Unit 10 - Diseases & Immunity PDF
Document Details
Uploaded by TougherCornett
Tags
Summary
This document covers Unit 10 - Diseases & Immunity. It discusses pathogens, the body's defenses against them, and active immunity. The material could be suitable for secondary school students.
Full Transcript
Unit 10 - Diseases & Immunity 10.1 Pathogens and barriers Pathogens A pathogen is a disease-causing organism Pathogens are passed on from one host to another and therefore the diseases they cause are known as transmissible diseases Pathogens can be passed on from host to host in diffe...
Unit 10 - Diseases & Immunity 10.1 Pathogens and barriers Pathogens A pathogen is a disease-causing organism Pathogens are passed on from one host to another and therefore the diseases they cause are known as transmissible diseases Pathogens can be passed on from host to host in different ways, including: Direct contact - the pathogen is passed directly from one host to another by transfer of body fluids such as blood or semen (eg HIV, gonorrhoea, hepatitis B & C) Indirect contact - the pathogen leaves the host and is carried in some way to another, uninfected individual The Body Defences There are 3 main ways in which the body defends itself against disease: Mechanical barriers – structures that make it difficult for pathogens to get past them and into the body a) Skin - covers almost all parts of your body to prevent infection from pathogens. If it is cut or grazed, it immediately begins to heal itself, often by forming a scab b) Hairs in the nose - these make it difficult for pathogens to get past them further up the nose so they are not inhaled into the lungs Chemical barriers – substances produced by the body cells that trap / kill pathogens before they can get further into the body and cause disease a) Mucus - made in various places in the body, pathogens get trapped in the mucus and can then be removed from the body (by coughing, blowing the nose, swallowing etc) b) Stomach acid - contains hydrochloric acid which is strong enough to kill any pathogens that have been caught in mucus in the airways and then swallowed or have been consumed in food or water Cells - different types of white blood cell work to prevent pathogens reaching areas of the body they can replicate in a) By phagocytosis - engulfing and digesting pathogenic cells b) By producing antibodies - which clump pathogenic cells together so they can’t move as easily (known as agglutination) and releasing chemicals that signal to other cells that they must be destroyed 10.2 Controlling the Spread of Disease Controlling the Spread of Disease The simplest way to prevent disease is to stop pathogens from spreading This means using simple measures such as good hygiene and effective sanitation and waste disposal to contain pathogens and dispose of them safely 10.3 Active Immunity Active Immunity (Extended) Making antibodies and developing memory cells for future response to infection is known as active immunity There are two ways in which this active immune response happens: The body has become infected with a pathogen and so the lymphocytes go through the process of making antibodies specific to that pathogen 10.4 Antigens & Antibodies Antigens & Antibodies (Extended) All cells have molecules, such as proteins, projecting from their cell membranes These are known as antigens Different individuals have different antigens on their cell surface membranes Lymphocytes can recognise foreign antigens, e.g. the antigens of a pathogen inside the body In response to foreign antigens lymphocytes make antibodies which are complementary in shape to the antigens on the surface of the pathogenic cell The role of antibodies Antibodies can attach to antigens and cause agglutination of pathogens This means the pathogenic cells cannot move around very easily At the same time chemicals are released that signal the presence of pathogens to phagocytes Phagocytes move towards the site of an infection where they engulf and destroy pathogens Many pathogens can be engulfed together due to agglutination Immunity The initial response of a lymphocyte encountering a pathogen for the first time can take a few days, during which time an individual may get sick After an initial encounter with a pathogen, lymphocytes can give rise to memory cells that retain the instructions for making specific antibodies This means that in the case of reinfection by the same type of pathogen, antibodies can be made very quickly and in greater quantities; the pathogens are destroyed before they multiply and cause illness This is how people become immune to certain diseases after only having them once Note that this does not work with all disease-causing microorganisms as some of them mutate quickly and change the antigens on their cell surface Therefore, if they invade the body for a second time the memory cells made in the first infection will not produce antibodies that match the new antigens An antigen is a molecule found on the surface of a cell An antibody is a protein made by lymphocytes that is complementary to an antigen and, when attached, clumps them together and signals the cells they are on for destruction An antitoxin is a protein that neutralises the toxins produced by bacteria 10.5 Vaccination Vaccination Active immunity is slow acting and provides long-lasting immunity Vaccination (Extended) Vaccinations give protection against specific diseases and boost the body’s defence against infection from pathogens without the need to be exposed to dangerous diseases that can lead to death The level of protection in a population depends on the proportion of people vaccinated Vaccines allow a dead or altered form of the disease-causing pathogen, which contains specific antigens, to be introduced into the body In this weakened state, the pathogen cannot cause illness but can provoke an immune response Lymphocytes produce complementary antibodies for the antigens The antibodies target the antigen and attach themselves to it in order to create memory cells The memory cells remain in the blood and will quickly respond to the antigen if it is encountered again in an infection by a ‘live’ pathogen As memory cells have been produced, this immunity is long-lasting 10.6 Preventing the Spread of Disease Preventing the Spread of Disease (Extended) If a large enough percentage of the population is vaccinated, it provides protection for the entire population because there are very few places for the pathogen to breed - it can only do so if it enters the body of an unvaccinated person This is known as herd immunity If the number of people vaccinated against a specific disease drops in a population, it leaves the rest of the population at risk of mass infection, as they are more likely to come across people who are infected and contagious This increases the number of infections, as well as the number of people who could die from a specific infectious disease Herd immunity prevents epidemics and pandemics from occurring in populations This is the reason that many vaccinations are given to children, as they are regularly seen by medical practitioners and can be vaccinated early to ensure the entire vaccinated population remains at a high level In certain instances, vaccination programmes are run with the aim of eradicating certain dangerous diseases, as opposed to controlling them at low levels An example of a disease which has been eradicated as a result of a successful vaccination programme is smallpox, which was officially eradicated in 1980 after a vaccination programme run by the World Health Organisation since the mid-1950s 10.7 Passive Immunity & Breastfeeding Passive Immunity & Breastfeeding Passive immunity is a fast-acting, short-term defence against a pathogen by antibodies acquired from another individual Antibodies pass from mother to infant via breast milk - this is important as it helps the very young to fight off infections until they are older and stronger and their immune system is more responsive The body does not make its own antibodies or memory cells in passive immunity, hence the name 10.8 Cholera Cholera Cholera causes diarrhoea Diarrhoea is the loss of watery faeces from the anus If it is severe and continues for a long time, it can lead to death Severe diarrhoea can cause the loss of significant amounts of water and ions from the body, causing the tissues and organs to stop working properly It can be effectively treated by oral rehydration therapy This is a drink with a small amount of salt and sugar dissolved in it There are many causes of diarrhoea, one of which is infection with Vibrio cholerae bacteria, which causes the disease cholera Ingested via infected water or food, if it enters the small intestine it can cause illness in the following way: 1. Bacteria attach to the wall of the small intestine 2. They produce a toxin 3. The toxin stimulates the cells lining the intestine to release chloride ions from inside the cells into the lumen of the intestine 4. The chloride ions accumulate in the lumen of the small intestine and lower the water potential there 5. Once the water potential is lower than that of the cells lining the intestine, water starts to move out of the cells into the intestine (by osmosis) 6. Large quantities of water are lost from the body in watery faeces 7. The blood contains too little chloride ions and water