Mathematics Exam Paper M-2023 PDF
Document Details
2023
null
Tags
Summary
This document is a mathematics exam paper from M-2023. It consists of multiple choice questions categorized into different types with varying marks and negative marking policies. Multiple sub-questions are present under each question.
Full Transcript
M-2023 M-2023 Subject : MATHEMATICS (Booklet Number) Duration : 2 Hours...
M-2023 M-2023 Subject : MATHEMATICS (Booklet Number) Duration : 2 Hours Full Marks : 100 INSTRUCTIONS 1. All questions are of objective type having four answer options for each. 2. Category-1: Carries 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted. 3. Category-2: Carries 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted. 4. Category-3: Carries 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded. 5. Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D. 6. Use only Black/Blue ink ball point pen to mark the answer by filling up of the respective bubbles completely. 7. Write Question Booklet number and your roll number carefully in the specified locations of the OMR Sheet. Also fill appropriate bubbles. 8. Write your name (in block letter), name of the examination center and put your signature (as is appeared in Admit Card) in appropriate boxes in the OMR Sheet. 9. The OMR Sheet is liable to become invalid if there is any mistake in filling the correct bubbles for Question Booklet number/roll number or if there is any discrepancy in the name/ signature of the candidate, name of the examination center. The OMR Sheet may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be the sole responsibility of candidate. 10. Candidates are not allowed to carry any written or printed material, calculator, pen, log-table, wristwatch, any communication device like mobile phones, bluetooth device etc. inside the examination hall. Any candidate found with such prohibited items will be reported against and his/her candidature will be summarily cancelled. 11. Rough work must be done on the Question Booklet itself. Additional blank pages are given in the Question Booklet for rough work. 12. Hand over the OMR Sheet to the invigilator before leaving the Examination Hall. 13. This Booklet contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However, if any discrepancy(ies) is /are found between the two versions, the information provided in the English version will stand and will be treated as final. 14. Candidates are allowed to take the Question Booklet after examination is over. Signature of the Candidate : ______________________________ (as in Admit Card) Signature of the Invigilator : ______________________________ A 1 P.T.O. M-2023 M-2023 SPACE FOR ROUGH WORK A 2 M-2023 MATHEMATICS Category-1 (Q. 1 to 50) (Carry 1 mark each. Only one option is correct. Negative marks: ̶ ¼) r r – 1 1. If the matrix Mr is given by Mr = for r = 1, 2, 3, … then r – 1 r det (M1) + det (M2) + … + det (M2008) = r r – 1 jÉ¡¢VÊ„ Mr = , r = 1, 2, 3, … cJu¡ BR z prœ r –1 r det (M1) + det (M2) + … + det (M2008) = (A) 2007 (B) 2008 (C) (2008)2 (D) (2007)2 2. Let , be the roots of the equation ax2 + bx + c = 0, a, b, c real and sn = n + n and 3 1 s1 1 s 2 (a b c) 2 1 s1 1 s 2 1 s3 = k then k = a4 1 s 2 1 s3 1 s 4 je Ll, , pj£LlZ ax2 + bx + c = 0-Hl c¤¢V h£S, kM¡e a, b, c h¡Ù¹h Hhw 3 1 s1 1 s 2 (a b c) 2 sn = n + n J 1 s1 1 s 2 1 s3 = k a¡qm k = a4 1 s 2 1 s3 1 s 4 (A) b2 – 4ac (B) b2 + 4ac (C) b2 + 2ac (D) 4ac – b2 2 0 3 3. Let A = 4 7 11. Then 5 4 8 (A) det A is divisible by 11 (B) det A is not divisible by 11 (C) det A = 0 (D) A is orthogonal matrix 2 0 3 je Ll, A = 4 7 11 z prœ 5 4 8 (A) det A, 11 à¡l¡ ¢hi¡SÉ (B) det A, 11 à¡l¡ ¢hi¡SÉ eu (C) det A = 0 (D) A HL¢V mð jÉ¡¢VÊ„ A 3 P.T.O. M-2023 4. Let X be a nonvoid set. If 1 and2 be the transitive relations on X, then (A) 1 º 2 is transitive relation (B) 1 º 2 is not transitive relation (C) 1 º 2 is equivalence