JEE(Main + Advanced) 2024-2025 Past Paper PDF
Document Details
Uploaded by Deleted User
null
2025
ALLEN
null
Tags
Related
- JEE(Main + Advanced) Past Paper PDF, 2023-2024, ALLEN
- Allen JEE(Main+Advanced) Past Paper PDF 2024-2025
- JEE(Main+Advanced) : Enthusiast Course [Phase : III(A)] PDF Past Paper 05-05-2024
- ALLEN JEE(Main+Advanced) 2025/25-02-2024 Paper-1 PDF
- ALLEN JEE(Main + Advanced) 2022-2023 Unit Test 07 PDF
- ALLEN JEE (Main + Advanced) 2022-2023 Past Paper PDF
Summary
This is a past paper for the JEE (Main + Advanced) exam from the Allen institute for the academic session of 2024-2025. It covers Physics, Chemistry, and Mathematics sections with multiple choice questions and answers. The questions cover topics related to these subjects.
Full Transcript
(1001CJA101372240003) Test Pattern CLASSROOM CONTACT PROGRAMME JEE (Main)...
(1001CJA101372240003) Test Pattern CLASSROOM CONTACT PROGRAMME JEE (Main) UNIT TEST (Academic Session : 2024 - 2025) 05-05-2024 JEE(Main + Advanced) : ENTHUSIAST COURSE [PHASE : III(A)] ANSWER KEY PAPER-1 (OPTIONAL) PART-1 : PHYSICS Q. 1 2 3 4 5 6 7 8 9 10 A. B B A A C C A B D B SECTION-I Q. 11 12 13 14 15 16 17 18 19 20 A. B C D D D B B A C A Q. 1 2 3 4 5 6 7 8 9 10 SECTION-II A. 50 3 14 5 3000 6 45 53 200 6 PART-2 : CHEMISTRY Q. 1 2 3 4 5 6 7 8 9 10 A. A A A B B A B C A D SECTION-I Q. 11 12 13 14 15 16 17 18 19 20 A. C C B A C C A B A D Q. 1 2 3 4 5 6 7 8 9 10 SECTION-II A. 2 17 62 4 3 4 3 4 5 3 PART-3 : MATHEMATICS Q. 1 2 3 4 5 6 7 8 9 10 A. A B D C D D A C D C SECTION-I Q. 11 12 13 14 15 16 17 18 19 20 A. C B C A D B B D B A Q. 1 2 3 4 5 6 7 8 9 10 SECTION-II A. 99 3 2 5 0 0 2 2 1 14 HINT – SHEET PART-1 : PHYSICS 2. Ans ( B ) SECTION-I Place another identical hemisphere on given one, so that flat faces of two coincide The total flux 1. Ans ( B ) linked with cross- section of bottom half (lower → 2 = kλ ^i − kλ ^j E hemisphere) is Q as charge enclosed by given R R 2ε0 hemisphere is zero. So flux linked with flat face → 1 = − kλ ^i − kλ ^j E −Q R R of hemisphere is 2ε0 → 3 = kλ ^i + kλ ^j E 7. Ans ( A ) R R 12 : 00 – 3 : 25 = 8 : 35 → net = kλ ^i − kλ ^j E 8. Ans ( B ) R R f0 mθ = = 10 ; f0 = 10fe fe