G12 Adv S1 Unit 2-2024-2025 Worksheet PDF
Document Details

Uploaded by UsefulSaxhorn
Tags
Summary
This document contains a worksheet with questions on computing limits in calculus. The worksheet includes rules for calculating limits, examples, and exercises. It's suitable for a secondary school mathematics course.
Full Transcript
Lesson 2-3 Computation of Limits Rules for calculating limits: 1) For any constant π and any real number π : lim π = π π₯βπ (the limit of constant equals the same constant) 2) For any real num...
Lesson 2-3 Computation of Limits Rules for calculating limits: 1) For any constant π and any real number π : lim π = π π₯βπ (the limit of constant equals the same constant) 2) For any real number π: lim π₯ = π π₯βπ 3) Suppose that lim π(π₯) and lim π(π₯) both are exist and let πΏ, π, π are real numbers π₯βπ π₯βπ and lim π(π₯) = πΏ and lim π(π₯) = π then the following apply: π₯βπ π₯βπ a) lim ππ(π₯) = ππ Multiplying π₯βπ with constant b) lim (π(π₯ ) Β± π(π₯ )) = lim π(π₯) Β± lim π(π₯ ) = πΏ Β± π Addition and π₯βπ π₯βπ π₯βπ subtraction c) lim (π(π₯ ) Γ π(π₯ )) = lim π(π₯) Γ lim π(π₯ ) = πΏ Γ π Multiplying π₯βπ π₯βπ π₯βπ π(π₯) lim π(π₯)Β± πΏ Dividing d) lim ( )= π₯βπ = , ππ lim π(π₯ ) β 0 π₯βπ π(π₯) lim π(π₯) π₯βπ π π₯βπ e) lim ( π(π₯ ))π = (lim π(π₯))π = ππ Power of π π₯βπ π₯βπ Radical f) lim βf(x) = βlim f(x) = βL ; πΏ β₯ 0 πππ π(π₯) β₯ 0 xβa xβa functions π nth root g) lim πβπ(π₯) = πβ lim π(π₯) = βπΏ ; πΏ β₯ 0 π€πππ π ππ£ππ xβa π₯βπ Note: to find the limits, direct substitute in the given functions 14 | P a g e Use both graphs to find the limits if they exist: 25 g(x) f(x) 26 π₯π’π¦ π(π) = 27 π₯π’π¦ ππ(π) = πβπ πβπ 28 π₯π’π¦(π(π) + ππ(π) β π) = 29 π₯π’π¦ ( π(π) + ππ) = πβπ πβπ 30 π₯π’π¦ π π(π) = 31 π(π)+π πββπ π₯π’π¦ ( )= πβπ π(π) 15 | P a g e 32 a) π₯π’π¦+ π(π) = πββπ b) π₯π’π¦ π΅(π) = ππππππ: β¦ β¦ β¦. πββπ c) π₯π’π¦ π΅(π) = πβπ d) π₯π’π¦ π(π) = πβπ e) π₯π’π¦(π(π) + π΅(π)) = πβπ f) If π₯π’π¦ π(π) = π then the value of π = πβπ g) If π₯π’π¦ π΅(π) = π then the value of π = πβπ 16 | P a g e Use π₯π’π¦ π(π) = π , π₯π’π¦ π(π) = βπ , π₯π’π¦ π(π) = π to determine the indicated limits, if πβπ πβπ πβπ possible: 33 π₯π’π¦(ππ(π) β ππ(π)) = 34 π₯π’π¦(ππ(π)π(π)) = πβπ πβπ 35 π 36 ππ(π)π(π) π₯π’π¦ ( (π(π)) )= π₯π’π¦ ( )= π(π) πβπ π(π)+π(π) πβπ 17 | P a g e Factorizing revision: Type: Example: Exercise: Common πππ β ππ = π(ππ β π) πππ + ππ = factored Difference π π πππ β π = of two π β π = (π β π)(π + π) squares ππ β ππ = (π β π)(π + π) ππ β πππ = Difference ππ β ππ = (π β π)(ππ + ππ + ππ ) ππ β π = of two cubes ππ + ππ = (π + π)(ππ β ππ + ππ ) ππ + ππ= Polynomials ππ + ππ + π = (π + π)(π + π) ππ + ππ β π = ππ β ππ + π = (π β π)(π β π) πππ β ππ + π = π π + ππ β π = (π + π)(π β π) ππ β ππ β π = (π β π)(π + π) ππ β ππ β ππ = πππ + ππ + π = (ππ + π)(π + π) π πππ + πππ + ππ = ππ + ππ β π = π(π + π)(π β π) Groups ππ β πππ + ππ β ππ = ππ + πππ + ππ + π = (ππ + πππ ) + (ππ + π) = ππ (π + π) + π(π + π) = (π + π)(ππ + π) 18 | P a g e First type of limits is polynomial functions limits (direct substitutions). Evaluate the indicated limits, if it exists: 37 π₯π’π¦ π = 38 πβπ π₯π’π¦βπ = πβπ 39 π₯π’π¦ π = 40 π₯π’π¦ βππ = πββπ πβπ 41 π₯π’π¦(ππ β ππ + π) = 42 π₯π’π¦ (βπππ β πππ + π) = πβπ πββπ 43 π 44 π π₯π’π¦ β(ππ + π) = π₯π’π¦ β(πππ + π + π) = πβπ πβπ 45 π₯π’π¦(ππ β π)(π β π) = 46 π₯π’π¦(ππ + π)π = πβπ πβπ 47 π+π 48 ππ βππβπ π₯π’π¦ = π₯π’π¦ = πβπ ππ+π πββπ ππ +π 19 | P a g e Second type of limits is fraction functions limits. ππ βπ π If π₯π’π¦ = then it is indeterminant, to solve it you must simplify the function πβπ πβπ π by factorizing or by multiplying with the conjugate. Evaluate the indicated limits, if it exists: 49 ππ βπβπ 50 ππ +πβπ π₯π’π¦ = π₯π’π¦ = πβπ πβπ πβπ ππ βππ+π 51 ππ βπβπ 52 ππ βπ π₯π’π¦ = π₯π’π¦ = πβπ ππ βπ πβπ ππ +ππβπ 53 ππ βππ+π 54 ππ βπ π₯π’π¦ = π₯π’π¦ = πβπ ππ βπ πβπ ππ βππ+π 20 | P a g e Third type of limits is radical root functions limits. Note: conjugate product of square root is (βπ(π±) β π) (βπ(π) + π) = (βπ(π))π β ππ = π(π) β ππ Ex.) (βπ± β π) (βπ + π) = π β π Evaluate the indicated limits, if it exists: 55 βπβπ 56 πβπ π₯π’π¦ π₯π’π¦ πβπ ππ βππ πβπ βπβπ 57 βπ+πβπ 58 ππ π₯π’π¦ π₯π’π¦ πβπ π πβπ πββπ+π 21 | P a g e 59 πβπβπ 60 ππ βππ If π₯π’π¦ β πβπ = πππππ ππππ ππππ π π₯π’π¦ πβπ πβπ πββπ+π 61 πβπ 62 ππ βπ π₯π’π¦ π₯π’π¦ πβπ βπβπ πβπ πββππ 22 | P a g e 63 βπ+πββπ 64 βπβπ π₯π’π¦ π₯π’π¦ πβπ π πβπ πβππ Fourth type of limits is Piecewise-defined functions limits. π(π) ,π β€ π π₯π’π¦β π(π) , π β€ π ππ π = { ππππ π₯π’π¦ π = { πβπ π(π) ,π > π πβπ π₯π’π¦+ π(π) , π > π πβπ ππ limβ π(π₯) = lim+ π(π₯) π‘βππ π‘βπ πππππ ππππππ , ππ‘βπππ€ππ π πππππ π πππ πππ πππππ. π₯βπ π₯βπ Evaluate the limit where βf(x)β defined at: 65 ππ± β π; π± < π π(π) = { π ; π± = π find the following limits π± π + π; π± > π a) π₯π’π¦ π(π) = b) π₯π’π¦ π(π) = πβπ πβπ c) π₯π’π¦β π(π) = d) π₯π’π¦+ π(π) = πβπ πβπ e) π₯π’π¦ π(π) = f) π(π) = πβπ 23 | P a g e 66 ππ , π > π π(π) = { π find π₯π’π¦ π(π) π ,π β€ π πβπ 67 ππ + π , π < βπ π(π) = { find π₯π’π¦ π(π) ππ + π , π > βπ πββπ 68 ππ + π , π < βπ { π , βπ < π < π find a) π₯π’π¦ π(π) b) π₯π’π¦ π(π) πββπ πβπ ππ + π ,π > π 24 | P a g e Fifth type of limits is Absolute Value Functions limits Absolute value function is a continuous function and the limit of this function exists on all real numbers when itβs a single function, but when its merged with other function like rational functions. then it must be rewritten as a Piecewise- defined function and then check the limit on both sides. left and right sides. π(π) π(π) > π π = |π(π)| = { βπ(π) π(π) β€ π Evaluate the indicated limit, if it exists: 69 π₯π’π¦|π| = 70 π₯π’π¦|ππ β π| = πβπ πβπ 71 |π+π|βπ 72 |πβπ|βπ π₯π’π¦ = π₯π’π¦ = πβπ ππ βπ πβπ ππ βπ 25 | P a g e 73 |π| 74 |π| π₯π’π¦β = π₯π’π¦ = πβπ π πβπ π 75 ππ βππ π₯π’π¦ = π₯π’π¦ (π|π| + π) find the value of π πβπ πβπ πββπ 26 | P a g e Sixth type of limits is the limit of the greatest integer number. Definition [π] = π , π β€ π < π + π π = [ π] Ex.) [π. ππ] = π , [βπ. π] = βπ [π. π] = π , [βπ. ππ] = βπ Evaluate the indicated limits, if it exist: 76 π₯π’π¦ [π] = 77 π₯π’π¦ [π] = πβπβ πβπ 78 π₯π’π¦β([π] + ππ) = 79 π₯π’π¦( [π] + ππ + π) = πβπ π πβπ 80 π₯π’π¦ [ππ] = 81 ππ β[π] πβπ.π π₯π’π¦+ |πβπ|βπ πβπ 27 | P a g e Seventh type of limits is limit of trigonometry and inverse trigonometry functions. πππ π π πππ π π π₯π’π¦ = π , π₯π’π¦ = π , π₯π’π¦ = π , π₯π’π¦ =π, πβπ π πβπ πππ π πβπ π πβπ πππ π πππ ππ π ππ π πππ π π π ππ π π₯π’π¦ = , π₯π’π¦ = , π₯π’π¦ = , π₯π’π¦ = , πβπ ππ π πβπ πππ ππ π πβπ ππ π πβπ πππ π π π Evaluate the indicated limits, if it exists: 82 πππ π 83 πππ π π₯π’π¦ = π₯π’π¦ ( )= πβπ ππ πβπ πππ π 84 ππππ π 85 πππ ππ π₯π’π¦ = π₯π’π¦ = πβπ π πβπ ππ 86 π 87 ππππ ππ π₯π’π¦ = π₯π’π¦ = πβπ πππ(ππ) πβπ πππ 88 πππππ+ππ ππππ 89 π₯π’π¦ πππππ ππππ π = π₯π’π¦ = πβπ πβπ ππ 28 | P a g e 90 πππππ πππππ 91 πππππ π₯π’π¦ = π₯π’π¦ = πβπ ππ πβπ ππ βππ 92 ππππ ππβ πππππ 93 ππππ ππ π₯π’π¦ = π₯π’π¦β = πβπ πππππ+π ππππ πβπ ππ|π| 29 | P a g e 94 πππππ 95 πβπππππ π₯π’π¦β = π₯π’π¦ = πβπ ππ[π] πβπ πππ 96 ππππ 97 π₯π’π¦ ππ( πππππ + ππππ) = π₯π’π¦ = πβπ πβπ πββπ+π 30 | P a g e 98 π₯π’π¦ ( ππ ππ¬π π π) = 99 πππ |π| πβπ π₯π’π¦ ( )= πβπ π 100 πππ π.πππ π 101 πππ (ππ βπ) π₯π’π¦ ( )= π₯π’π¦ ( )= πβπ ππ πβπ ππ βπ 31 | P a g e 102 πβππππ 103 π₯π’π¦ π₯π’π¦ (ππ(βπ + ππππ π) πβπ ππ πβπβ 104 π+π 105 π₯π’π¦ πππβπ (ππ ) = π₯π’π¦ π¬π’π§βπ ( )= πβπ πβπ π 32 | P a g e 106 π π π₯π’π¦ ( β |π| ) πβπ π 107 π π π₯π’π¦ ( β ) πβπ πβπ ππ βπ 108 π π πππ ( π β ππ +π ) πβπ 33 | P a g e 109 ππππ 110 ππππ+π π₯π’π¦+ π₯π’π¦ ππ +π πβπ βπ πβπ If