XI Mathematics Mid-Term Examination 2023-24 PDF
Document Details
Uploaded by SaintlyBaltimore
Govt. Sarvodaya Kanya Vidyalaya, B-3
2023
OCR
Tags
Related
Summary
This is a marking scheme for a mid-term examination in mathematics for class XI. The paper covers various topics in mathematics and includes questions and answers. The marking scheme clarifies the evaluation criteria and the expected answers for the questions.
Full Transcript
No. of pages - 18 (M) MARKING SCHEME MID-TERM EXAMINATION (2023-24) CLASS : XI SUBJECT: MATHEMATICS (041) Time Allowed...
No. of pages - 18 (M) MARKING SCHEME MID-TERM EXAMINATION (2023-24) CLASS : XI SUBJECT: MATHEMATICS (041) Time Allowed : 3 hours Maximum Marks : 80 GENERAL INSTRUCTIONS: 1. Evaluation is to be done as per instructions provided in the marking scheme. Marking scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative they may be assessed for their correctness otherwise and marks to be absorbed to them. 2. If a student has attempted on extra question, answer of the question deserving more marks should be retained and other answer scored out. 3. A full scale of marks (0-80) has to be used. Please do not hesitate to award full marks if the answer deserves it. ************ SECTION-A 1. (b) (,0] 1 2. (d) R – {4, –4} 1 3. (d) 0 1 4. (b) (0, 1) 1 5. (a) 3 1 6. (c) a2 + b2 = c2 + d2 1 1 XI-MATH-M 7. (b) [3, 5) 1 8. (d) 5 1 9. (b) {2, 3, 4, 5} 1 10. (b) (, ) 1 11. (b) [2, 4) 1 12. (a) {(1, 3)} 1 13. (a) A 1 14. (c) 3 1 15. (d) {1, 2} 1 16. (d) 16 1 17. (b) 3 1 18- (d) 7 1 19- (c) Assertion (A) is true, but Reason (R) is false 1 20. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A) 1 2 XI-MATH-M SECTION-B 21. Let Z = – 3 + 4i Z 3 4i, | Z | 9 16 5 1 Z 3 4 Multiplicative inverse of Z 2 i 1 | Z| 25 25 2023 22. yx NOTE : 2023= 1 × 7 × 17 × 17 ½ x As factor of 2023 are 1, 7, 17, 119, 289, 2023 So, when x = 1, y = 2024 when x = 7, y = 296 when x = 17, y = 136 when x = 119, y = 136 when x = 289, y = 296 when x = 2023, y = 2024 Thus, range of R = {136, 296, 2024} 1½ 5 3x 23. As, 5 8 10 5 3x 16 ½ 2 15 3x 11 ½ 3 XI-MATH-M 11 5 x ½ 3 11 5 x ½ 3 11 x ,5 ½ 3 OR As, | 7x 3 | 4 4 7x 3 4 1 1 7x 7 ½ 1 x 1 7 1 x ,1 ½ 7 24. 0.5, 0.9, 1.3, ….4.5 is an A.P. with common difference 0.4. Such that an = a + (n – 1) d = 0.5 + (n – 1) 0.4 = 0.4n + 0.1 1 Further, when 0.4n + 0.1 = 4.5 n = 11, so A {x : x 0.4n 0.1, n N, n 11} 1 OR 1, 2, 3, …. 