f0 + fe = 44 ; 11fe = 44 ; fe = 4 f0 = 40 1001CJA101372240003 HS-1/8 Target : JEE (Main + Advanced) 2025/05-05-2024/Paper-1 9. Ans ( D ) 15. Ans ( D ) 1 μL 1 1 Rate of change of momentum is proportional to =( − 1) ( − ) f μM R1 R2 external forces acting on the system. The total for plane surface, R → ∞ momentum of whole system remain constant when no external force is acted upon it. Internal 1 1 1 forces can change the kinetic energy of the P→ = × ⇒ f = 2R f 2 R system. Q → f = 4R 16. Ans ( B ) 2u⊥ 1 3 2 T= , which is same for both R→ = ( − 1) ( ) ⇒ f = −2R a⊥ f2 4 R 17. Ans ( B ) 1 3 3 2 S→ = ( × − 1) − ⇒ f = −4R dx f2 2 4 R = 5e−t dt 10. Ans ( B ) x ∞ Given u + v = 100 cm ∫ dx = ∫ 5e−t dt 0 0 ∞ Using Lens formula with sign convection 5e−t x=[ ] = −5 [e−∞ − e0 ] = 5 −1 0 1 1 1 1 1 1 + u = and + = 18. Ans ( A ) (100 − u) f (60 − u) (u + 40) f 2TVb = 3TVa equating them, u = 30 cm Va = 2 Vb 3 Now putting in any of the equations 19. Ans ( C ) 1 1 1 1 1 + = ⇒ = 70 30 f f 21 cm P = 5 m–1 12. Ans ( C ) F sin 53∘ = ma F cos 53∘ = mg µ1 θ 1 = µ2 θ 2 4 a 4g = ⇒a= 2µ = 3µ θ 3 g 3 2 20. Ans ( A ) θ= 3 Let at any time, their velocities are v1 and v2 14. Ans ( D ) respectively. Then v1 = v2 cos θ For tmin, →vM,w should be perpendicular to flow 336 a1 = a2 cos θ , if released from rest t= = 336 sec. 1 HS-2/8 1001CJA101372240003 Enthusiast Course/Phase-III(A)/05-05-2024/Paper-1 PART-1 : PHYSICS 7. Ans ( 45 ) SECTION-II T=8 1. Ans ( 50 ) 2uy =8 As image is virtual, so magnification is g uy = 40 positive. f ux(5 – 3) = 80 Thus, m = − (−u) − f ⇒ −u − f = −nf ux = 40 uy ⇒ u + f = nf tan θ = =1 ux ⇒ u = (n − 1)f θ = 45° u = (6 – 1)10 = 50 cm 8. Ans ( 53 ) 2. Ans ( 3 ) To see object at less than 100 cm, let man used π a lens of focal length of f. θ1 = − θ2 2 π θ1 + θ2 = Lens will form an image at 100 cm of an object 2 snell's law at 25cm to see the object clear. 3 sin θ 1 = 4 sin θ 2 v = – 100 cm and u = – 25 cm π 3 sin θ 1 = 4 sin ( − θ1 ) 2 1 1 1 − = tan θ 1 = 4 , θ 1 = 53° v u f 3 1 − 1 = 1 9. Ans ( 200 ) −100 (−25) f −1 + 4 1 1 3 = ; = 100 f f 100 100 Power of lens = = 3D f 6. Ans ( 6 ) Number of electric field lines are drawn in proportion to charge magnitudes. Resultant force on pulley = T √ 2 = mg√2 = 200 Newton 1001CJA101372240003 HS-3/8 Target : JEE (Main + Advanced) 2025/05-05-2024/Paper-1 10. Ans ( 6 ) 17. Ans ( A ) 18. Ans ( B ) (A) PCl5 + H2O → H3PO4 (B) 4XeF4 + 8H2O → 2Xe + 2XeO3 + 16HF + 1O2 (C) BCl3 + H2O → H3BO3 T = 6a1....