π(π) = ππ β π answer Q 117,118: 111 π₯π’π¦(π (π(π(π(π)))) = πβπ 112 π₯π’π¦(π(π + ππ(π β π(π))) = πβπ 113 (π+π)π βπ π₯π’π¦ πβπ π 34 | P a g e 114 π + π, πππ π β€ ππ, πππ π»(π) = { π + π. ππ(π β ππ, ππππ) π > ππ, πππ find the value of π, π therefore. π₯π’π¦ π»(π) πππππ , πππ π₯π’π¦+ π»(π) = π πβπππππ πβπ 115 |π+π|βπ ππ π₯π’π¦+ = π₯π’π¦ πππ ππ find the value of π πβπ ππ βπ πβπ 35 | P a g e Eighth: squeeze Theorem Use the squeeze theorem to verify the values of limits: 116 π π₯π’π¦ ππ πππ πβπ π 117 π π₯π’π¦(π β ππ πππ ) πβπ π 36 | P a g e 118 If (ππ β π)(ππ + π) β€ (π β π)π(π) β€ ππ + ππ β π π β π πππ π β [βπ, π] find π₯π’π¦ π(π) πβπ 119 if πππ π + π β€ π(π) β€ ππ + ππ π(π) π β π πππ π β [βπ , π ] find π₯π’π¦ πβπ π 37 | P a g e Use of limits in computing velocity. we see that for an object moving in straight line , whose position at time π is given by the function π(π) , the instantaneous velocity of that object at time π π(π+π)βπ(π) the average velocity over some period is given by the limit π₯π’π¦ πβπ π Use the given position function π(π) to find the velocity at time π = π: 120 π(π) = ππ + π π=π 121 π(π) = ππ + π π=π 38 | P a g e TRY BY Your Self (2) 1 Evaluate π₯π’π¦(ππ β ππ + π) πβπ A 2 B 0 C -1 D Does not exist 2 ππ βπ Evaluate π₯π’π¦( ) πβπ π+π A 2 B 0 C -1 D Does not exist 3 Evaluate π₯π’π¦( π+π ) πβπ ππ +ππ+π A 2 B 0 C -1 D Does not exist 4 Evaluate π₯π’π¦ (βππ + π) πββπ A 2 B 0 C -1 D Does not exist 5 ππ βπ Evaluate π₯π’π¦ ( ) πββπ π+π A 2 B 0 C -1 D Does not exist 39 | P a g e 6 βππ+π+π Evaluate π₯π’π¦( ) πβπ πβπ A 2 B 0 C -1 D Does not exist 7 ππ βπ Evaluate π₯π’π¦( ) πβπ ππ +ππβπ A 2 B 0 C -1 D Does not exist 8 Evaluate π₯π’π¦(πππβπ (ππ ) πβπ A 2 B 0 C -1 D Does not exist 9 Evaluate π₯π’π¦( πππππ ) πβπ ππππππ A 2 B 0 C -1 D Does not exist 10 Evaluate π₯π’π¦(ππ ππππ π) πβπ A 2 B 0 C -1 D Does not exist 40 | P a g e 11 ππππ+π Evaluate π₯π’π¦( ) πβπ ππ +π A 2 B 0 C -1 D Does not exist 12 βπ+πβπ Evaluate π₯π’π¦( ) πβπ π A 2 B 0 C -1 D Does not exist 13 ππ βπ Evaluate π₯π’π¦( ) πβπ π+π A 2 B 0 C -1 D Does not exist 14 Evaluate π₯π’π¦( πβπ ) πβπ βπβπ A 2 B 0 C -1 D Does not exist 15 ππ βππ Evaluate π₯π’π¦( ) πβπ ππ βππβπ A 2 B 0 C -1 D Does not exist 41 | P a g e 16 Evaluate π π₯π’π¦( β |π|) π πβπ π A 2 B 0 C -1 D Does not exist 17 πβπππ Evaluate π₯π’π¦( ) πβπ πβππ A 2 B 0 C -1 D Does not exist 18 πππ|π| Evaluate π₯π’π¦( ) πβπ π A 2 B 0 C -1 D Does not exist 19 ππ Evaluate π₯π’π¦( ) πβπ ππ +π A 2 B 0 C -1 D Does not exist 20 Evaluate π₯π’π¦( ππππβπ ) πβπ π A 2 B 0 C -1 D Does