relation (D) 1 º 2 is not any relation on X (º denotes the composition of relations) je Ll, X HL¢V An§ZÉ pV z k¢c 1 J 2 X-Hl pw‘¡a pwœ²jZ pðå qu, ah (A) 1 º 2 pwœ²jZ pðå (B) 1 º 2 pwœ²jZ pðå eu (C) 1 º 2 pja¥mÉa¡ pðå (D) 1 º 2 , X-Hl L¡e¡ pðå pw‘¡a Ll e¡ (º pwk¡SL pðå h¡T¡u) 1 5. Let A and B are two independent events. The probability that both A and B happen is 12 1 and probability that neither A nor B happen is. Then 2 1 je Ll, A J B flØfl ¢eiÑln£m eu Hje c¤¢V OVe¡ z A J B EiuC OVh Hje pñ¡he¡ qm 12 1 Hhw A J B -Hl LEC qh e¡ Hje pñ¡he¡ qm z prœ 2 1 1 1 1 (A) P(A) = , P(B) = (B) P(A) = , P(B) = 3 4 2 6 1 1 2 1 (C) P(A) = , P(B) = (D) P(A) = , P(B) = 6 2 3 8 6. Let A, B, C are subsets of set X. Then consider the validity of the following set theoretic statement : je Ll, A, B, C pV X-Hl EfpV z prœ ¢ej¢À m¢Ma pVa¡¢šL Ä ¢hhª¢a…¢ml kb¡bÑa¡ ¢eZÑu Ll : (A) A (B \ C) = (A B) \ (A C) (B) (A \ B) \ C = A \ (B C) (C) (A B) \ A = A \ B (D) A\C=B\C A 4 M-2023 1 7. If sin , cos , tan are in G.P, then the solution set of is 6 1 k¢c sin , cos , tan pj¡¿¹l fËN¢aa b¡L ah -Hl pj¡d¡e l¡¢n qh 6 π π π π (A) 2n (B) 2n (C) n + (–1)n (D) n 6 3 3 3 (Here/HM¡e n ) π 8. The equation r2 cos2 θ – = 2 represents 3 (A) a parabola (B) a hyperbola (C) a circle (D) a pair of straight lines π r2 cos2 θ – = 2 p§¢Qa Ll 3 (A) HL¢V A¢dhªš (B) HL¢V fl¡hªš (C) HL¢V hªš (D) plmlM¡ k¤Nm 9. Let S be the sample space of the random experiment of throwing simultaneously two unbiased dice and Ek = {(a, b) S : ab = k}. If pk = P(Ek), then the correct among the following is : c¤¢V V¡mq£e R‚¡ N¢su cJu¡ qm z S OVe¡ pj§ql ej¤e¡ rœ Hhw Ek = {(a, b) S : ab = k} z k¢c pk = P(Ek) qu, ah ¢ejÀl pÇfLÑ…¢ml L¡e¢V ¢WL ? (A) p1 < p10 < p4 (B) p2 < p8 < p14 (C) p4 < p8 < p17 (D) p2 < p16 < p5 A 5 P.T.O. M-2023 10. If 4a2 + 9b2 – c2 + 12ab = 0, then the family of straight lines ax + by + c = 0 is concurrent at (A) (2, 3) or (–2, –3) (B) (–2, 3) or (2, 3) (C) (3, 2) or (–3, 2) (D) (–3, 2) or (2, 3) k¢c 4a2 + 9b2 – c2 + 12ab = 0 qu, ah plmlM¡ f¢lh¡l ax + by + c = 0 k ¢h¾c¤a pj¢h¾c¤ qh a¡ q'm, (A) (2, 3) Abh¡ (–2, –3) (B) (–2, 3) Abh¡ (2, 3) (C) (3, 2) Abh¡ (–3, 2) (D) (–3, 2) Abh¡ (2, 3) 11. The straight lines x + 2y – 9 = 0, 3x + 5y – 5 = 0 and ax + by – 1 = 0 are concurrent if the straight line 35x – 22y + 1 = 0 passes through the point x + 2y – 9 = 0, 3x + 5y – 5 = 0 J ax + by – 1 = 0 plmlM¡œu pj¢h¾c¤ qh, k¢c 35x – 22y + 1 = 0 plmlM¡¢V k ¢h¾c¤N¡j£ qu, (A) (–a, –b) (B) (a, – b) (C) (–a, b) (D) (a, b) 12. Let A be the point (0, 4) in the xy-plane and let B be the point (2t, 0). Let L be the midpoint of AB and let the perpendicular bisector of AB meet the y-axis M. Let N be the midpoint of LM. Then locus of N is (A) a circle (B) a parabola (C) a straight line (D) a hyperbola xy-am A(0, 4) Hhw B(2t, 0) z je Ll, L, AB-Hl jdÉ¢h¾c¤ Hhw je Ll, AB-Hl mð pj¢àMäL y-ArL M ¢h¾c¤a Rc Ll z je Ll, N, LM-Hl jdÉ¢h¾c¤ z prœ N-Hl p’¡lfb qh (A) HL¢V hªš (B) HL¢V A¢dhªš (C) HL¢V plmlM¡ (D) HL¢V fl¡hªš A 6 M-2023 13. Let O be the vertex, Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ internally in the ratio 1 : 3, then the locus of P is je Ll, A¢dhªš x2 = 8y -Hl n£oÑ¢h¾c¤ qm O Hhw Q A¢dhªšl Ef¢lÙÛ L¡e HL¢V ¢h¾c¤ z k¢c P ¢h¾c¤ OQ lM¡wnL 1 : 3 Ae¤f¡a A¿¹Ñ¢hiš² Ll ah P-Hl p’¡lfb qh (A) x2 = y (B) y2 = x (C) y2 = 2x (D) x2 = 2y π x 2 y2 14. The tangent at point (a cos , b sin ), 0 < < , to the ellipse 2 2 = 1 meets the 2 a b x-axis at T and y-axis at T1. Then the value of 0 min θ π (OT) (OT1) is 2 x 2 y2 π Efhªš 2 2 = 1 -Hl (a cos , b sin ), 0 < < , ¢h¾c¤a A¢ˆa ØfnÑL x-ArL T ¢h¾c¤a a b 2 J y-ArL T1 ¢h¾c¤a Rc Ll z prœ 0 min θ π (OT) (OT1) Hl j¡e qh 2 (A) ab (B) 2ab (C) 0 (D) 1 15. ABC is an isosceles triangle with an inscribed circle with centre O. Let P be the midpoint of BC. If AB = AC = 15 and BC = 10, then OP equals 5 5 (A) unit (B) unit 2 2 (C) 2 5 unit (D) 5 2 unit ABC HL¢V pj¢àh¡ý ¢œi¥S, k¡l HL¢V