se denomina “A”, el medio“B” y el más externo “C”, y presenta una inclinación tal que forma un ángulo con la superficie queda al conjunto de los nueve un aspecto similar a las paletas de una turbina. (Ver Fig.13). Fig. 13: Microtúbulos Cada microtúbulo “A” de un triplete se une al microtúbulo “C” del triplete adyacente. Por fuera del diplosoma se encuentra un material electrodenso de composición no del todo conocida, llamado material pericentriolar. El conjunto del diplosoma y material pericentriolar se denomina centrosoma y constituyen un centro organizador microtubular (COMT), tanto en la interfase como en la mitosis se encargan de la formación de microtúbulos los que se irradian hacia el citoplasma. Los centríolos, forman los cuerpos basales de estructuras de locomoción como cilias y flagelos. (Ver Fig. 2) Ribosomas Están constituidos por 2 subunidades, la mayor tiene un coeficiente de sedimentación de 60S y una menor de 40S; en conjunto su coeficiente de sedimentación es de 80S. Cada una de las subunidades están formadas por complejos RNA ribosómico-proteínas. Son muy abundantes. Se los encuentra libres o asociados a membranas particularmente del Retículo Endoplasmático Rugoso. Las dos subunidades se acoplan mediante un ARNm (ARN mensajero), solamente para la realización de la síntesis de proteínas por tanto son el sitio físico donde la misma se realiza. La estructura formada por el ARNm y varios ribosomas asociados, durante la síntesis de proteínas, se denomina polisoma o polirribosoma (Ver Fig.14). Los ribosomas libres sintetizan las proteínas estructurales y enzimáticas para el citosol y algunos orgánulos como peroxisomas, núcleo, mitocondrias. [email protected] www.hospitalitaliano.edu.ar Fig. 14: Ribosomas Mientras que los adheridos al RER participan en la síntesis de proteínas de secreción, proteínas de membrana y las enzimas lisosomales. Inclusiones Son cuerpos de presencia variable según el estado funcional de la célula y que resultan de su metabolismo. Entre ellos se mencionan gránulos de glucógeno, lípidos y pigmentos. Orgánulos membranosos Son componentes subcelulares estables que se encuentran en todos los tipos celulares, en algunos muy desarrollados y en otros menos desarrollados. Se caracterizan por estar limitados por membranas, y poseer una estructura, composición química y función definidas. Entre ellos podemos mencionar a: Mitocondrias Pueden adoptar diferentes formas, desde casi esféricas hasta de cilindros muy alargados; miden aproximadamente 0,5 µm de diámetro y hasta7µm de largo; son visibles al microscopio de contraste de fase y al óptico cuando son coloreadas con verde jano B. Al MET y en corte longitudinal presentan una envoltura formada por dos membranas: una externa y otra interna; entre ellas queda un espacio o cámara externa. La membrana interna, plegada formando crestas, limita una cámara o espacio interno llamado matriz mitocondrial. [email protected] www.hospitalitaliano.edu.ar La membrana externa contiene un 40% de lípidos y es rica en colesterol, libremente permeable a los electrolitos, agua, sacarosa y otras moléculas. Mientras que la membrana interna contiene un 20% de lípidos entre ellos cardiolipina y una gran cantidad de proteínas (80%) muchas de las cuales son transportadores específicos, otras tienen actividad enzimática y/o forman parte de la cadena transportadora de electrones o cadena respiratoria. Es impermeable a iones y la glucosa. La cantidad de crestas por mitocondrias, su forma y dirección, varían en los diferentes tipos celulares. Cuanto mayor es la actividad metabólica de la célula, mayor será el número de crestas. La mayoría de las células contiene mitocondrias con crestas aplanadas y transversales, pero aquellas que secretan esteroides presentan crestas tubulares y longitudinales. En la cara interna de las crestas sobresalen partículas esféricas unidas a la membrana llamadas partículas elementales o F, que corresponden a las enzimas fosforilativas (ATP sintetasa). En la matriz mitocondrial, de estructura coloidal, se localizan las enzimas del ciclo de Krebs, los ribosomas mitocondriales o mitorribosomas, una o más moléculas de ADN circular no asociado a proteínas histónicas, a partir del cual se sintetizan los ARNm, ARNr y ARNt; además, contiene gránulos electrodensos de gran afinidad por el calcio y otros cationes bivalentes. Las mitocondrias autoreplican su DNA y transcriben sus RNA lo que permite su multiplicación numérica y la síntesis de algunas de sus proteínas, sin embargo, otras son importadas desde el citosol ya que su codificación se encuentra en la información nuclear. No son autosuficientes como para tener vida