not exist 42 | P a g e Lesson 2-4 Continuity and its Consequence The function will be continuous on point π = π if and only if the following conditions applied: 1) π(π) = π³ (π ππππππ ) 2) π₯π’π¦ π(π) = π³ (πππππ) πβπ 3) π₯π’π¦ π(π) = π(π) = π³ πβπ Discontinuous cases: - 1.) Removable discontinuous: lim π(π₯ ) = ππ₯ππ π‘ π₯βπ lim π (π₯ ) = ππ₯ππ π‘ π(π) = πππππππ π₯βπ π(π) = π’ππππππππ lim π(π₯ ) β π(π) π₯βπ The graph of the function has a hole at The graph of the function has a hole at π₯ = π₯=π 43 | P a g e 2.) Nonremovable discontinuous: lim π(π₯ ) = πππ πππ‘ ππ₯ππ π‘ lim π(π₯ ) = πππ πππ‘ ππ₯ππ π‘ π₯βπ π₯βπ π(π) = πππππππ π(π) = πππππππ The graph of the function has a Jump The graph of the function has infinity at π₯ = π (blows up) at π₯ = π π πππ πππ (π) = π πππ πππ πππππ πβπ π the endless oscillation of πππ( ) π 44 | P a g e Use the given graphs to identify all intervals on which the function is continuous and the points the function is discontinuous and type of discontinuity: 122 123 45 | P a g e 124 Complete the table below: Type of discontinuity Reason: Function: at π = π: π π(π) = πππ ππ π π(π) = π πβπ π(π) = π π π (π ) = { π β π π>π π + πππ π π β€ π π (π ) = { β π + π π πβ π π π=π 46 | P a g e Type of Function: Point of discontinuity: discontinuity: ππ β ππ β π π(π) = πβπ πππππ π(π) = π π π(π) = πβπ |π| π(π) = π ππ β ππ β π π(π) = πβπ πβπ π(π) = ππ β π πβπ π>π π(π) = { ππ + π πβ€π Functions continuous everywhere: 1) Polynomials functions. 2) Trigonometry functions (πππ π , πππ π , πππβπ π). 3) Exponential functions (π = ππ ). 4) Square roots (π = βπ(π) , π(π) β₯ π). π 5) βπ(π) ππππππππππ ππ πππ π ππππππ ππππ "π" ππ ππ π , π(π) β₯ π ππππ is ππππ. 6) Logarithm function (π = ππ(π (π)) , π(π) β₯ π). 7) Absolute value. 8) πππβπ π , πππβπ π ππππππππππ ππ β π < π < π. 47 | P a g e 9) π₯π’π¦ π(π) = π³ πππ π ππππππππππ ππ π³ ππππ: πβπ π₯π’π¦ π(π(π)) = π(π₯π’π¦ π(π)) = π(π³) πβπ πβπ First: continuity for rational functions. Note: To remove a hole from a graph, the function must be extended to be continuous so rewrite the function as: π(π₯ ) π₯ β π π(π₯ ) = { π€βπππ lim π(π₯ ) = π π π₯=π π₯βπ Determine where π is continuous, if possible, extend π as a new function that is continuous on a larger domain: 125 ππ +πβπ 126 ππ βπβπ π(π) = π(π) = π+π πβπ 48 | P a g e 127 πβπ 128 ππ π(π) = π(π) = ππ βπ ππ +πβπ 129 ππ 130 ππ βππ+π π(π) = π(π) = ππ +π ππ βπ 49 | P a g e 131 πππ ππβπππ π 132 βπ+πβπ π(π) = π(π) = π πβπ 133 π+π 134 βπ+πβπ π(π) = π π π(π) = + πππ π π π 50 | P a g e 135 