A¿¹xhªš haÑj¡e J I hªšl L¾cÊ O z je Ll, P, BC Hl jdÉ¢h¾c¤ z k¢c AB = AC = 15 HLL qu J BC = 10 HLL qu, ah OP qh 5 5 (A) HLL (B) HLL 2 2 (C) 2 5 HLL (D) 5 2 HLL A 7 P.T.O. M-2023 x 2 y2 16. If the lines joining the focii of the ellipse 2 2 = 1 where a > b, and an extremity of its a b minor axis is inclined at an angle 60º, then the eccentricity of the ellipse is x 2 y2 Efhªš = 1, a > b -Hl e¡¢iàu J Efhªš¢Vl Ef¡rl HL¢V fË¡¿¹¢h¾c¤l pwk¡NL¡l£ plmlM¡ a 2 b2 60º L¡Z ea qm, Efhªš¢Vl EvL¾cÊa¡ qh 3 1 7 1 (A) (B) (C) (D) 2 2 3 3 17. If the distance between the plane x – 2y + z = k and the plane containing the lines x –1 y – 2 z – 3 x–2 y–3 z–4 and is 6 , then | k | is 2 3 4 3 4 5 x –1 y – 2 z – 3 x–2 y–3 z–4 am x – 2y + z = k J J plmlM¡àul d¡lL 2 3 4 3 4 5 aml jdÉL¡l c§laÄ 6 HLL qm | k | qh (A) 36 (B) 12 (C) 6 (D) 2 3 π 18. Let A(2 sec , 3 tan ) and B(2 sec , 3 tan ) where + = be two points on the 2 x 2 y2 hyperbola – = 1. If (, ) is the point of intersection of normals to the hyperbola at 4 9 A and B, then is equal to π x 2 y2 je Ll, A(2 sec , 3 tan ) J B(2 sec , 3 tan ), + = fl¡hªš – = 1-Hl Ef¢lÙÛ 2 4 9 c¤¢V ¢h¾c¤ z I A & B c¤C ¢h¾c¤a A¢ˆa A¢imðàul Rc ¢h¾c¤l ÙÛ¡e¡ˆ (, ) qm qh 12 13 12 13 (A) (B) (C) – (D) – 3 3 3 3 A 8 M-2023 19. Let f(x) = [x2] sin x, x > 0. Then (A) f is discontinuous everywhere. (B) f is continuous everywhere. (C) f is continuous at only those points which are perfect squares. (D) f is continuous at only those points which are not perfect squares. je Ll, f(x) = [x2] sin x, x > 0 prœ, (A) f phÑœC Ap¿¹a (B) f phÑœC p¿¹a (C) kph ¢h¾c¤ f§ZÑhNÑ, Lhmj¡œ pCph ¢h¾c¤aC f p¿¹a qh (D) kph ¢h¾c¤ f§ZÑhNÑ eu, Lhmj¡œ pCph ¢h¾c¤aC f p¿¹a qh 20. If y = lognx, where logn means loge loge loge … (repeated n times), then dy x log x log2 x log3 x ….. logn – 1 x logn x is equal to dx logn hma loge loge loge … (n-pwMÉL fc fkÑ¿¹) h¡T¡u z k¢c y = logn x qu, ah dy x log x log2 x log3 x ….. logn – 1 x logn x -Hl j¡e qh dx (A) log x (B) x (C) 1 (D) logn x 21. The angle between a normal to the plane 2x – y + 2z – 1 = 0 and the X-axis is X-Ar Hhw 2x – y + 2z – 1 = 0 -aml A¢imðl jdÉL¡l L¡Z qh 2 1 3 1 (A) cos–1 (B) cos–1 (C) cos–1 (D) cos–1 3 5 4 3 A 9 P.T.O. M-2023 22. lim n x x – ( x – a1 )( x – a 2 )... ( x – a n ) where a1, a2, …, an are positive rational numbers. The limit a1 a 2 ... a n (A) does not exist (B) is n n n (C) is a1a 2... a n (D) is a1 a 2 ... a n lim x x – ( x – a1 )( x – a 2 )... ( x – a n ) kM¡e a1, a2, …, an de¡aÈL j§mc pwMÉ¡, p£j¡ qm n a1 a 2 ... a n (A) p£j¡¢Vl A¢Ù¹aÄ eC (B) qh n n (C) qh n a1a 2... a n (D) qh a1 a 2 ... a n 1, if x 1 23. Suppose f : be given by f(x) = ( x –1) 10 1 , if x 1 then e ( x – 1) 2 sin x –1 (A) f ′(1) does not exist (B) f ′(1) exists and is zero (C) f ′(1) exist and is 9 (D) f ′(1) exists and is 10 1, if x 1 je Ll, f : ¢ejÀi¡h pw‘¡a BR f(x) = ( x10 –1) 1 , if x 1 a¡qm e ( x – 1) 2 sin x –1 (A) f ′(1)-Hl A¢Ù¹aÄ eC (B) f ′(1)-Hl A¢Ù¹aÄ BR J j¡e qh 0 (C) f ′(1) -Hl A¢Ù¹aÄ BR J j¡e qh 9 (D) f ′(1)-Hl A¢Ù¹aÄ BR J j¡e qh 10 A 10 M-2023 24. f(x) is a differentiable function and given f'(2) = 6 and f'(1) = 4, then f(2 2h h 2 ) – f(2) L = hlim 0 f(1 h – h 2 ) – f(1) (A) does not exist (B) equal to –3 (C) equal to 3 (D) equal to 3/2 f(x) HL¢V AhLme k¡NÉ AfrL Hhw f'(2) = 6, f'(1) = 4 cJu¡ BR z 2 f(2 2h h ) – f(2) prœ, L = hlim 0 f(1 h – h 2 ) – f(1) (A) Hl A¢Ù¹aÄ eC (B) –3 Hl p‰ pj¡e (C) 3 Hl p‰ pj¡e (D) 3/2 Hl p‰ pj¡e n y x 25. Let cos–1 = loge , then Ay2 + By1 + Cy = 0 is possible for b n n je Ll, cos–1 = loge z prœ Ay2 + By1 + Cy = 0 pñh kMe y x b n d2y dy where/ kM¡e y2 = 2 , y1 = dx dx (A) A = 2, B = x2, C = n (B) A = x2, B = x, C = n2 (C) A = x, B = 2x, C = 3n + 1 (D) A = x2, B = 3x, C = 2n 26. Let f : [1, 3] be continuous and be derivable in (1, 3) and f'(x) = [f(x)]2 + 4 x (1, 3). Then (A) f(3) – f(1) = 5 holds (B) f(3) – f(1) = 5 does not hold (C) f(3) – f(1) = 3 holds (D) f(3) – f(1) = 4 holds je