Summary

This document provides practice problems for finding the domain of composite functions. It includes various types of functions and examples. Use these problems to practice finding the domain of composite algebraic functions.

Full Transcript

## Steps to Find the Domain of a Composite Function 1. Find the domain of the inside function 2. Find the domain of the composed function. 3. The final domain must include the restrictions of both (a) and (b). | | Function | | --- | -----------------------------------...

## Steps to Find the Domain of a Composite Function 1. Find the domain of the inside function 2. Find the domain of the composed function. 3. The final domain must include the restrictions of both (a) and (b). | | Function | | --- | ----------------------------------- | | f(x) | √x | | g(x) | ³√x | | h(x) | 1/x | | m(x) | x² | | n(x) | x + 5 | | p(x) | x² - 10x + 25 | ### Find the Composition and its Domain: a) _(f o n)_ (x) = f(n(x)) = f(x + 5) = √x + 5 D: {x | x ≥ -5} b) _(h o p)_ (x) = h(p(x)) = h(x² - 10x + 25) = 1/x² - 10x + 25 D: { x | x ≠ 5} c) _(f o m)_ (x) = f(m(x)) = f(x²) = √x² = |x| D: { x | x ∈ R} d) _(m o f)_ (x) = m(f(x)) = m(√x) = (√x)² = x D: { x | x ≥ 0} e) _(p o n)_ (x) = p(n(x)) = p(x + 5) = (x + 5)² - 10(x + 5) = x² + 10x + 25 - 10x - 50 + 25 = x² D: { x | x ∈ R } f) _(h o h)_ (x) = h(h(1/x)) = n(1/x) = 1/(1/x) = x D: { x | x ≠ 0} ### Circle the composition that produces each expression: | Expression | Composition | | ------------------------------ | -------------------------------------------- | | 1/x² | h(m(x)) | | x² - 10x² + 25 | p(m(x)) | | √x² + 5 | g(n(m(x))) | | 1/x | m(h(x)) | | (x² - 10x + 25)² | m(p(x)) | | n(g(m(x))) | | | m(g(n(x))) | | | g(n(m(x))) | |

Use Quizgecko on...
Browser
Browser