Unit Circle: Circular Functions and Trigonometric Functions PDF
Document Details

Uploaded by FascinatingCarbon8449
Pavia National High School
Engr. John Christopher L. Padios, RCE
Tags
Summary
This document presents a comprehensive study of the unit circle, including the concepts of circular functions and trigonometric functions. It covers topics like degrees and radians, conversion factors, and the relationships between different trigonometric identities and the unit circle. The document also provides examples and exercises to help readers better understand the material. The document is aimed at undergraduate students studying mathematics.
Full Transcript
Unit Circle: CIRCULAR FUNCTIONS AND TRIGONOMETRIC FUNCTIONS UNIT CIRCLE: LEARNING OBJECTIVES UNIT CIRCLE: DEGREES AND RADIANS πΆ π¦ π 90Β°...
Unit Circle: CIRCULAR FUNCTIONS AND TRIGONOMETRIC FUNCTIONS UNIT CIRCLE: LEARNING OBJECTIVES UNIT CIRCLE: DEGREES AND RADIANS πΆ π¦ π 90Β° (0, 1) 1 πππ ππππ π = 1 πππ π π 180Β° πΆ(0,0) π = 57.3Β° (1, 0) π₯ π (β1, 0) π = 1 π’πππ‘ 360Β° ππππ = π 360Β° = 2π πππ (0, β1) 270Β° 180Β° = π πππ 180Β° 360Β° = 2π πππ 1 πππ = π 1 πππ = 57.30Β° UNIT CIRCLE: DEGREES AND RADIANS 360Β° = 2π πππ β 180Β° = π πππ π πππ 180Β° Β° Β° π πππ 75Β° Γ π πππ 3 β 5 β 5 β π πππ 5 β π πππ ππ πππ π πππ 240Β° Γ π πππ 2 β 2 β 2 β 2 β 3 β 5 β π πππ 2 β 2 β π πππ ππ πππ 75Β° = = = = 240Β° = = = = 180Β° 180Β° 2β2β3β3β5 2β2β3 ππ 180Β° 180Β° 2β2β3β3β5 3 π 180Β° π πππ π 5π πππ πππ 18 3 π 180Β° 180Β° 5π 180Β° 900Β° πππ = = ππΒ° πππ = = πππΒ° 18 π πππ 18 3 π πππ 3Β° UNIT CIRCLE: CIRCULAR FUNCTIONS Β° Β° Β° Β° π π¦ π 90Β° (0, 1) π(π₯, π¦) π ππ(π) π¦ πππ π½ = π π 180Β° π (1, 0) πππ π½ = ;π β π π₯ π (β1, 0) πΆ(0,0) π₯ 360Β° πππ (π) πππ π½ = π π πππ π½ = ; π β π π π π πππ π½ = ; π β π πππ π½ = ; π β π π π (0, β1) 270Β° UNIT CIRCLE: CIRCULAR FUNCTIONS πππ πππ πππ 1 1 1 π ππ π = πππ π = π‘ππ π = ππ π π = π ππ π = πππ‘ π = βπ¦π βπ¦π πππ π ππ π πππ π π‘ππ π πππ = π¦ πππ = π₯ βπ¦π = 1 π¦ πππ π¦ πππ π₯ πππ π¦ π ππ π = = πππ π = = π‘ππ π = = βπ¦π 1 βπ¦π 1 πππ π₯ π(π₯, π¦) π ππ(π) π πππ π½ = π πππ π½ = π πππ π½ = π¦ π π π π π π₯ πππ π½ = πππ π½ = πππ π½ = πΆ(0,0) π₯ π π π πππ (π) UNIT CIRCLE: CIRCULAR FUNCTIONS (EXAMPLES) π¦ π ππ 90Β° πππ 270Β° π‘ππ 180Β° π ππ π = π¦ πππ π = π₯ π¦ π‘ππ π = 90Β° (0, 1) πππ ππΒ° = π πππ πππΒ° = π π₯ π(π₯, π¦) 0 π ππ(π) π‘ππ 180Β° = β1 π¦ πππ πππΒ° = π 180Β° π (1, 0) π₯ (β1, 0) πΆ(0,0) π₯ 360Β° π ππ 360Β° πππ 180Β° π‘ππ 90Β° πππ (π) πππ π = π₯ π¦ π ππ π = π¦ π‘ππ π = πππ πππΒ° = π πππ πππΒ° = βπ π₯ 1 π‘ππ 90Β° = (0, β1) 270Β° 0 πππ ππΒ° = πππ ππππππ UNIT CIRCLE: CIRCULAR FUNCTIONS (EXERCISES) π¦ ππ π 270Β° π ππ 180Β° πππ‘ 90Β° 90Β° (0, 1) π(π₯, π¦) π ππ(π) π¦ π 180Β° (1, 0) π₯ (β1, 0) πΆ(0,0) π₯ 360Β° ππ π 270Β° π ππ 360Β° πππ‘ 180Β° πππ (π) (0, β1) 270Β° UNIT CIRCLE: CIRCULAR FUNCTIONS (EXERCISES) π 1 3 π , 3 2 2 π π π π ππ πππ π‘ππ 3 3 3 π π π ππ π 3 π ππ 3 πππ‘ 3