Ll, f : [1, 3] AfrL¢V [1, 3] A¿¹l¡m p¿¹a J (1, 3) a AhLmerœ AfrL z f ′(x) = [f(x)]2 + 4 pLm x (1, 3)-Hl SeÉ z prœ, (A) f(3) – f(1) = 5 kb¡bÑ (B) f(3) – f(1) = 5 kb¡bÑ eu (C) f(3) – f(1) = 3 kb¡bÑ (D) f(3) – f(1) = 4 kb¡bÑ A 11 P.T.O. M-2023 dx 1 | x – 3 |3 | x 1 | 27. If ( x 1) ( x – 2) ( x – 3) k e ( x – 2)4 + c, then the value of k is log dx 1 | x – 3 |3 | x 1 | k¢c log e + c qu, ah k-Hl j¡e qh ( x 1) ( x – 2) ( x – 3) k ( x – 2) 4 (A) 4 (B) 6 (C) 8 (D) 12 n [ x ] dx 0 28. The expression n , where [x] and {x} are respectively integral and fractional part of {x} dx 0 x and n , is equal to n [ x ] dx 0 n -Hl j¡e qh (HM¡e [x] J {x}h¢ma x-Hl kb¡œ²j f§ZÑpwMÉ¡ j¡e J Awnj¡e h¤T¡Ch) {x} dx 0 Hhw n , 1 1 (A) (B) (C) n (D) n – 1 n –1 n x 2 dx 29. If I = ( x sin x cos x)2 = f(x) + tan x + c, then f(x) is x 2 dx k¢c I = ( x sin x cos x)2 = f(x) + tan x + c qu, ah f(x) qh sin x 1 (A) (B) x sin x cos x ( x sin x cos x) 2 –x 1 (C) (D) cos x ( x sin x cos x) sin x ( x cos x sin x) A 12 M-2023 π 2 30. If In = cosn x cos nxdx, then I1, I2, I3 … are in 0 (A) A.P. (B) G.P. (C) H.P. (D) no such relation π 2 k¢c In = cosn x cos nxdx, a¡qm I1, I2, I3 … 0 (A) pj¡¿¹l fËN¢aa b¡Lh, (B) …Z¡šl fËN¢aa b¡Lh, (C) ¢hfl£a fËN¢aa b¡Lh, (D) Hje L¡e¡ pÇfLÑ b¡Lh e¡ x dy y x x 31. If y = is the solution of the differential equation , then is log e | cx | dx x y y given by dy y x x x A¿¹lLm pj£LlZl pj¡d¡e y = qm, qh dx x y log e | cx | y y2 y2 x2 x2 (A) (B) – (C) (D) – x2 x2 y2 y2 1/2 dx 32. The value of 1 – x 2n is (n ) 0 π (A) less than or equal to (B) greater than or equal to 1 6 1 π (C) less than (D) greater than 2 6 1/2 dx 1– x 2n (n )-Hl j¡e 0 π (A) -Hl Qu R¡V h¡ pj¡e (B) 1-Hl Qu hs¡ h¡ pj¡e 6 1 π (C) -Hl Qu R¡V (D) -Hl Qu hs¡ 2 6 A 13 P.T.O. M-2023 d 2 y dy dy dy 33. The function y = ekx satisfies 2 – y = y. It is valid for dx dx dx dx (A) exactly one value of k. (B) two distinct values of k. (C) three distinct values of k. (D) infinitely many values of k. d 2 y dy dy AfrL y = ekx, 2 – y = y -L ¢pÜ Ll z H¢V °hd qh dy dx dx dx dx (A) k-Hl HL¢V j¡œ j¡el SeÉ (B) k-Hl c¤¢V fªbL fªbL j¡el SeÉ (C) k-Hl ¢ae¢V fªbL fªbL j¡el SeÉ (D) k-Hl Ap£j pwMÉL j¡el SeÉ d2y dy 34. Given 2 + cot x + 4y cosec2 x = 0. Changing the independent variable x to z by the dx dx x substitution z = log tan , the equation is changed to 2 d2y dy 2 x = 0 z ü¡d£e Qml¡¢n x-Hl hcm z = log tan x qm, pj£LlZ¢V + cot x + 4y cosec dx 2 dx 2 f¢lh¢aÑa qh d2 y 3 d2y (A) =0 (B) 2 2 + ey = 0 dz 2 y dz d2y d2y (C) – 4y = 0 (D) + 4y = 0 dz 2 dz 2 A 14 M-2023 35. A missile is fired from the ground level rises x meters vertically upwards in t sec, where 25 2 x = 100t – t. The maximum height reached is 2 i¨¢j bL HL¢V rfZ¡Ù» Eõði¡h Ev¢rç qu, k¢V t pLä x ¢jV¡l fb A¢aœ²j Ll kM¡e 25 2 x = 100t – t z rfZ¡Ù»¢V k phÑ¡µQ EµQa¡ f¢lœ²j Ll a¡l f¢lj¡f 2 (A) 100 m (B) 300 m (C) 200 m (D) 125 m 36. If a hyperbola passes through the point P( 2 , 3 ) and has foci at ( 2, 0), then the tangent to this hyperbola at P is P( 2 , 3 ) ¢h¾c¤N¡j£ HL¢V fl¡hªšl e¡¢iàu ( 2, 0) qm, P ¢h¾c¤a A¢ˆa ØfnÑLl pj£LlZ qm (A) y=x 6 – 3 (B) y=x 3– 6 (C) y=x 6 3 (D) y=x 3 6 x 1, – 1 x 0 37. Let f(x) = – x, 0 x 1 (A) f(x) is discontinuous in [–1, 1] and so has no maximum value or minimum value in [–1, 1]. (B) f(x) is continuous in [–1, 1] and so has maximum value and minimum value. (C) f(x) is discontinuous in [–1, 1] but still has the maximum and minimum value. (D) f(x) is bounded in [–1, 1] and does not attain maximum or minimum value. x 1, – 1 x 0 je Ll, f(x) = z prœ, – x, 0 x 1 (A) f(x), [–1, 1]-H Ap¿¹a J pL¡lZ phÑ¡µQ J phÑ¢ejÀ j¡e f¢lNËq Ll e¡ (B) f(x), [–1,1]-H p¿¹a J pL¡lZ phÑ¡µQ J phÑ¢ejÀ j¡e f¢lNËq Ll (C) f(x), [–1, 1] -H Ap¿¹a ¢L¿¹¥ a¡pšJ Ä AfrL¢V phÑ¡µQ J phÑ¢ejÀ j¡e f¢lNËq Ll (D) f(x), [–1,1] -H p£j¡hÜ AfrL Hhw phÑ¡µQ J phÑ¢ejÀ j¡e f¢lNËq Ll e¡ A 15 P.T.O. M-2023 x 2 y2 38. The average length of all vertical chords of the hyperbola 2 – 