Unit Circle: Circular Functions and Trigonometric Functions PDF

Document Details

FascinatingCarbon8449

Uploaded by FascinatingCarbon8449

Pavia National High School

Engr. John Christopher L. Padios, RCE

Tags

unit circle trigonometric functions circular functions mathematics

Summary

This document presents a comprehensive study of the unit circle, including the concepts of circular functions and trigonometric functions. It covers topics like degrees and radians, conversion factors, and the relationships between different trigonometric identities and the unit circle. The document also provides examples and exercises to help readers better understand the material. The document is aimed at undergraduate students studying mathematics.

Full Transcript

Unit Circle: CIRCULAR FUNCTIONS AND TRIGONOMETRIC FUNCTIONS UNIT CIRCLE: LEARNING OBJECTIVES UNIT CIRCLE: DEGREES AND RADIANS 𝐢 𝑦 πœƒ 90Β°...

Unit Circle: CIRCULAR FUNCTIONS AND TRIGONOMETRIC FUNCTIONS UNIT CIRCLE: LEARNING OBJECTIVES UNIT CIRCLE: DEGREES AND RADIANS 𝐢 𝑦 πœƒ 90Β° (0, 1) 1 π‘Ÿπ‘Žπ‘‘ πœƒπ‘Ÿπ‘Žπ‘‘ 𝑠 = 1 π‘Ÿπ‘Žπ‘‘ 𝑠 π‘Ÿ 180Β° 𝐢(0,0) πœƒ = 57.3Β° (1, 0) π‘₯ 𝑠 (βˆ’1, 0) π‘Ÿ = 1 𝑒𝑛𝑖𝑑 360Β° πœƒπ‘Ÿπ‘Žπ‘‘ = π‘Ÿ 360Β° = 2πœ‹ π‘Ÿπ‘Žπ‘‘ (0, βˆ’1) 270Β° 180Β° = πœ‹ π‘Ÿπ‘Žπ‘‘ 180Β° 360Β° = 2πœ‹ π‘Ÿπ‘Žπ‘‘ 1 π‘Ÿπ‘Žπ‘‘ = πœ‹ 1 π‘Ÿπ‘Žπ‘‘ = 57.30Β° UNIT CIRCLE: DEGREES AND RADIANS 360Β° = 2πœ‹ π‘Ÿπ‘Žπ‘‘ β‰ˆ 180Β° = πœ‹ π‘Ÿπ‘Žπ‘‘ πœ‹ π‘Ÿπ‘Žπ‘‘ 180Β° Β° Β° πœ‹ π‘Ÿπ‘Žπ‘‘ 75Β° Γ— πœ‹ π‘Ÿπ‘Žπ‘‘ 3 βˆ™ 5 βˆ™ 5 βˆ™ πœ‹ π‘Ÿπ‘Žπ‘‘ 5 βˆ™ πœ‹ π‘Ÿπ‘Žπ‘‘ πŸ“π… 𝒓𝒂𝒅 πœ‹ π‘Ÿπ‘Žπ‘‘ 240Β° Γ— πœ‹ π‘Ÿπ‘Žπ‘‘ 2 βˆ™ 2 βˆ™ 2 βˆ™ 2 βˆ™ 3 βˆ™ 5 βˆ™ πœ‹ π‘Ÿπ‘Žπ‘‘ 2 βˆ™ 2 βˆ™ πœ‹ π‘Ÿπ‘Žπ‘‘ πŸ’π… 𝒓𝒂𝒅 75Β° = = = = 240Β° = = = = 180Β° 180Β° 2βˆ™2βˆ™3βˆ™3βˆ™5 2βˆ™2βˆ™3 𝟏𝟐 180Β° 180Β° 2βˆ™2βˆ™3βˆ™3βˆ™5 3 πŸ‘ 180Β° πœ‹ π‘Ÿπ‘Žπ‘‘ πœ‹ 5πœ‹ π‘Ÿπ‘Žπ‘‘ π‘Ÿπ‘Žπ‘‘ 18 3 πœ‹ 180Β° 180Β° 5πœ‹ 180Β° 900Β° π‘Ÿπ‘Žπ‘‘ = = 𝟏𝟎° π‘Ÿπ‘Žπ‘‘ = = πŸ‘πŸŽπŸŽΒ° 18 πœ‹ π‘Ÿπ‘Žπ‘‘ 18 3 πœ‹ π‘Ÿπ‘Žπ‘‘ 3Β° UNIT CIRCLE: CIRCULAR FUNCTIONS Β° Β° Β° Β° πœƒ 𝑦 πœƒ 90Β° (0, 1) 𝑃(π‘₯, 𝑦) 𝑠𝑖𝑛(πœƒ) 𝑦 π’”π’Šπ’ 𝜽 = π’š 𝟏 180Β° πœƒ (1, 0) 𝒄𝒔𝒄 𝜽 = ;π’š β‰  𝟎 π‘₯ π’š (βˆ’1, 0) 𝐢(0,0) π‘₯ 360Β° π‘π‘œπ‘ (πœƒ) 𝒄𝒐𝒔 𝜽 = 𝒙 𝟏 𝒔𝒆𝒄 𝜽 = ; 𝒙 β‰  𝟎 𝒙 π’š 𝒙 𝒕𝒂𝒏 𝜽 = ; 𝒙 β‰  𝟎 𝒄𝒐𝒕 𝜽 = ; π’š β‰  𝟎 𝒙 π’š (0, βˆ’1) 270Β° UNIT CIRCLE: CIRCULAR FUNCTIONS π‘œπ‘π‘ π‘Žπ‘‘π‘— π‘œπ‘π‘ 1 1 1 𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘  πœƒ = π‘‘π‘Žπ‘› πœƒ = 𝑐𝑠𝑐 πœƒ = 𝑠𝑒𝑐 πœƒ = π‘π‘œπ‘‘ πœƒ = β„Žπ‘¦π‘ β„Žπ‘¦π‘ π‘Žπ‘‘π‘— 𝑠𝑖𝑛 πœƒ π‘π‘œπ‘  πœƒ π‘‘π‘Žπ‘› πœƒ π‘œπ‘π‘ = 𝑦 π‘Žπ‘‘π‘— = π‘₯ β„Žπ‘¦π‘ = 1 𝑦 π‘œπ‘π‘ 𝑦 π‘Žπ‘‘π‘— π‘₯ π‘œπ‘π‘ 𝑦 𝑠𝑖𝑛 πœƒ = = π‘π‘œπ‘  πœƒ = = π‘‘π‘Žπ‘› πœƒ = = β„Žπ‘¦π‘ 1 β„Žπ‘¦π‘ 1 π‘Žπ‘‘π‘— π‘₯ 𝑃(π‘₯, 𝑦) 𝑠𝑖𝑛(πœƒ) π’š π’”π’Šπ’ 𝜽 = π’š 𝒄𝒐𝒔 𝜽 = 𝒙 𝒕𝒂𝒏 𝜽 = 𝑦 𝒙 πœƒ 𝟏 𝟏 𝒙 π‘₯ 𝒄𝒔𝒄 𝜽 = 𝒔𝒆𝒄 𝜽 = 𝒄𝒐𝒕 𝜽 = 𝐢(0,0) π‘₯ π’š 𝒙 π’š π‘π‘œπ‘ (πœƒ) UNIT CIRCLE: CIRCULAR FUNCTIONS (EXAMPLES) 𝑦 𝑠𝑖𝑛 90Β° π‘π‘œπ‘  270Β° π‘‘π‘Žπ‘› 180Β° 𝑠𝑖𝑛 πœƒ = 𝑦 π‘π‘œπ‘  πœƒ = π‘₯ 𝑦 π‘‘π‘Žπ‘› πœƒ = 90Β° (0, 1) π’”π’Šπ’ πŸ—πŸŽΒ° = 𝟏 𝒄𝒐𝒔 πŸπŸ•πŸŽΒ° = 𝟎 π‘₯ 𝑃(π‘₯, 𝑦) 0 𝑠𝑖𝑛(πœƒ) π‘‘π‘Žπ‘› 180Β° = βˆ’1 𝑦 𝒕𝒂𝒏 πŸπŸ–πŸŽΒ° = 𝟎 180Β° πœƒ (1, 0) π‘₯ (βˆ’1, 0) 𝐢(0,0) π‘₯ 360Β° 𝑠𝑖𝑛 360Β° π‘π‘œπ‘  180Β° π‘‘π‘Žπ‘› 90Β° π‘π‘œπ‘ (πœƒ) π‘π‘œπ‘  πœƒ = π‘₯ 𝑦 𝑠𝑖𝑛 πœƒ = 𝑦 π‘‘π‘Žπ‘› πœƒ = π’”π’Šπ’ πŸ‘πŸ”πŸŽΒ° = 𝟎 𝒄𝒐𝒔 πŸ‘πŸ”πŸŽΒ° = βˆ’πŸ π‘₯ 1 π‘‘π‘Žπ‘› 90Β° = (0, βˆ’1) 270Β° 0 𝒕𝒂𝒏 πŸ—πŸŽΒ° = π’–π’π’…π’†π’‡π’Šπ’π’†π’… UNIT CIRCLE: CIRCULAR FUNCTIONS (EXERCISES) 𝑦 𝑐𝑠𝑐 270Β° 𝑠𝑒𝑐 180Β° π‘π‘œπ‘‘ 90Β° 90Β° (0, 1) 𝑃(π‘₯, 𝑦) 𝑠𝑖𝑛(πœƒ) 𝑦 πœƒ 180Β° (1, 0) π‘₯ (βˆ’1, 0) 𝐢(0,0) π‘₯ 360Β° 𝑐𝑠𝑐 270Β° 𝑠𝑒𝑐 360Β° π‘π‘œπ‘‘ 180Β° π‘π‘œπ‘ (πœƒ) (0, βˆ’1) 270Β° UNIT CIRCLE: CIRCULAR FUNCTIONS (EXERCISES) πœ‹ 1 3 𝑃 , 3 2 2 πœ‹ πœ‹ πœ‹ 𝑠𝑖𝑛 π‘π‘œπ‘  π‘‘π‘Žπ‘› 3 3 3 πœ‹ πœ‹ πœ‹ 𝑐𝑠𝑐 3 𝑠𝑒𝑐 3 π‘π‘œπ‘‘ 3

Use Quizgecko on...
Browser
Browser