independiente, se dice entonces que, son orgánulos semiautónomos. En las mitocondrias se realiza la respiración celular, que consiste en una serie de reacciones químicas mediante las cuales se libera la energía acumulada en los alimentos de manera controlada, para permitir su acumulación bajo la forma de ATP, energía utilizable por los sistemas vivos para la realización de trabajos. Como nutrientes para obtener energía la célula utiliza a glúcidos, lípidos y proteínas y los utiliza en ese orden. Dentro de los glúcidos la glucosa es la más pronta en ser utilizada. (Ver Fig. 15) [email protected] www.hospitalitaliano.edu.ar Fig. 15: Vías posibles en la degradación de una molécula de glucosa. La liberación de la energía contenida en una molécula de glucosa se lleva a cabo en una serie de pasos mediante los cuales se libera la energía contenida en los enlaces C-C de manera controlada. La disponibilidad de moléculas de glucosa en el citosol y la presencia de una batería de enzimas permite que la glucosa que tiene 6 átomos de carbono sea desdoblada en 2 moléculas de piruvato que tiene 3 átomos de carbono. Esta serie de reacciones químicas se denomina glucólisis o glicólisis, ocurre en el citosol, no requiere consumo de oxígeno, por tanto, se considera anaeróbica. El piruvato, producido por la glucólisis, puede seguir 2 vías, una de ellas, llamada fermentación, transcurre en el mismo citosol y como productos se obtiene, dependiendo del organismo o tipo de célula, entre otros, etanol, ácido láctico, ácido acético. La otra vía, es ingresar a las mitocondrias y cumplir con una decarboxilación (pérdida de un carbono) y transformarse en radical acetil (2 carbonos). Este se une a una coenzima llamada CoA, formando un compuesto denominado acetilCoA. Este compuesto ingresa al ciclo de Krebs o de los ácidos tricarboxílicos, que como su nombre lo indica es un ciclo, comienza y termina en el mismo compuesto, el oxalacetato (4 carbonos). El iniciador del ciclo acepta al acetilCoA formado y origina un compuesto de 6 carbonos (ácido cítrico). Así siguen una serie de transformaciones químicas que dan como productos dióxido de carbono (CO2), ATP, electrones y protones que son rápidamente tomados por coenzimas transportadoras NAD y FAD, que se reducen a NADH y FADH2. Estas coenzimas reducidas transportan y liberan esos electrones a componentes proteicos de la membrana interna de la envoltura mitocondrial que constituyen la cadena respiratoria. El aceptor final de electrones en esta cadena es el oxígeno, quien recibe a los electrones y se transforma en agua metabólica. [email protected] www.hospitalitaliano.edu.ar El flujo de los electrones entre los componentes de esta cadena genera un gradiente de pH entre la matriz mitocondrial y el espacio intermembrana. A su vez en la membrana interna de la envoltura mitocondrial existen unos grandes complejos proteicos que presentan dos fracciones: una intramembrana llamada F0 que presenta un canal para el paso de los protones y una fracción F1 (partícula respiratoria) con actividad ATP sintetasa que mira a la matriz mitocondrial. La partícula respiratoria a expensas del gradiente protónico, realiza la síntesis de ATP (moneda energética celular). La serie de reacciones que ocurren en la mitocondria se denomina respiración celular, requiere obligatoriamente la presencia de oxígeno ya que este es el aceptor de electrones en la cadena respiratoria y las reacciones que ocurren en ella, permiten la transformación de la energía contenida en las moléculas de glucosa o de cualquier alimento, a energía utilizable por un sistema vivo (ATP) (Ver Fig.15). Por cada molécula de glucosa en un proceso fermentativo se obtienen 2 ATP que corresponden a la glucólisis mientras que respirada en la mitocondria rinde 36 ATP. A esta producción de ATP deben sumarse los 2 ATP producidos por glucólisis, de esta manera en la oxidación completa de la molécula de glucosa se obtiene un total de 38 ATP. Respiramos para obtener energía que nos permite realizar todas las funciones vitales a los seres vivos Reacción global de la Respiración Celular Glucosa + O2 = CO2 + H2O + Energía (ATP) Retículo endoplasmático Sistema membranoso que, conjuntamente con la envoltura nuclear y el aparato de Golgi, forman el sistema de endomembranas. Es una continuidad de la membrana nuclear que presenta dos variedades: el retículo endoplasmático liso el retículo endoplasmático rugoso (REL) y (RER); Son continuos uno del otro y están desarrollados en diferente grado según las funciones predominantes en la célula. El retículo endoplasmático liso (REL) se presenta como una serie de cisternas tubulares contorneadas, es polifuncional y