2 = 1, a x 2a, is a b x 2 y2 fl¡hªš – = 1, a x 2a z fl¡hªšl pLm Eõð SÉ¡-Hl Ns °cOÉÑ qm a 2 b2 (A) b 2 3 ln(2 3 ) (B) b 3 2 ln(3 2 ) (C) a 2 5 – ln(2 5 ) (D) a 5 2 ln(5 2 ) 39. The value of ‘a’ for which the scalar triple product formed by the vectors ^ ^ ^ ^ ^ α = ^i + a j + k , β = j + a k and γ = a ^i + k is maximum, is ^ ^ ^ ^ ^ α = ^i + a j + k , β = j + a k , γ = a ^i + k -Hl scalar triple product phÑ¡µQ qm ‘a’ -Hl j¡e qh (A) 3 (B) –3 1 1 (C) – (D) 3 3 40. A, B are fixed points with coordinates (0, a) and (0, b) (a > 0, b > 0). P is variable point (x, 0) referred to rectangular axis. If the angle APB is maximum, then A J B c¤¢V ¢ÙÛl ¢h¾c¤, a¡cl ÙÛ¡e¡ˆ kb¡œ²j (0, a) J (0, b) (a > 0, b > 0) z Bua¡L¡l Ar hÉhÙÛ¡u, P HL¢V N¢an£m ¢h¾c¤ (x, 0) z k¢c L¡Z APB phÑ¡µQ qu, ah (A) x2 = ab (B) x2 = a + b \ 1 ab (C) x= (D) x= ab 2 A 16 M-2023 41. If 1, log9 (31 – x + 2), log3 (4.3x – 1) are in A.P, then x equals 1, log9 (31 – x + 2), log3 (4.3x – 1) pj¡¿¹l fËN¢aa b¡Lm x Hl j¡e qh (A) log3 4 (B) 1 – log3 4 (C) 1 – log4 3 (D) log4 3 42. Reflection of the line a– z + az– = 0 in the real axis is given by h¡Ù¹h Ar a– z + az– = 0 lM¡l fË¢agme qh a a (A) az + az = 0 (B) a– z – az– = 0 (C) az – az = 0 (D) =0 z z 43. If the vertices of a square are z 1, z2, z3 and z4 taken in the anti-clockwise order, then z 3 = O¢sl Ly¡V¡l ¢hfl£a ¢cL ¢e¢lM HL¢V hNÑrœl L±¢ZL ¢h¾c¤ Qa¥øu kb¡œ²j z1, z2, z3 J z4 qm z3 qh (A) –iz1 – (1 + i) z2 (B) z1 – (1 + i) z2 (C) z1 + (1 + i) z2 (D) –iz1 + (1 + i) z2 44. If the n terms a1, a2, ……, an are in A.P. with increment r, then the difference between the mean of their squares & the square of their mean is n pwMÉL fc a1, a2, ……, an pj¡¿¹l fËN¢aa (A.P.) BR, kM¡e p¡d¡lZ A¿¹l qm r z prœ pwMÉ¡…¢ml hNÑ pj§ql jdÉL J pwMÉ¡…¢ml jdÉLl hNÑl A¿¹l qm r 2 {(n – 1) 2 – 1} r2 r 2 (n 2 – 1) n2 –1 (A) (B) (C) (D) 12 12 12 12 A 17 P.T.O. M-2023 45. The number of ways in which the letters of the word ‘VERTICAL’ can be arranged without changing the order of the vowels is ‘VERTICAL’ në¢Vl ülhZÑ…¢ml œ²j f¢lhaÑe e¡ Ll I në¢Vl Arl…¢mL kai¡h ¢heÉÙ¹ Ll¡ k¡u, a¡l pwMÉ¡ qm 8! (A) 6! 3! (B) 3 8! (C) 6! 3 (D) 3! 46. n objects are distributed at random among n persons. The number of ways in which this can be done so that at least one of them will not get any object is n pwMÉL hÉ¢š²l jdÉ Ljfr HLSe L¡e hÙ¹¥C f¡he e¡ -HC naÑ¡d£e n pwMÉL hÙ¹¥ kcªµR i¡h pjha hÉ¢š²cl jdÉ h¾Ve Ll¡ k¡h k pwMÉL fÜ¢aa, a¡ qm (A) n! – n (B) nn – n (C) nn – n2 (D) nn – n! 47. If one root of x2 + px – q2 = 0, p and q are real, be less than 2 and other be greater than 2, then x2 + px – q2 = 0 pj£LlZl (p J q h¡Ù¹h) HL¢V h£S 2-l Qu R¡V¡ J Afl¢V 2-l Qu hs qm (A) 4 + 2p + q2 > 0 (B) 4 + 2p + q2 < 0 (C) 4 + 2p – q2 > 0 (D) 4 + 2p – q2 < 0 A 18 M-2023 48. Let A be a set containing n elements. A subset P of A is chosen, and the set A is reconstructed by replacing the elements of P. A subset Q of A is chosen again. The number of ways of choosing P and Q such that Q contains just one element more than P is A HL¢V n pcpÉ ¢h¢nø pV z P, A -Hl HL¢V EfpV NWe Ll¡ qm z P EfpVl pcpÉ…¢m ¢cu A pV¢V f¤el¡u NWe Ll¡ qm z Q, A Hl Bl HL¢V EfpV NWe Ll¡ qm z P J Q ka lLj i¡h NWe Ll¡ k¡h k¡a Q-Hl pcpÉ pwMÉ¡ P-Hl pcpÉ pwMÉ¡l bL HL¢V hn£ qu a¡l pwMÉ¡ qh (A) 2nC (B) 2nC (C) 2nC (D) 22n + 1 n–1 n n+2 49. Let A and B are orthogonal matrices and det A + det B = 0. Then (A) A + B is singular (B) A + B is non-singular (C) A + B is orthogonal (D) A + B is skew symmetric je Ll, A J B c¤¢V mð jÉ¡¢VÊ„ Hhw det A + det B = 0 z prœ (A) A + B ¢h¢nø jÉ¡¢VÊ„ (B) A + B A¢h¢nø jÉ¡¢VÊ„ (C) A + B HL¢V mð jÉ¡¢VÊ„ (D) A + B ¢hfË¢apj jÉ¡¢VÊ„ 50. Let P(n) = 32n + 1 + 2n + 2 where n . Then (A) P(n) is not divisible by any prime integer. (B) there exists prime integer which divides P(n). (C) P(n) is divisible by 5 for all n . (D) P(n) is divisible by 3 for all n . je Ll, pLm n Hl SeÉ P(n) = 32n + 1 + 2n + 2 z prœ (A) P(n) L¡e j±¢mL