Methods of Approximation PDF
Document Details
Uploaded by FuturisticJasper4927
King's College London
Tags
Summary
This document presents different methods of approximation in physics, including perturbation theory, non-degenerate and degenerate perturbation theories, along with a discussion of their applications.
Full Transcript
METHODS OF APPROXIMATION Time-independent perturbation theory (non-degenerate) Time-independent degenerate perturbation theory Variational method Time-dependent perturbation theory DEGENERATE PERTURBATION THEORY Why is degenerate perturbation theory needed? 2-fold...
METHODS OF APPROXIMATION Time-independent perturbation theory (non-degenerate) Time-independent degenerate perturbation theory Variational method Time-dependent perturbation theory DEGENERATE PERTURBATION THEORY Why is degenerate perturbation theory needed? 2-fold degeneracy – Zero-order eigenfunctions – First-order energies Generalization to ζ –fold degeneracy Example: the Stark effect in the hydrogen atom – Ground state (non-degenerate) – First excited state (degenerate) SUMMARY - PERTURBATION THEORY The Hamiltonian of the A small time-independent system we are interested in perturbing potential ˆ ˆ ˆ ˆ ˆ H H 0 H p H 0 H1 λ is a measurement of the smallness of the perturbation. It is a device to A Hamiltonian we can keep track of how large terms in the solve exactly equations are. NON-DEGENERATE PERTURBATION THEORY SUMMARY - PERTURBED ENERGIES & STATES En En(0) En(1) 2 En(2) ... En0 En(1) En(2) ... 2 k Hˆ 1 n En0 n Hˆ 1 n ... k n E E 0 n 0 k n n( 0) n(1) 2 n(2) ... n n(1) n(2) ... k Hˆ 1 n n k k n E E 0 n 0 k Hˆ ˆ H ˆ H ˆ H n m k 0 1 n0 m0 1 k n 1 n m 1 ... mn k n En Ek En Em0 En0 Em0 2 If there is degeneracy, i.e. En0 Ek0 for n k , then 2 k Hˆ 1 n k Hˆ 1 n n(1) k and En(2) k n En0 Ek0 k n En0 Ek0 give meaningless results. DEGENERATE PERTURBATION THEORY is needed! EXAMPLE: 2-FOLD DEGENERACY The unperturbed n th state is 2-fold degenerate Hˆ 0n En0n Hˆ 0n En0n n n , any linear combination of n and n is also an eigenstate of Hˆ 0 with the same eigenvalue n c n c n c , c Hˆ 0 n Hˆ 0 c n c n c Hˆ 0n c Hˆ 0n c En0n c En0n En0 c n c n En0 n From previous lecture THE PERTURBED SYSTEM Hˆ 0 n( 0) En0 n(0) ˆ (0) ˆ H1 n H 0 n En n En n (1) (1) (0) 0 (1) ˆ ˆ H1 n H 0 n En n En n En n (1) (2) (2) ( 0) (1) (1) 0 (2) 2-fold degeneracy ZERO-ORDER EIGENFUNCTIONS In non-degenerate perturbation theory n(0) n In degenerate perturbation theory n(0) c n c n 2 2 (0) n (0 ) n c c 1 Hˆ 0 n(0) En0 n(0) Hˆ (0) Hˆ (1) E (1) (0 ) E 0 (1) 1 n 0 n n n n n 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS Hˆ 1 n(0) Hˆ 0 n(1) En(1) n(0) En0 n(1) Hˆ 0 En0 n(1) En(1) Hˆ 1 n(0) Hˆ 0 En 0 (1) n E(1) n Hˆ c 1 n c n bracket with n n Hˆ 0 En0 n(1) n En(1) Hˆ 1 c n c n c n En(1) Hˆ 1 n c n En(1) Hˆ 1 n 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS n Hˆ 0 En0 n(1) c n En(1) Hˆ 1 n c n En(1) Hˆ 1 n n Hˆ 0 n(1) n En0 n(1) c En(1) n n c n Hˆ 1 n c En(1) n n c n Hˆ 1 n 1 0 n Hˆ 0 n(1) n En0 n(1) c En(1) c n Hˆ 1 n c n Hˆ 1 n Hˆ 0n n(1) En0 n n(1) c En(1) c n Hˆ 1 n c n Hˆ 1 n En0 n n(1) En0 n n(1) c En(1) c n Hˆ 1 n c n Hˆ 1 n 0 0 c En(1) n Hˆ 1 n c n Hˆ 1 n c n Hˆ 1 n En(1) c n Hˆ 1 n 0 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS Hˆ E E Hˆ c c 0 0 n (1) n (1) n 1 n n bracket with n n Hˆ 0 En0 n(1) c n En(1) Hˆ 1 n c n En(1) Hˆ 1 n En0 n n(1) En0 n n(1) c n Hˆ 1 n c En(1) c n Hˆ 1 n 0 c n Hˆ 1 n c n Hˆ 1 n En(1) 0 to be considered together with the equation from the previous slide i.e. c n Hˆ 1 n En(1) c n Hˆ 1 n 0 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS n 1 n n c Hˆ E (1) c Hˆ 0 n 1 n c n Hˆ 1 n c n Hˆ 1 n En(1) 0 Matrix elements of the perturbation n Hˆ 1 n H1 c H1 En(1) c H1 0 c H 1 c H1 E (1) n 0 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS c H1 En(1) c H1 0 system of linear equations c H1 c H1 En 0 (1) non-vanishing solutions for c and c if and only if H1 En(1) H1 0 H1 H1 E (1) n H E H E H 1 (1) n 1 (1) n 1 H1 0 E H H E H H 2 (1) n 1 1 (1) n 1 1 H1 H1 0 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS H1 En(1) H1 0 H1 H1 En (1) This is equivalent to the calculation of the eigenvalues (En(1) ) of the matrix H1 H1 H H1 1 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS c H1 En(1) c H1 0 c H1 c H1 En 0 (1) H1 H1 c (1) c En H 1 H1 c c 2-fold degeneracy FIRST-ORDER ENERGY CORRECTIONS H H1 En(1) H1 H1 H1 H1 0 2 En(1) 1 2nd order equation with, in general, two different real solutions for En(1) : En(1)1 and En(1)2. En(1)1 and En(12 ) are in general different: the eigenvalues of Hˆ are not degenerate. The 2-fold degenerate level En0 of the unperturbed system is split into 2 different levels: En1 En0 En(1)1 En2 En0 En(1)2 The perturbation has lifted the degeneracy (in general the lifting may be either total or partial for -fold degeneracy) 2-fold degeneracy ZERO-ORDER EIGENFUNCTIONS (1) (1) c H1 En(1) c H1 0 By substituting En1 and En2 into c H 1 c H 1 En (1) 0 2 sets of c and c are found, hence 2 zero-order eigenfunctions which, in general, correspond to different first-order energy corrections. n(0) c n c n En En0 En(1) 1 1 1 1 1 n(0) c n c n En En0 En(1) 2 2 2 2 2 Normalization: 2 2 2 2 (0) n1 (0) n1 c1 c1 1 (0 ) n2 (0) n2 c 2 c2 1 2-fold degeneracy Working with Hp and δE(1) rather than H1 and E(1) c H1 En(1) c H1 0 c H1 En(1) c H1 0 c H1 c H1 En 0 (1) c H1 c H1 En 0 (1) En(1) En(1) Hˆ 1 Hˆ p H1 H p c H p En(1) c H p 0 H p H1 c (1) c En c H p c H p En 0 (1) H p H 1 c c En En0 En(1)