Methods of Approximation PDF

Document Details

FuturisticJasper4927

Uploaded by FuturisticJasper4927

King's College London

Tags

quantum mechanics perturbation theory approximation methods physics

Summary

This document presents different methods of approximation in physics, including perturbation theory, non-degenerate and degenerate perturbation theories, along with a discussion of their applications.

Full Transcript

METHODS OF APPROXIMATION Time-independent perturbation theory (non-degenerate) Time-independent degenerate perturbation theory Variational method Time-dependent perturbation theory DEGENERATE PERTURBATION THEORY Why is degenerate perturbation theory needed? 2-fold...

METHODS OF APPROXIMATION Time-independent perturbation theory (non-degenerate) Time-independent degenerate perturbation theory Variational method Time-dependent perturbation theory DEGENERATE PERTURBATION THEORY Why is degenerate perturbation theory needed? 2-fold degeneracy – Zero-order eigenfunctions – First-order energies Generalization to ζ –fold degeneracy Example: the Stark effect in the hydrogen atom – Ground state (non-degenerate) – First excited state (degenerate) SUMMARY - PERTURBATION THEORY The Hamiltonian of the A small time-independent system we are interested in perturbing potential ˆ ˆ ˆ ˆ ˆ H  H 0  H p  H 0   H1 λ is a measurement of the smallness of the perturbation. It is a device to A Hamiltonian we can keep track of how large terms in the solve exactly equations are. NON-DEGENERATE PERTURBATION THEORY SUMMARY - PERTURBED ENERGIES & STATES En  En(0)   En(1)   2 En(2) ...  En0   En(1)   En(2) ... 2 k  Hˆ 1 n  En0  n  Hˆ 1 n   ... k n E E 0 n 0 k  n   n( 0)   n(1)   2 n(2) ...  n   n(1)   n(2) ... k  Hˆ 1 n  n   k k n E E 0 n 0 k    Hˆ    ˆ H    ˆ H    ˆ H    n    m  k 0 1 n0 m0 1 k  n 1 n m 1  ... mn  k  n  En  Ek En  Em0   En0  Em0 2    If there is degeneracy, i.e. En0  Ek0 for n  k , then 2 k  Hˆ 1 n k  Hˆ 1 n  n(1)   k and  En(2)   k n En0  Ek0 k n En0  Ek0 give meaningless results. DEGENERATE PERTURBATION THEORY is needed! EXAMPLE: 2-FOLD DEGENERACY The unperturbed n th state is 2-fold degenerate Hˆ 0n  En0n Hˆ 0n  En0n n n   ,  any linear combination of n and n is also an eigenstate of Hˆ 0 with the same eigenvalue  n  c n  c n c , c     Hˆ 0  n  Hˆ 0 c n  c n  c Hˆ 0n  c Hˆ 0n  c En0n  c En0n  En0 c   n   c n  En0  n From previous lecture THE PERTURBED SYSTEM Hˆ 0 n( 0)  En0 n(0) ˆ (0) ˆ H1 n  H 0 n  En  n  En n (1) (1) (0) 0 (1) ˆ ˆ H1 n  H 0 n  En  n  En  n  En n (1) (2) (2) ( 0) (1) (1) 0 (2) 2-fold degeneracy ZERO-ORDER EIGENFUNCTIONS In non-degenerate perturbation theory  n(0)  n In degenerate perturbation theory  n(0)  c n  c n 2 2  (0) n  (0 ) n  c  c  1 Hˆ 0 n(0)  En0 n(0) Hˆ  (0)  Hˆ  (1)  E (1) (0 )  E 0 (1) 1 n 0 n n n n n 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS Hˆ 1 n(0)  Hˆ 0 n(1)  En(1) n(0)  En0 n(1)    Hˆ 0  En0  n(1)  En(1)  Hˆ 1  n(0)   Hˆ 0  En 0  (1) n  E(1) n  Hˆ   c  1  n  c n  bracket with n    n Hˆ 0  En0  n(1)  n En(1)  Hˆ 1 c n  c n       c n En(1)  Hˆ 1 n  c