pwMÉ¡ à¡l¡ ¢hi¡SÉ eu (B) Hje j±¢mL pwMÉ¡l A¢Ù¹aÄ luR k¡l à¡l¡ P(n) ¢hi¡SÉ qh (C) pLm n Hl SeÉ P(n), 5 à¡l¡ ¢hi¡SÉ qh (D) pLm n Hl SeÉ P(n), 3 à¡l¡ ¢hi¡SÉ qh A 19 P.T.O. M-2023 Category-2 (Q. 51 to 65) (Carry 2 marks each. Only one option is correct. Negative marks: ̶ ½) 51. Let be a relation defined on set of natural numbers , as = {(x, y) : 2x + y = 41}. Then domain A and range B are ü¡i¡¢hL pwMÉ¡l pV -H pÇfLÑ pw‘¡a BR k = {(x, y) : 2x + y = 41} z prœ pw‘¡l A’m A J X-H ¢hÙ¹¡l B qm (A) A {x : 1 x 20} and B {y : 1 y 39} (B) A = {x : 1 x 15} and B = {y : 2 y 30} (C) A ,Bℚ (D) A = ℚ, B = ℚ 52. From the focus of the parabola y2 = 12x, a ray of light is directed in a direction making an 3 angle tan–1 with x-axis. Then the equation of the line along which the reflected ray 4 leaves the parabola is 3 A¢dhªš y2 = 12x-Hl e¡¢i bL HL¢V Bm¡Ll¢nÈ x-Arl p‰ tan–1 L¡Z ea A¢ij¤M 4 d¡¢ha qu z prœ fË¢ag¢ma l¢nÈ k m¡Ce hl¡hl A¢dhªš aÉ¡N Ll a¡q¡l pj£LlZ qm (A) y=2 (B) y = 18 (C) y=9 (D) y = 36 0 0 1 0 1 0 0 1 0 53. Let A = 1 0 0 , B = 0 0 1 and P = x 0 0 be an orthogonal matrix such that 0 0 0 0 0 0 0 0 y B = PAP–1 holds. Then 0 0 1 0 1 0 0 1 0 je Ll, A = 1 0 0 , B = 0 0 1 J P = x 0 0 HL¢V mð jÉ¡¢VÊ„ (orthogonal 0 0 0 0 0 0 0 0 y matrix) Hl©f k B = PAP–1 ¢pÜ Ll z prœ (A) x=1=y (B) x = 1, y = 0 (C) x = 0, y = 1 (D) x = –1, y = 0 A 20 M-2023 lim 1 1 1 1 ... 1 1 54. The value of n 2 · 3 22 · 3 22 · 32 23 · 32 is 2n · 3n 2n 1 · 3n lim 1 1 1 1 ... 1 1 n 2 · 3 22 · 3 22 · 32 23 · 32 Hl j¡e 2n · 3n 2n 1 · 3n 3 3 3 3 (A) (B) (C) (D) 8 10 14 16 55. The family of curves y = ea sin x, where ‘a’ is arbitrary constant, is represented by the differential equation hœ²lM¡ f¢lh¡l y = ea sin x, ‘a’ - kcªµR dËh¤ L, k AhLm pj£LlZ à¡l¡ pw‘¡a qh p¢V qm dy dy (A) y log y = tan x (B) y log x = cot x dx dx dy dy (C) log y = tan x (D) log y = cot x dx dx 56. The locus of points (x, y) in the plane satisfying sin2 x + sin2 y = 1 consists of (A) a circle centered at origin (B) infinitely many circles that are all centered at the origin (C) infinitely many lines with slope 1 (D) finitely many lines with slope 1 sin2 x + sin2 y = 1 pj£LlZL ¢pÜ Ll, Hje (x, y) am¢ÙÛa pLm ¢h¾c¤l p’¡lfb qm (A) j§m ¢h¾c¤a L¾cÊ Hje hªš (B) j§m ¢h¾c¤a L¾cÊ Hje Ap£j pwMÉL hªš (C) e¢a 1 pð¢ma Ap£j pwMÉL lM¡l f¢lh¡l (D) e¢a 1 pð¢ma pp£j pwMÉL lM¡l f¢lh¡l A 21 P.T.O. M-2023 57. If x = sin and y = sin k, then (1 – x2)y2 – xy1 – y = 0, for α = x = sin J y = sin k fËcš z (1 – x2)y2 – xy1 – y = 0 qm, -Hl j¡e qh (A) k (B) –k (C) –k2 (D) k2 1 58. In the interval (–2, 0), the function f(x) = sin 3 . x (A) never changes sign. (B) changes sign only once. (C) changes sign more than once but finitely many times. (D) changes sign infinitely many times. 1 (–2, 0) A¿¹l¡m AfrL qm f(x) = sin 3 z AfrL¢V x (A) LMeC ¢Qq² f¢lhaÑe Ll e¡ (B) j¡œ HLh¡l ¢Qq² f¢lhaÑe Ll (C) HLh¡ll Qu h¢n ¢L¿¹¥ pp£j pwMÉL h¡l ¢Qq² f¢lhaÑe Ll (D) Ap£j pwMÉL h¡l ¢Qq² f¢lhaÑe Ll 2π θ sin 6 59. θ cos θ dθ is equal to 0 2π θ sin 6 θ cos θ dθ -Hl j¡e qm 0 π 3π 16π (A) (B) (C) (D) 0 16 16 3 A 22 M-2023 60. The average ordinate of y = sin x over [0, ] is [0, ] -Hl Jf®l y = sin x hœ²lM¡l L¡¢V pj§ql °cOÑÉl Ns qm 2 3 (A) (B) π π 4 (C) (D) π 2 2 2 61. The portion of the tangent to the curve x 3 + y 3 = a 3 , a > 0 at any point of it, intercepted between the axes (A) varies as abscissa (B) varies as ordinate (C) is constant (D) varies as the product of abscissa and ordinate 2 2 2 x 3 + y 3 = a 3 , a > 0 hœ²lM¡l Ef¢lÙÛ L¡e ¢h¾c¤a A¢ˆa ØfnÑLl k Awn Aràul jdÉ R¢ca qu, p¢V (A) i¥Sl p‰ plmic BR (B) L¡¢Vl p‰ plmic BR (C) dˤhL (D) i¥S J L¡¢Vl …Zgml p‰ plmic BR A 23 P.T.O. M-2023 62. If the volume of the parallelopiped with a b , b c and c a as coterminous edges is 9 cu. units, then the volume of the parallelopiped with ( a b ) ( b c ), ( b c ) ( c a ) and ( c a ) ( a b ) as coterminous edges is (A) 9 cu. units (B) 729 cu. units (C) 81 cu. units (D) 243 cu. units 9 Oe HLL Buae ¢h¢nø HL¢V Qa¥ÙÛmLl pjfË¡¢¿¹L h¡ý…¢m a b , b c Hhw c a z k Qa¥ÙÛmLl pjfË¡¢¿¹L h¡ý…¢m, ( a b ) ( b c ), ( b c ) ( c a ) Hhw ( c a ) ( a b ) a¡l Buae qh (A) 9 Oe HLL (B) 729 Oe HLL (C) 81 Oe HLL (D) 243 Oe HLL 63. Given f(x) = esin x + ecos x. The global maximum value of f(x) (A) does not exist. 