entre sus funciones se pueden mencionar la síntesis de fosfolípidos (en to- [email protected] www.hospitalitaliano.edu.ar das las células) y hormonas esteroides (células de las glándulas suprarrenales y gónadas), la detoxificación en hepatocito (células del hígado), la descomposición del glucógeno a glucosa (en células del hígado y músculo), ser un compartimiento de reserva de Ca++ (células del músculo). El retículo endoplasmático rugoso (RER) al igual que el REL, es continuo con la membrana de la envoltura nuclear, se presenta como sáculos aplanados con ribosomas adheridos. Su función está relacionada con la síntesis de proteínas destinadas a salir de la célula (secreción), o ser incorporadas a las membranas celulares o ser segregadas en compartimentos especiales (por ejemplo, los lisosomas). La síntesis de proteínas es realizada por los ribosomas en el citosol celular (como se explicitará más adelante). Consiste en la lectura del mensaje del ARNm (ARN mensajero) y el enlace mediante uniones peptídicas de los aminoácidos, unidades monoméricas de las proteínas, según ordene la información del ARNm. Si el polipéptido que se está sintetizando, es una proteína integral de membrana, una de secreción o una enzima lisosomal tiene una señal muy cerca del extremo amino terminal. La señal consiste en una secuencia de aminoácidos hidrofóbicos, llamado PÉPTIDO SEÑAL, el cual es reconocido por una riboproteína. Como consecuencia de la interacción (Péptido señal– riboproteína) se detiene la síntesis y se direcciona complejo de síntesis (ribosoma- ARNm–péptidoriboproteína) hacia las membranas del RER, donde existen proteínas receptoras de ribosomas y se forma un poro en la membrana del RER, por el cual se introduce el péptido naciente y se separa la riboproteína lo que permite se reanude la síntesis el polipéptido es introducido a la luz del retículo. (Ver Fig.16) Fig. 16: Síntesis proteica asociada a RER Las cisternas del retículo posibilitan el transporte de dichas proteínas y ciertas modificaciones (como las primeras glucosidaciones en las glucoproteínas) sin que entren en contacto con otros componentes celulares. La molécula de proteína recién sintetizada transita por el RER hasta una zona de transición donde es compactada en una vesícula de transporte cuyo destino es el Aparato de Golgi. [email protected] www.hospitalitaliano.edu.ar Complejo de Golgi o Aparato de Golgi Al MET el complejo de Golgi se observa formado por sacos discoidales aplanados apilados en forma laxa y rodeados por túbulos y vesículas. Cada sáculo presenta una cara convexa, orientada hacia el núcleo, conocida como cara cis, proximal, de formación o inmadura que fusiona vesículas, y una cara cóncava o trans, distal o madura que genera vesículas, orientada hacia el polo secretor de la célula. Sus funciones son el procesamiento de lípidos y proteínas sintetizadas en el retículo endoplasmático y su distribución a otros compartimientos celulares o secreción. Dentro de los procesamientos ocurridos en esta organela podemos mencionar el agregado de azúcares terminales, eliminación de azúcares, fosforilación de azúcares, agregado de ácidos grasos, síntesis de gangliósidos, proteólisis selectiva, y la provisión de membranas a lisosomas y a vesículas de secreción. El aparato de Golgi mantiene una continuidad funcional con el retículo endoplasmático. Los ribosomas, el retículo endoplasmático, el complejo de Golgi y sus vesículas (Ver Fig. 17). Fig. 17: Sistema de endomembranas y elementos derivados Actúan conjuntamente para la producción de nuevo material para la membrana celular y de macromoléculas de exportación. Lisosomas Son orgánulos membranosos de 0,5 μ de diámetro en cuyo interior se encuentran diferentes enzimas hidrolasas ácidas. Las membranas provienen del complejo de Golgi y su contenido enzimático es sintetizado en el RER. Estas enzimas están implicadas en la degradación de proteínas, polisacáridos, ácidos nucleicos y lípidos. De esta manera, su función es la digestión. [email protected] www.hospitalitaliano.edu.ar Las enzimas necesitan un pH ácido de 5 para activarse y no atacan sus membranas debido a la alta glucosidación de las proteínas que la conforman. De acuerdo con su estado funcional se denominan: • Primarios: son los recién formados desde el aparato de Golgi y sus enzimas no están activas. • Secundarios: son aquellos en los cuales se encuentran el sustrato a degradar, proveniente de un fagosoma o vesícula fagocítica, pinocítica o autofágica, con el contenido enzimático del lisosoma primario; alcanzan el pH óptimo, por lo tanto, están en plena degradación. • Terciarios o cuerpo residual: son las sustancias no digeridas