πβππ 136 πππ βπ π(π) = π(π) = ππ βπ ππ βπ 137 |πβπ|βπ 138 |πβπ|βπ π(π) = π(π) = πβπ π 51 | P a g e Second: continuity for Piecewise-defined functions. Note: to determine the continuity of a Piecewise-defined function π(π) = π(π) ,π β€ π { , the following must be applied.: π(π) , π > π 1) π(π₯) = πππππππ ππ‘ π₯ = π 2) limβ π(π₯) = lim+ π(π₯) π₯βπ π₯βπ 3) π(π) = lim π(π₯) π₯βπ Determine where π is continuous, at point π = π: 139 ππ π < π 140 ππ β π π β€ βπ π(π) = { π π πβ₯π π(π) = {ππ + ππ β π < π < π πππ πβ₯π 141 ππ πβ€π 142 πππ π πβ π π(π) = { πππ π π < π < π π(π) = { π πβπ πβ₯π π π=π 52 | P a g e 143 π 144 π ππ πππ πβ π ππ 177 Determine the values of π & π that make the given function continuous on its domain: ππππ π ππ 63 | P a g e 178 Determine values of π & π that make the given function continuous on its domain: πππ + π ππ 179 Determine values of π & π that make the given function continuous on its domain: π(πππβπ π + π) ππ 64 | P a g e 180 Prove that if f is continuous on the interval [π, π], π(π) > π, π(π) < π, then f has a fixed point ( a solution of π(π) = π ) in the interval (π, π): 181 π π π β π and π(π) = ππ If π(π) = { π π=π show that π₯π’π¦ π(π(π)) β π(π₯π’π¦ π(π)) : πβπ πβπ 65 | P a g e TRY BY Your Self (4) 1 Determine the interval(s) where π(π) = βπ + π is continuous. A 2 B 0 C -1 D Does not exist 2 Determine the interval(s) where π(π) = βππ β π is continuous. A 2 B 0 C -1 D Does not exist 3 Determine the interval(s) where π π(π) = βππ β π is continuous. A 2 B 0 C -1 D Does not exist 4 π Determine the interval(s) where π(π) = (π β π) is continuous. π A 2 B 0 C -1 D Does not exist 5 Determine the interval(s) where π(π) = πππβπ (π) is continuous. A 2 B 0 C -1 D Does not exist 66 | P a g e 6 Determine the interval(s) where ππ(πππ π) is continuous. A 2 B 0 C -1 D Does not exist 7 βπΏ+π+ππ Determine the interval(s) where π(π) = is continuous. ππ βπ A 2 B 0 C -1 D Does not exist 8 π₯π§(π± π βπ Determine the interval(s) where π(π) = is continuous. βππ βππ A 2 B 0 C -1 D Does not exist 9 Determine the interval(s) where π(π) = βπ + π is continuous. A 2 B 0 C -1 D Does not exist 10 πβππ If π(π) = is continuous. On (ββ, β) ππππ π, where m is constant ππ+π number A 0 B -2 C 1 D 3 67 | P a g e Lesson 2-5 Limits Involving Infinity, Asymptotes π Let π(π) = , the table shows that: π π -0.001 -0.0001 -0.00001 0 0.00001 0.0001 0.001 π(π) -1000 -10000 -100000 100000 10000 1000 when "π" is approaching to zero from right, π(π) is approaching to unbounded positive number and when "π" is approaching to zero from left π(π) is approaching to unbounded negative number. π π That means π₯π’π¦+ β β and π₯π’π¦β β ββ πβπ π πβπ π π so π₯π’π¦ = π πππ πππ πππππ πβπ π π Let π(π) = , complete the table and the indicated limits below: ππ π -0.001 -0.0001 -0.00001 0 0.00001 0.0001 0.001 π(π) Find: π 1) π₯π’π¦+ = πβπ ππ π 2) π₯π’π¦β = πβπ ππ π 3) π₯π’π¦ = πβπ ππ 68 | P a g e π(π) Notes: when π₯π’π¦ , π(π) = π , π(π) β π thereβs three prospects for the πβπ π(π) answer: π(π) Prospect 1: π₯π’π¦ =β πβπ π(π) π(π) Prospect 2: π₯π’π¦ = ββ πβπ π(π) π(π) π(π) π(π) Prospect 3: π₯π’π¦ π(π) = π πππ πππ πππππ , πππππππ π₯π’π¦β π(π) = ββ , π₯π’π¦+ π(π) = β πβπ πβπ πβπ Note: Determinant quantities: π π 1) = Β±β , =π πβ π π Β±β 2) β Β± π = β , β+β=β 3) π Γ β = β ππ π > π , π Γ β = ββ ππ π < π 4) ππ = π , ββ = β 5) πβ = β , ππ π > π , πβ = π , ππ π < π < π Indeterminant quantities: π Β±β , ,β β β , π Γ β , ππ , βπ , πβ π Β±β 69 | P a g e Determine: a) π₯π’π¦+ π(π) b) π₯π’π¦β π(π) c) π₯π’π¦ π(π) (the answer will be πβπ πβπ πβπ ππππππ , β , ββ ππ π πππ πππ πππππ ): 182 π 183 π π(π) = ππ π = π π (π) = (π+π)π ππ π = βπ πβπ π π a) π₯π’π¦+ = a) π₯π’π¦+ (π+π)π = πβπ πβπ πββπ π π b) π₯π’π¦β = b) π₯π’π¦β (π+π)π = πβπ πβπ πββπ π π c) π₯π’π¦ = c) π₯π’π¦ = πβπ πβπ πββπ (π+π)π 184 πβππ 185 πβππ π(π) = ππ π = π π(π) = ππ π = βπ ππ βπ ππ βπ πβππ πβππ d) π₯π’π¦+ = d) π₯π’π¦+ = πβπ ππ βπ πββπ ππ βπ πβππ πβππ e) π₯π’π¦β = e) π₯π’π¦β = πβπ ππ βπ πββπ ππ βπ πβππ πβππ f) π₯π’π¦ = f) π₯π’π¦ = πβπ ππ βπ πββπ ππ βπ 70 | P a g e 186 πβπ 187 πβπ π(π) = π=π π(π) = (π+π)π π = βπ ππ βππ+π Evaluate each limit below, (answer will be number, β, ββ or does not exist): 188 πβπ 189 βπ π₯π’π¦ = π π₯π’π¦ (π β ππ β π) π = πββπ (π+π)π πββπβ 71 | P a g e 190 ππ +ππβπ 191 ππ π₯π’π¦ = π₯π’π¦ = πββπ ππ βπ πβπ ππ βπ 192 π 193 π π₯π’π¦ π = π π₯π’π¦ π = π πβπβ πβπ+ 194 π 195 π₯π’π¦π πππ π = π₯π’π¦ ππ = πβπ πβπ 72 | P a g e 196 π₯π’π¦ πππ π = 197 π₯π’π¦π π ππππ π = πβπ πβ π 198 π₯π’π¦+ ππ( π) = 199 π₯π’π¦ ππππ π = πβπ πβπ 200 π₯π’π¦+ πππβπ (ππ( π)) = 201 π₯π’π¦ ππ( π πππ π) = πβπ πβπ+ 73 | P a g e 202 βπ 203 βπ π₯π’π¦+π ππ = π₯π’π¦ πππ( π ) = ππ πβπ πβπ 204 π₯π’π¦π πβππππ = 205 π π₯π’π¦+ ππππ = πβ πβπ π Limits at infinity: (horizontal asymptotes( Note: if π₯π’π¦ π(π) = π³ , π₯π’π¦ π(π) = π³ β π(π) has horizontal asymptote πββ πβββ ππππ π = π³. Important notes: 1) π₯π’π¦ π² = π² πβ π πβββ π² 2) π₯π’π¦ =π πβ π πβββ ππ β π>π 3) π₯π’π¦ πππ = { n: positive integer number. πβββ ββ ππ β π>π 4) π₯π’π¦ πππ = { , π₯π’π¦ πππ = { πβββ β π