1 π (B) exists at a point in 0, and its value is 2e 2. 2 (C) exists at infinitely many points. (D) exists at x = 0 only. f(x) = esin x + ecos x AfrLl global phÑ¡µQ j¡e (A) -Hl A¢Ù¹aÄ eC 1 π (B) 0, -A¿¹l¡m HL¢V ¢h¾c¤a A¢Ù¹aÄ BR Hhw a¡l j¡e qm 2e 2 2 (C) Ap£j pwMÉL ¢h¾c¤a I phÑ¡µQ j¡e ¢hcÉj¡e (D) öd¤j¡œ x = 0 -a A¢Ù¹aÄ BR A 24 M-2023 64. Consider a quadratic equation ax2 + 2bx + c = 0 where a, b, c are positive real numbers. If the equation has no real root, then which of the following is true ? (A) a, b, c cannot be in A.P. or H.P. but can be in G.P. (B) a, b, c cannot be in G.P. or H.P. but can be in A.P. (C) a, b, c cannot be in A.P. or G.P. but can be in H.P. (D) a, b, c cannot be in A.P., G.P. or H.P. a, b, c- de¡aÈL h¡Ù¹h pwMÉ¡ qm ax2 + 2bx + c = 0 ¢àO¡a pj£LlZ¢V ¢hhQe¡ Ll z pj£LlZ¢Vl h£S…¢m h¡Ù¹h e¡ qm, ¢ejÀ¢m¢Ma ¢hhª¢a…¢ml L¡e¢V paÉ : (A) a, b, c, A.P. h¡ H.P. a b¡Lh e¡ ¢L¿¹¥ G.P. a b¡La f¡l (B) a, b, c, G.P. h¡ H.P. a b¡Lh e¡ ¢L¿¹¥ A.P. a b¡La f¡l (C) a, b, c, A.P. h¡ G.P. a b¡Lh e¡ ¢L¿¹¥ H.P. a b¡La f¡l (D) a, b, c, A.P., G.P. h¡ H.P. a eC 65. Let a1, a2, a3, …, an be positive real numbers. Then the minimum value of a1 a 2 a .... n is a 2 a3 a1 a1 a 2 a je Ll, a1, a2, a3, …, an de¡aÈL h¡Ù¹h pwMÉ¡ z prœ .... n -Hl phÑ¢ejÀ j¡e qh a 2 a3 a1 (A) 1 (B) n (C) nC (D) 2 2 A 25 P.T.O. M-2023 Category-3 (Q. 66 to 75) (Carry 2 marks each. One or more options are correct. No negative marks) 66. Let f be a strictly decreasing function defined on such that f ( x ) > 0 , x . Let x2 y2 = 1 be an ellipse with major axis along the y-axis. The value of f(a 2 5a 3) f(a 15) ‘a’ can lie in the interval (s) x2 y2 f, -H kb¡bÑ œ²jqÊÊ¡pj¡e AfrL J f(x) > 0, x z 2 = 1 Efhªš¢Vl f(a 5a 3) f(a 15) fl¡r y-Ar hl¡hl z prœ ‘a’ kM¡e b¡La f¡l p¢V qm (A) (–, –6) (B) (–6, 2) (C) (2, ) (D) (–, ) 67. A rectangle ABCD has its side parallel to the line y = 2x and vertices A, B, D are on lines y = 1, x = 1 and x = –1 respectively. The coordinate of C can be Buarœ ABCD-Hl HL¢V h¡ý y = 2x-Hl pj¡¿¹l¡m Hhw n£oÑ¢h¾c¤œu A, B, D kb¡œ²j y = 1, x = 1 J x = –1 -Hl Ef¢l¢ÙÛa z C-Hl ÙÛ¡e¡ˆ qh (A) (3, 8) (B) (–3, 8) (C) (–3, –1) (D) (3, –1) 68. If R and R1 are equivalence relations on a set A, then so are the relations (A) R–1 (B) R R1 (C) R R1 (D) All of these pV A-a R J R1 pja¥mÉ pðå pw‘¡a BR z Ae¤l©f pÇfLÑ qh (A) R–1 (B) R R1 (C) R R1 (D) ph L¢V A 26 M-2023 69. Let f(x) = xm, m being a non-negative integer. The value of m so that the equality f'(a + b) = f'(a) + f'(b) is valid for all a, b > 0 is f(x) = xm, m A-GZ¡aÈL f§ZÑpwMÉ¡ z f'(a + b) = f'(a) + f'(b) qh, k¢c a, b > 0 qu (A) 0 (B) 1 (C) 2 (D) 3 70. Which of the following statements are true ? aT (A) If f(x) be continuous and periodic with periodicity T, then I = f(x) dx depend on a ‘a’. aT (B) If f(x) be continuous and periodic with periodicity T, then I = f(x) dx does not a depend on ‘a’. 1 , if x is rational (C) Let f(x) = 0 , if x is irrational, then f is periodic of the periodicity T only if T is rational. (D) f defined in (C) is periodic for all T. ¢ejÀ¢hhª¢a…¢ml L¡e¢V paÉ ? aT (A) k¢c f(x) p¿¹a Hhw T-fkÑ¡hªšl HL¢V fkÑ¡hªš£u AfrL qu, ah I = f(x) dx, ‘a’-Hl a Efl ¢eiÑln£m qh aT (B) k¢c f(x) p¿¹a Hhw T-fkÑ¡hªšl HL¢V fkÑ¡hªš£u AfrL qu, ah I = f(x) dx, ‘a’-Hl a Efl ¢eiÑln£m eu 1 , x j§mc (C) je Ll, f(x) = 0 , x Aj§mc, f-fkÑ¡hªš T-Hl HL¢V fkÑ¡hªš£u AfrL qh HLj¡œ k¢c T j§mc qu (D) pLm T-Hl SeÉ (C) H h¢ZÑa f-fkÑ¡hªš AfrL qh A 27 P.T.O. M-2023 71. A balloon starting from rest is ascending from ground with uniform acceleration of 4 ft/sec2. At the end of 5 sec, a stone is dropped from it. If T be the time to reach the