2023 is an AP with common difference 1 (or we can say its natural number ½) Numerator = n 4 XI-MATH-M Denominator = n +1 n A x : x , n N, n 2023 1½ n 1 25. As, x 3 x x(x 2 1) 0 x(x 1)(x 1) 0 1 x 0,1, 1 So, A = {0, 1, –1} 1 SECTION-C 26. Signum function is defined as 1, x 0 Sgn(x) 0, x 0 1 1, x 0 Graph of signum function 1 Domain = R = (, ) ½ Range = {–1, 0, 1} ½ 5 XI-MATH-M 27. x + iy = (u + iv)1/3 = u + iv = (x + iy)3 ½ u + iv = x3 + i3 y3 + 3x2 (iy) + 3x (iy)2 u + iv = x3 – iy3 + 3x2yi – 3xy2 u + iv = (x3 – 3xy2) + i(3x2y – y3) 1½ On comparing the real part and imaginary part, we get u = x3 – 3xy2, v = 3x2 y – y3 u v x(x 2 3y 2 ) y(3x 2 y 2 ) Thus, 4(x 2 y 2 ) 1 x y x y 28. z1 = 2 – i, z2 = 1 + i z1 + z2 + 1 = 2 – i + 1 + 1 = 4 + 0i 1 z1 – z2 + i = 2 – i – 1 – i + i = 1 – i 1 z1 z 2 1 4 oi | 4 oi | 16 0 16 Now, 2 2 1 z1 z 2 1 1 i |1 i | 11 2 29. Let the amount of water added be ‘x’ litres, so, according to the problem. ½ Case I : 45 0 25 (1125) x (1125 x) 100 100 100 6 XI-MATH-M 45(1125) 25(1125 x) 20(1125) 25x x 900 1 Case II : 45 0 30 (1125) (x) (1125 x) 100 100 100 45(1125) 30(1125 x) 15(1125) 30x 562.5 x 1 562.5 x 900 Therefore, the number of litres of water that has to be added will have to more than 562.5 litres but less than 900 litres. ½ OR As 5 (2x – 7) – 3 (2x + 3) 0 10x – 35 – 6x – 9 0 4x 44 x 11 1 and 7 XI-MATH-M 2x + 19 6x + 47 2x – 6x 47 – 19 x 7 1½ Thus, x [7,11] is required solution for the given system of inequalities. ½ 30. Subsets of given set are : {} {}, {{}}, {{{}}}, {, {}}, {, {{}}} {{}, {{}}} 2 {, {}, {{}}} ½ OR A = {2, 4, 6, 8}, B = {2, 3, 5, 7}, U = {1, 2,3, 4, 5, 6, 7, 8, 9} (i) A B {2,3, 4,5,6,7,8} (A B) {1,9}...(1) A B {1,3,5,7,9} {1, 4,6,8,9} {1,9}...(2) From (1) and (2), we get (A B) A B 1½ 8 XI-MATH-M (ii) A B {2} (A B) {1,3, 4,5,6,7,8,9}...(3) A B {1,3,5,7,9} {1,4,6,8,9} {1,3, 4,5,6,7,8,9}...(4) From equation (3) and (4) we get (A B) A B 1½ 31. (cos x – cos y)2 + (sin x – sin y)2 2 2 xy xy xy xy 2sin sin 2cos sin 2 2 2 2 2 x y 2 x y 2 x y 2 x y 4sin 2 sin 4 cos sin 2 2 2 2 x y 2 x y 2 x y 2 x y 4sin 2 sin 4 cos sin 2 2 2 2 x y 2 x y 2 x y 4sin 2 sin cos 2 2 2 xy 4sin 2 1 2 xy 4sin 2 1 2 OR 9 XI-MATH-M x 1 cos x We know that tan 1 2 1 cos x Put x 4 1 1 2 2 1 tan 1 8 1 2 1 1 2 ( 2 1) 2 2 1 ( 2 1)( 2 1) 1 tan 2 1 1 8 SECTION-D 1 32. (a) f (x) y 1 2cos x f(x) is defined for all values of x except when 1 – 2 cos x =0 1 cos x 2 3 So, domain = R or R 2n 1 3 3 10 XI-MATH-M Note: Any one of the answer is acceptable as general solution is deleted As 1 cos x 1 2 2cos x 2 1 1 2cos 3 1 1 3 y 1 1 1 0 and 0 3 y y 1 y 1 y 3 1 y 1 and y 3 1 Range (, 1] [ , ) 1½ 3 (b) f (x) y 9 x 2 f(x) is defined for 9 x 2 0 (x 3)(x 3) 0 Domain [3,3] As y 9 x 2 , y 0 y2 9 x 2 x 9 y2 11 XI-MATH-M So, 9 y 2 0 (y 3)(y 3) 0 3 y 3, but y 0 Thus, y [0,3] Range [0,3] 1½ n n! 33. Cr 1 36 36...(1) (r 1)!(n r 1)! n n! Cr 84 84...(2) r!(n r)! n n! Cr 1 126 126...