n En(1)  Hˆ 1 n 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS      n Hˆ 0  En0  n(1)  c n En(1)  Hˆ 1 n  c n En(1)  Hˆ 1 n  n Hˆ 0  n(1)  n En0  n(1)  c En(1) n n  c n Hˆ 1 n  c En(1) n n  c n Hˆ 1 n       1 0 n Hˆ 0  n(1)  n En0  n(1)  c En(1)  c n Hˆ 1 n  c n Hˆ 1 n Hˆ 0n  n(1)  En0 n  n(1)  c En(1)  c n Hˆ 1 n  c n Hˆ 1 n En0 n  n(1)  En0 n  n(1)  c En(1)  c n Hˆ 1 n  c n Hˆ 1 n    0  0  c En(1)  n Hˆ 1 n c  n Hˆ 1 n   c n Hˆ 1 n  En(1)  c n Hˆ 1 n  0 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS  Hˆ  E    E  Hˆ   c   c   0 0 n (1) n (1) n 1  n  n bracket with n     n Hˆ 0  En0  n(1)  c n En(1)  Hˆ 1 n  c n En(1)  Hˆ 1 n   En0 n  n(1)  En0 n  n(1)  c n Hˆ 1 n  c En(1)  c n Hˆ 1 n    0 c n Hˆ 1 n  c  n  Hˆ 1 n  En(1)  0 to be considered together with the equation from the previous slide i.e.   c n Hˆ 1 n  En(1)  c n Hˆ 1 n  0 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS  n 1 n n  c  Hˆ   E (1)  c  Hˆ   0   n 1 n    c n Hˆ 1 n  c n Hˆ 1 n  En(1)  0  Matrix elements of the perturbation n Hˆ 1 n  H1   c H1  En(1)  c H1  0   c H   1  c H1  E (1) n 0 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS   c H1  En(1)  c H1  0   system of linear equations  c H1  c H1  En  0 (1)  non-vanishing solutions for c and c if and only if H1  En(1) H1 0 H1 H1  E (1) n  H  E  H  E   H 1 (1) n 1 (1) n 1 H1    0 E  H  H  E  H H 2 (1) n 1  1 (1) n 1 1  H1 H1  0 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS H1  En(1) H1 0 H1 H1  En (1) This is equivalent to the calculation of the eigenvalues (En(1) ) of the matrix  H1 H1  H H1   1 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS   c H1  En(1)  c H1  0    c H1  c H1  En  0 (1)    H1 H1  c  (1)    c     En   H  1 H1  c  c   2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS   H  H1  En(1)  H1 H1  H1 H1  0 2 En(1) 1 2nd order equation with, in general, two different real solutions for En(1) : En(1)1 and En(1)2. En(1)1 and En(12 ) are in general different: the eigenvalues of Hˆ are not degenerate. The 2-fold degenerate level En0 of the unperturbed system is split into 2 different levels: En1  En0   En(1)1 En2  En0   En(1)2 The perturbation has lifted the degeneracy (in general the lifting may be either total or partial for  -fold degeneracy) 2-fold degeneracy ZERO-ORDER EIGENFUNCTIONS (1) (1)   c H1  En(1)  c H1  0  By substituting En1 and En2 into  c H   1  c  H 1   En (1) 0   2 sets of c and c are found, hence 2 zero-order eigenfunctions which, in general, correspond to different first-order energy corrections.  n(0)  c n  c n  En  En0   En(1) 1 1 1 1 1  n(0)  c n  c n  En  En0   En(1) 2 2 2 2 2 Normalization: 2 2 2 2  (0) n1  (0) n1  c1  c1 1  (0 ) n2  (0) n2  c 2  c2 1 2-fold degeneracy Working with Hp and δE(1) rather than H1 and E(1)   c H1  En(1)  c H1  0     c  H1   En(1)  c  H1  0       c H1  c H1  En  0 (1)  c  H1  c  H1   En  0 (1)   En(1)   En(1)  Hˆ 1  Hˆ p  H1  H p    c H p   En(1)  c H p  0  H p H1  c  (1)    c       En     c H p  c H p   En  0 (1)  H p H 1     c   c  En  En0   En(1)

Use Quizgecko on...
Browser
Browser