stone to the ground and H be the height of the balloon when the stone reaches the ground, then ¢ÙÛa¡hÙÛ¡ bL k¡œ¡ Ll HL¢V hm¤e 4 ft/sec2 aÄlZ EÜÑN¡j£ z 5 pLä fl hm¤e¢V bL HL¢V f¡bl Rs cJu¡ qm z k¢c f¡bl¢V T pLä fl i¨¢j ØfnÑ Ll Hhw kMe f¡bl¢V i¨¢j ØfnÑ Ll aMe hm¤e¢Vl EµQa¡ H ft.qu, ah (A) T = 6 sec (B) H = 112.5 ft (C) T = 5/2 sec (D) 225 ft 3 72. If f(x) = 3 x 2 – x2, then (A) f has no extrema. (B) f is maximum at two points x = 1 and x = –1. (C) f is minimum at x = 0. (D) f has maximum at x = 1 only. je Ll, f(x) = 3 3 x 2 – x2 prœ (A) f -Hl Qlj j¡e eC (B) x = 1, x = –1 ¢h¾c¤a f -Hl phÑ¡µQ j¡e BR (C) x = 0 ¢h¾c¤a f -Hl phÑ¢ejÀ j¡e ¢hcÉj¡e (D) öd¤j¡œ x = 1 ¢h¾c¤a f -Hl phÑ¡µQ j¡e BR x 0 π 73. Let f be a non-negative function defined on 0, . If 2 ( f ′(t) – sin 2t) dt = f(t) tan tdt, 0 x π 2 f(0) = 1, then f(x) dx is 0 je Ll, 0, -a pw‘¡a f A-GZ¡aÈL AfrL z π 2 π x 0 2 (f ′(t) – sin 2t)dt = f(t) tan tdt, f(0) = 1 prœ f(x) dx qh 0 x 0 π π π (A) 3 (B) 3– (C) 3+ (D) 2 2 2 A 28 M-2023 z1 z 2 z 74. If z1 and z2 are two complex numbers satisfying the equation = 1, then 1 may z1 – z 2 z2 be (A) real positive (B) real negative (C) zero (D) purely imaginary z1 z 2 z z1 J z2 c¤¢V S¢Vml¡¢n Hje k = 1, prœ 1 qh z1 – z 2 z2 (A) de¡aÈL h¡Ù¹h (B) GZ¡aÈL h¡Ù¹h (C) n§ZÉ (D) f¤l¡f¤¢l L¡Òf¢eL 75. A letter lock consists of three rings with 15 different letters. If N denotes the number of ways in which it is possible to make unsuccessful attempts to open the lock, then (A) 482 divides N (B) N is the product of two distinct prime numbers. (C) N is the product of three distinct prime numbers. (D) 16 divides N. HL¢V Arl a¡m¡u ¢ae¢V hmu BR z fË¢a¢V hmu 15 ¢V Ll ¢h¢iæ Arl BR z N k¢c a¡m¡ M¡m¡l Qø¡u Ap¡gmÉl pwMÉ¡ qu ah (A) N, 482 à¡l¡ ¢hi¡SÉ (B) N, c¤¢V Bm¡c¡ j±¢mL pwMÉ¡l …Zgm (C) N, ¢ae¢V Bm¡c¡ j±¢mL pwMÉ¡l …Zgm (D) N, 16 à¡l¡ ¢hi¡SÉ ____________ A 29 P.T.O. M-2023 SPACE FOR ROUGH WORK A 30 M-2023 SPACE FOR ROUGH WORK A 31 P.T.O. M-2023 M-2023 Subject : MATHEMATICS pju: 2 O¾V¡ f§ZÑj¡e : 100 ¢ecÑn¡hm£ 1. HC fËnÀfœ pjÙ¹ fËnC À AhS¢ƒi fËnÀ Hhw fË¢a¢V fËnÀl Q¡l¢V pñ¡hÉ Ešl cJu¡ BR z 2. Category-1 : HL¢V Ešl p¢WL z p¢WL Ešl ¢cm 1 eðl f¡h z i¥m Ešl ¢cm Abh¡ k L¡e HL¡¢dL Ešl ¢cm ¼ eðl L¡V¡ k¡h z 3. Category-2 : HL¢V Ešl p¢WL z p¢WL Ešl ¢cm 2 eðl f¡h z i¥m Ešl ¢cm Abh¡ k L¡e HL¡¢dL Ešl ¢cm ½ eðl L¡V¡ k¡h z 4. Category-3: HL h¡ HL¡¢dL Ešl p¢WL z ph L¢V p¢WL Ešl ¢cm 2 eðl f¡h z k¢c L¡e i¥m Ešl e¡ b¡L Hhw p¢WL EšlJ ph L¢V e¡ b¡L a¡qm f¡h 2 k L¢V p¢WL Ešl cJu¡ quR a¡l pwMÉ¡ Bpm k L¢V Ešl p¢WL a¡l pwMÉ¡ z k¢c L¡e¡ i¥m Ešl cJu¡ qu h¡ HL¡¢dL Ešll jdÉ HL¢VJ i¥m b¡L a¡qm Ešl¢V i¥m dl eJu¡ qh z ¢L¿¹¥ prœ L¡e¡ eðl L¡V¡ k¡h e¡, AbÑ¡v n§eÉ eðl f¡h z 5. OMR fœ A, B, C, D ¢Q¢q²a p¢WL Ol¢V il¡V Ll Ešl ¢ca qh z 6. OMR fœ Ešl ¢ca öd¤j¡œ L¡m¡ h¡ e£m L¡¢ml hm fu¾V fe hÉhq¡l Llh z 7. OMR fœ ¢e¢cÑø ÙÛ¡e R¡s¡ AeÉ L¡b¡J L¡e c¡N ch e¡ z 8. OMR fœ ¢e¢cÑø ÙÛ¡e fËnf À œl eðl Hhw ¢eSl l¡m eðl A¢a p¡hd¡ea¡l p¡b ¢mMa qh Hhw fËu¡Se£u Ol…¢m f§lZ Lla qh z 9. OMR fœ ¢e¢cÑø ÙÛ¡e ¢eSl e¡j J fl£r¡ L¾cÊl e¡j ¢mMa qh Hhw ¢eSl (Admit Card-H Eõ¢Ma) pÄ¡rl Lla qh z 10. fËnÀfœl eðl h¡ l¡m eðl i¥m ¢mMm Abh¡ i¥m Ol il¡V Llm, fl£r¡bÑ£l e¡j, fl£r¡ L¾cÊl e¡j h¡ pÄ¡rl L¡e i¥m b¡Lm Ešl fœ h¡¢am qu ka f¡l z OMR fœ¢V i¡yS qm h¡ a¡a Ae¡hnÉL c¡N fsmJ h¡¢am qu ka f¡l z fl£r¡bÑ£l HC dlel i¥m h¡ ApaÑLa¡l SeÉ Ešlfœ h¡¢am qm HLj¡œ fl£r¡bÑ£ ¢eSC a¡l SeÉ c¡u£ b¡Lh z 11. j¡h¡Cmg¡e, LÉ¡mL¥mVl, pÔ¡CXl¦m, mNVhm, q¡aO¢s, lM¡¢Qœ, NË¡g h¡ L¡e dlZl a¡¢mL¡ fl£r¡ Lr Be¡ k¡h e¡ z Bem p¢V h¡Su¡ç qh Hhw fl£r¡bÑ£l JC fl£r¡ h¡¢am Ll¡ qh z 12. fËnÀfœ l¡g L¡S Ll¡l SeÉ gy¡L¡ S¡uN¡ cJu¡ BR z AeÉ L¡e L¡NS HC L¡S hÉhq¡l Ll¡ k¡h e¡ z 13. fl£r¡ Lr R¡s¡l BN OMR fœ AhnÉ C f¢lcnÑLL ¢cu k¡h z 14. HC fËnÀfœ Cwl¡S£ J h¡wm¡ Eiu i¡o¡aC fËnÀ cJu¡ BR z h¡wm¡ j¡dÉj fËnÀ °al£l pju fËu¡Se£u p¡hd¡ea¡ J paLÑa¡ Ahmðe Ll¡ quR z a¡ pšÄJ k¢c L¡e Ap‰¢a mrÉ Ll¡ k¡u, prœ Cwl¡S£ j¡dÉj cJu¡ fËnÀ ¢WL J Q¨s¡¿¹ hm ¢hh¢Qa qh z 15. fl£r¡ ®no fl£r¡b£Ñl¡ fËnÀfœ¢V ¢eu k¡h z A 32