(3) 1½ (r 1)!(n r 1)! n r 1 7 On (2) ÷ (1), we get 10r 3n 3 1 r 3 nr 3 On (3) ÷ (2), we get 2n 5r 3 1 r 1 2 Thus, 20r – 6 = 15r + 9 r 3 ½ So, r C2 3 C2 3 1 OR 12 XI-MATH-M (a) Let us consider all girls as a group, so (G1, G2, G3, G3, G5), B1, B2, B3, B4, B5 can be arranged in 6! × 5! = 720 × 120 = 86400 ways. 1 (b) No. of ways in which all girls never sit together = Total no. of ways – No. of ways in all girls sit together ½ = 10! – 6! × 5! = 6! [10 × 9 × 8 × 7 – 120] ½ = 6! × 4920 = 3542400 ways 1 (c) No. of ways in which no girls sit together = 6! × 5! = 8640 ways 1 (Means girls will sit between boys) (d) Boys and girls alternate, so B1, G1, B2, G2, B3, G3, B4, G4, B5, G5 = 5! × 5! OR G1, B2, G2, B2, G2, B3, G4, B4, G5, B5 = 5! × 5! No. of ways = (5! × 5!) × 2 = 2 × (5!)2 = 28800 ways 1 4 16 26 34. As, tan x = sec2 x 1 tan 2 x 1 3 9 9 5 5 sec x = ± but x lies in II quadrant, so, sec x = 3 3 3 cos x 1 5 13 XI-MATH-M x 3 x Now, cos x 2cos 2 1 1 2cos 2 2 5 2 x 1 cos 2 2 5 x 1 x cos . (45,90) 1 2 5 2 x x Note : 90 x 180 45 90 lies in I quadrant 1 2 2 x 3 x x 4 cos x 1 2sin 2 1 2sin 2 sin 2 2 5 2 2 5 x 2 sin 1 2 5 x sin x / 2 Thus, tan 2 1 2 cos x / 2 OR 7 As, cos cos cos 8 8 8 5 3 3 cos cos cos 1 8 8 8 3 5 3 So, 1 cos 1 cos 1 cos 1 cos 8 8 8 8 3 3 1 cos 1 cos 1 cos 1 cos 8 8 8 8 14 XI-MATH-M 3 1 cos 2 1 cos 2 1 8 8 2 2 sin sin 8 8 3 1 cos 4 1 cos 4 2 2 2 1 1 1 1 1 1 2 2 2 1 1 2 2 4 8 3 5 1 1 cos 1 cos 1 cos 1 cos 8 8 8 8 8 35. As 5x = 4x + x tan 4x tan x tan 5x tan(4x x) 1½ 1 tan 4x.tan x tan 5x(1 tan 4x.tan x) tan 4x tan x tan 5x tan 5x tan 4x tan x tan 4x tan x tan 5x tan 4x tan x tan 5x tan 4x tan x...(A) 1½ Put x 10 in eq.(A), we get tan 50 tan 40 tan10 tan 50 tan 40 tan10 1 cot 40 tan 40 tan10 15 XI-MATH-M tan 50 tan 40 tan10 tan10 tan 50 tan 40 2 tan10 tan 50 1 1 tan 41 2 tan10 SECTION-E 36. From the figure, PS 1 QR 1 tan 1 and tan 2 SU 2 RV 3 1 1 5 (i) tan 1 tan 2 1 2 3 6 1 1 1 (ii) tan 1 tan 2 . 1 2 3 6 5 5 tan 1 tan 2 (iii) tan(1 2 ) 6 6 1 2 1 tan 1.tan 2 1 1 5 6 8 OR As, tan(1 2 ) 1 tan 4 1 2 2 4 16 XI-MATH-M 37. (i) As, 2m 2p 112 112 2p 2m 2m (2pm 1) 24 (23 1) 2m (2pm 1) m 4 and p m 3 p 7 2 OR x 3 4 x 1 and y 3 7 y 4 2 (ii) n() x 3 y 10 18 1 (iii) n(A B) x y 10 15 1 38. (a) For selecting atleast one boy and one girls, there are following cases: Boys Girls Total I 1 4 5 II 2 3 5 III 3 2 5 IV 4 1 5 Thus number of always are = 7 C1 4 C4 7 C2 4 C3 7 C3 4 C2 7 C4 4 C1 1 7 1 21 4 35 6 35 4 7 84 210 140 =441 ways 1 17 XI-MATH-M (b) For atleast 3 girls, there are two possibility (3G and 2 boys) or (4G and 1 boy) 1 Thus number of ways = 4 C3 7 C2 4 C4 7 C1 = 21 × 4 + 1 × 7 = 91 1 18 XI-MATH-M