que permanecen un tiempo variable dentro de la célula. Peroxisomas Son orgánulos membranosos, esféricos, de 0,5 μm de diámetro que contienen enzimas oxidativas. Estas enzimas remueven el hidrógeno de numerosas moléculas orgánicas (purinas, aminoácidos) y lo combinan con el oxígeno para formar peróxido de hidrógeno (H 2O2), compuesto extremadamente tóxico para las células vivas. Su acumulación en forma de radicales libres es una causa de envejecimiento celular. Otra de las enzimas, la catalasa, escinde el peróxido en agua y oxígeno. También realizan la degradación de los ácidos grasos de cadenas largas, proceso denominado oxidación. Son productores de energía calórica, a diferencia de las oxidaciones mitocondriales que producen energía química utilizable por los sistemas vivos (ATP). Las enzimas de los peroxisomas se sintetizan en ribosomas libres y la unidad de membrana se integra con lípidos cedidos por el REL y proteínas de ribosomas libres. Vesículas con cubierta Son vesículas que se forman a partir de la membrana plasmática para el ingreso por endocitosis mediadas por receptores, es decir se forman cuando se realizan endocitosis específicas. En el lado citosólico de la membrana, en regiones donde se encuentran los receptores específicos, se encuentra una proteína periférica llamada clatrina. Al MEB estas regiones se observan deprimidas y se las denomina fositas o depresiones recubiertas. La clatrina, conjuntamente con los filamentos de actina posibilitan la formación de una vesícula con cubierta y su posterior internalización en el citosol. Las vesículas que se forman a partir de estas depresiones llevan al receptor con su ligando específico. A medida que la vesícula avanza en el citosol su cubierta de clatrina se desarma. Las vesículas endocíticas pueden seguir dos caminos diferentes: A) Ser transportadas hacia otra región de la membrana plasmática descargando su contenido nuevamente al exterior; este mecanismo se conoce como transcitosis y permite el transporte de macromoléculas desde un espacio extracelular a otro, ej.: secreción de anticuerpos desde la sangre [email protected] www.hospitalitaliano.edu.ar hacia el flujo de la leche materna en los mamíferos. B) Unirse a un lisosoma de dos maneras: I) Fusionarse con un lisosoma y que se produzca la degradación tanto del ligando como de los receptores. II) Que el pH disminuya en el interior de la vesícula y se separe el ligando del receptor, formándose dos vesículas una lleva el receptor y es reciclada hacia la membrana plasmática y la otra lleva el ligando y se fusiona con un lisosoma 1º para su degradación. El compartimiento en el cual se produce esta separación se conoce como Endosoma. Núcleo Está limitado por la envoltura nuclear que analizada al MET está constituida por dos membranas concéntricas que juntas delimitan el compartimiento nuclear; entre ambas existe un espacio llamado perinuclear que se continúa con el lumen del retículo endoplasmático. Estas membranas se fusionan a nivel de los poros nucleares, sitios de comunicación entre el compartimiento nuclear y el citosol. Estos poros presentan un diámetro aproximado de 100 nm, aunque la luz real del poro es estrecha y de aproximadamente 9 nm. El poro presenta una estructura compuesta por más de 100 proteínas distintas que se disponen en una simetría octogonal y que, en su conjunto se denominan complejo del poro, este es muy selectivo en el intercambio núcleo-citoplasma y viceversa. Podemos citar entre otros elementos que lo atraviesan para salir del núcleo a los ARNm, ARNt, subunidades ribosomales y para entrar a las proteínas histónicas, factores reguladores, transcripcionales y replicativos. La membrana externa es capaz de adherir ribosomas, mientras que la membrana interna en su cara nuclear se halla revestida por una lámina fibrosa de filamentos intermedios, solamente interrumpida a nivel de los poros, a ella se une la cromatina periférica. Esta lámina nuclear participa en la forma y estabilidad del compartimiento nuclear. La forma del núcleo es variada; según el tipo celular el núcleo puede ser esférico, elíptico, lobulado, reniforme, regular o irregular; puede ocupar el centro celular o estar desplazado hacia la periferia. En células secretoras, el núcleo se ubica en el extremo opuesto al polo secretor. Su tamaño varía entre 3 a 20 μ dependiendo del tipo celular. Oskar Hertwig, hacia 1890, establece lo que se conoce como relación núcleo – citoplasma de la siguiente manera: Volumen nuclear RNC =............................................................ Volumen celular – Volumen nuclear [email protected] www.hospitalitaliano.edu.ar

Use Quizgecko on...
Browser
Browser