(1) (D) B2H6 with N(CH3)3 gives symmetrical cleavage Mg – 2T = Ma2........(2) PART-2 : CHEMISTRY SECTION-II – 2Ta2 + Ta1 = 0 ⇒ a1 = 2a2.......(3) 1. Ans ( 2 ) Now 0.4 × 10 × 2 = 8N In truncated octahedron, hexagonal faces = 8 fr = 8N = 2a1 In truncated tetrahedron, hexagonal faces = 4 8 a1 = 4m/s2 ∴ Ratio = 4 =2 a1 T = 24 N & a2 = = 2m/s2 2. Ans ( 17 ) 2 Now Mg – 48 = M × 2 HCP ⇒ z = 6, TV = 12 M(g – 2) = 48 M = 48 g M = 6kg ⇒ 48 g of A has NA atoms 6 × 1023 PART-2 : CHEMISTRY ⇒ 24 × 10–6 g A = × 24 × 10–6 48 SECTION-I = 3 × 1017 atoms 1. Ans ( A ) Total THV in 24 × 10–6 g of A 32 × 5 × 5 = 250 × M × 1 M = 3.2 = 2 × 3 × 1017 = 6 × 1017 4. Ans ( B ) 3. Ans ( 62 ) P : 3,6; Q : 5; R : 4; S : 2, 5 1 1 5. Ans ( B ) i=α ( − 1) + 1 = 0.8 ( − 1) + 1 = 0.4 n 4 Solution exhibits ideal behaviour if it follows i × Kf × WB × 1000 Raoult’s law MB = ΔTf × WA PT = XA PA0 + XB PB0 0.4 × 1.86 × 2.5 × 1000 0.4(80) + 0.6 × 120 = 32 + 72 = 104 MB = = 62 0.3 × 100 PT = 104 mmHg 4. Ans ( 4 ) 100 < 104 ⇒ solution shows – ve deviation i, ii, iii, v 7. Ans ( B ) a r+ + r – = √ 3 = 2 HS-4/8 1001CJA101372240003 Enthusiast Course/Phase-III(A)/05-05-2024/Paper-1 9. Ans ( 5 ) 3. Ans ( D ) N2O5(s) = NO+2 NO−3 0 ≤ 3cos – 1a ≤ π (sp) (sp2 ) π 1 0 ⩽ cos−1 a ⩽ ⇒ ⩽a⩽1 3 2 PCl5(s) = P Cl+4 P Cl−6 3 (sp ) (sp3 d 2 ) 4. Ans ( C ) I2 Cl6 (l) = ICl−4 ICl+2 f'(x) = 3x2 + 2x + 3 + cosx (sp3 d 2 ) (sp3 ) D = 4 – 36 = – 32 XeF6 (s) = XeF5+ + F − minimum value of 3x2 + 2x + 3 = 32 3 2 (sp d ) 12 f'(x) > 0 function is.................... x = NO+2 , NO−3 , ICl−4 , ICl+2 = 4 so on to and one one. y = P Cl−6 = 1 5. Ans ( D ) 1 x+y=5 sin−1 (1 − ) (2 + x2 ) π PART-3 : MATHEMATICS y = sin – 1(1) when x → ∞ = 2 1 π SECTION-I When x = 0 ⇒ y = sin−1 ( ) = 2 6 1. Ans ( A ) 6. Ans ( D ) y = x2 – 7x + 10 f:R→R ⇒ x = y2 – 7y + 10 f(x) = y = 2x2 − 5x + 3 8x2 + 9x + 11 ⇒ y2 – 7y + 10 – x = 0 D = (9)2 – 4 × 8 × 11 < 0 7 ± √49 − 4(10 − x) 2x(x − 1) − 3(x − 1) ⇒y= 2x2 − 2x − 3x + 3 y= = 2 8x2 + 9x + 11 8x2 + 9x + 11 7 ± √9 + 4x (x − 1)(2x − 3) ⇒y= y= 2 8x2 + 9x + 11 –1 9 7 at x = 1, f(1) = 0 ƒ : [− , ∞ ) → [ , ∞ ) ⎫ 4 2 ⎬ many one at x = 32 , f ( 32 ) = 0 ⎭ 7 + √9 + 4x ⇒ f −1 (x) = 2x2 − 5x + 3 2 y= 2. Ans ( B ) 8x2 + 9x + 11 1 ⇒ 8yx2 + 9xy + 11y = 2x2 – 5x + 3 [ 3f(x) + f ( ) = x] × 3 x ⇒ (8y – 2)x2 + (9y + 5)x + 11y – 3 = 0 1 1 1 3f ( ) + f(x) = ⇒ D ≥ 0 coeff. of x2 ≠ 0 ⇒ 8y – 2 ≠ 0 ⇒ y ≠ x x 4 1 ⇒ (9y + 5)2 – 4(8y – 2)(11y – 3) ≥ 0 8f(x) = 3x − x ⇒ 81y2 + 25 + 90y – 4(86y2 – 24y – 22y + 6) ≥ 0 1 26 8f(3) = 9 − = ⇒ – 271y2 + 274y + 1 ≥ 0 3 3 13 ⇒ 271y2 – 274y – 1 ≤ 0 ⇒ f(3) = 12 y does not belong to R Range ≠ R (codomain) ⇒ Not onto 1001CJA101372240003 HS-5/8 Target : JEE (Main + Advanced) 2025/05-05-2024/Paper-1 7. Ans ( A ) 10. Ans ( C ) x−3 f (x) − 3 x+1 −3 fof (x) = = x−3 f (x) + 1 +1 x+1 x+3 fof (x) = − x−1 x+3 − x−1 − 3 fofof (x) = =x Df → (−∞, sec 2] ∪ [1, ∞) x+3 − x−1 + 1 11. Ans ( C ) 8. Ans ( C ) [x] 1 2 4 8 {x} = ⇒ {x} = 0, , ⇒ x = 0, , 3 3 3 3 3 9. Ans ( D ) 3x (A) Range of f (x) = 1 + 9x2 Put 3x = tan θ tan θ 1 ∴ f (x) = = sin 2θ 2 1 + tan θ 2 1 1 ∴ f (x) ∈ [− , ] 2 2 12. Ans ( B ) ∴ Number of integers in the range of f(x) = 1 cos ec−1 x f (x) = (B) Range of f (x) = √ x − a + √b − x √ {x} (where a < b) Domain ∈ (−∞, −1] ∪ [1, ∞) {x} ≠ 0 so x ≠ integers is [√ (b − a), √(b − a)√2] 13. Ans ( C ) ∴ Range of f (x) = √x − 1 + √x − 9 will be [√ 8, √8 ⋅ √2] = [2√2, 4] Let tan – 1x = θ ∴ Number of integers in the range of f(x) = 2 1 + x2 1 (C) f (x) = sin−1 ( ) sin(cot−1 ) 2x √ 1 + x2 ∣ 1 + x2 ∣ ∣ ⩽ 1 ∣ 1 ∣ 2x ∣ Let cot−1 =α ⇒ x2 + 1 ⩽ 2|x| √ 1 + x2 ⇒ (|x| – 1)2 < 0 x2 + 1 sin α = √ x2 + 2 ⇒ |x| – 1 = 0 ∴ x = ±1 π π ∴ Range of f(x) is {− , } 2 2 ∴ Number of integers in the range of f(x) = 0 (D) f(x) = [{sin x}] + {[cosx]} = 0 + 0 = 0 {As {x} ∈ [0,1) ∴ [{x}] = 0 and {n} = 0 ∀ x ∈ I} ∴ Number of integers in the range of f(x) = 1 HS-6/8 1001CJA101372240003 Enthusiast Course/Phase-III(A)/05-05-2024/Paper-1 14. Ans ( A ) 19. Ans ( B ) 2sin – 12x + cos – 13y + sec – 1z = 3p 1 + tan π4. tan(2cot−1 3) π ⇒ 2sin – 12x = p, cos – 13y = p, sec – 1z = π tan 4 − tan(2cot−1 3) 1 3 ⇒x= , y = − 1 , z = –1 1+ 4 =7 2 3 3 5 1− 4 ∴x+y+z=− 6 20. Ans ( A ) 15. Ans ( D ) α + β = – p, α β = q Statement-1 : is log10 [x] < 0 ( α – β )2 ⇒ p2 – 4q = 1 ∵ [x] = 1, 2, 3,........ ∴ p2 + 4q2 = 1 + 4q + 4q2 = (1 + 2q)2 ⇒ log10 [x] > 0 PART-3 : MATHEMATICS ⇒ Statement-1 is false. SECTION-II 1. Ans ( 99 ) and obviously Statement-2 is correct. 16. Ans ( B ) 2x2 + 6x – 5 = 0 x π sin−1 ( ) = − cos−1 x α + β = −3 2 6 ⎡ ⎢ x π ⎣ αβ = − 52 = sin( − cos−1 x) 2 6 α2 β2 ( α3 + β 3 ) x π π ( + ) = = sin cos(cos−1 x) − cos sin(cos−1 x) β α αβ 2 6 6 x x √ (α + β)3 − 3αβ (α + β) = − 1 − x2 = 2 2 αβ x ± 1 but x = – 1 is rejected. (−3)3 − 3 (− 52 ) (−3) ( −27 − 45 2 ) = = 5 (− ) ( − 52 ) 17. Ans ( B ) 2 tan – 1 tan(7) = 7 – 2 π 99 = = 19.80 cot – 1 cot(7) = 7 – 2 π 5 18. Ans ( D ) 18(tan – 1x)2 – 6 π tan – 1x – 3 π tan – 1x + π 2 = 0 6tan – 1x(3tan – 1x – π ) – π (3tan – 1x – π ) = 0 π π tan – 1x = and 6 3 1 x = √3 and √3 ∴ αβ = 1 4 Now, log √ 3 (8 + 1) = log √ 3( √ 3) = 4 1001CJA101372240003 HS-7/8 Target : JEE (Main + Advanced) 2025/05-05-2024/Paper-1 2. Ans ( 3 ) 8. Ans ( 2 ) x2 + x + 7 P (xy) + P ( yx ) cos(log 1 + cos(log y Let, y = xy ) x ) x+2 = P (x) P (y) 1 1 ⇒ xy + 2y = x2 + x + 7. cos(log x ) cos(log y ) ⇒ x2 + x(1 – y) + (7 – 2y) = 0 cos(log x + log y) + cos(log y − log x) = cos(log x) cos(log y) ∴∀x∈R⇒D≥0 ⇒ D = (1 – y)2 – 4(7 – 2y) ≥ 0 2 cos(log x) cos(log y) = =2 cos(log x) cos(log y) ⇒ y2 + 6y – 27 ≥ 0 ⇒ (y + 9) (y – 3) ≥ 0 9. Ans ( 1 ) g(x) = x2 + x – 1 g (f(x)) = 4x2 – 10x + 5 y ∈ ( – ∞ , – 9] ∪ [3, ∞ ) ∴ Smallest positive value of ƒ(x) is 3 Ans. = (2x – 2)2 + (2 – 2x) – 1 3. Ans ( 2 ) = (2 – 2x)2 + (2 – 2x) – 1 f(2) < 0 ⇒ f(x) = 2 – 2x 4. Ans ( 5 ) 5 −1 f( ) = Given equation ⇒ x2 – 3x – 4 = 0 4 2 ⇒ x = – 1, 4 ⇒ N = 5 10. Ans ( 14 ) 5. Ans ( 0 ) x3 – 6x2 + 2 = (x – α ) (x – β ) (x – γ ) (x – 2) (x – 5) > 0 Put x = 2 ⇒ (2 – α ) (2 – β ) (2 – γ ) = – 14 x ∈ ( – ∞ , 2) ∪ (5, ∞ ).... (I) (3 – x) (x – 4) > 0 ⇒ ( α – 2) ( β – 2) ( γ – 2) = 14 ⇒ x + (3, 4)....(II) I ∩ II ⇒ ϕ No solution 6. Ans ( 0 ) Draw f(x) and f – 1(x), they have zero point of intersection. 7. Ans ( 2 ) minimum value occure at x = 2 HS-8/8 1001CJA101372240003