Trig Cheat Sheet PDF
Document Details
Uploaded by SafeProsperity2331
Rambhai Barni Rajabhat University
Paul Dawkins
Tags
Summary
This document is a trigonometry cheat sheet, covering definitions, formulas, identities, and properties of trigonometric functions. It includes detailed explanations and examples, making it a useful resource for students and professionals.
Full Transcript
Trig Cheat Sheet Definition of the Trig Functions Right triangle definition Unit Circle Definition For this definition we assume that For this definition θ is any angle. π 0 < θ < or 0◦ < θ < 90◦. 2...
Trig Cheat Sheet Definition of the Trig Functions Right triangle definition Unit Circle Definition For this definition we assume that For this definition θ is any angle. π 0 < θ < or 0◦ < θ < 90◦. 2 opposite hypotenuse sin(θ) = csc(θ) = y 1 hypotenuse opposite sin(θ) = =y csc(θ) = adjacent hypotenuse 1 y cos(θ) = sec(θ) = x 1 hypotenuse adjacent cos(θ) = = x sec(θ) = opposite adjacent 1 x tan(θ) = cot(θ) = y x adjacent opposite tan(θ) = cot(θ) = x y Facts and Properties Domain Period The domain is all the values of θ that can be The period of a function is the number, T , such plugged into the function. that f (θ + T ) = f (θ). So, if ω is a fixed number sin(θ), θ can be any angle and θ is any angle we have the following periods. cos(θ), θ can be any angle 2π sin (ω θ) → T = 1 ω tan(θ), θ 6= n + π, n = 0, ±1, ±2,... 2 2π cos (ω θ) → T = ω csc(θ), θ 6= nπ, n = 0, ±1, ±2,... π tan (ω θ) → T = 1 ω sec(θ), θ 6= n + π, n = 0, ±1, ±2,... 2 2π csc (ω θ) → T = ω cot(θ), θ 6= nπ, n = 0, ±1, ±2,... 2π sec (ω θ) → T = ω π cot (ω θ) → T = ω Range The range is all possible values to get out of the function. −1 ≤ sin(θ) ≤ 1 −1 ≤ cos(θ) ≤ 1 −∞ < tan(θ) < ∞ −∞ < cot(θ) < ∞ sec(θ) ≥ 1 and sec(θ) ≤ −1 csc(θ) ≥ 1 and csc(θ) ≤ −1 © Paul Dawkins - https://tutorial.math.lamar.edu Trig Cheat Sheet Formulas and Identities Tangent and Cotangent Identities Half Angle Formulas sin(θ) cos(θ) θ r 1 − cos(θ) tan(θ) = cot(θ) = sin =± cos(θ) sin(θ) 2 2 Reciprocal Identities r θ 1 + cos(θ) 1 1 cos =± csc(θ) = sin(θ) = 2 2 sin(θ) csc(θ) s 1 1 θ 1 − cos(θ) sec(θ) = cos(θ) = tan =± cos(θ) sec(θ) 2 1 + cos(θ) 1 1 cot(θ) = tan(θ) = Half Angle Formulas (alternate form) tan(θ) cot(θ) Pythagorean Identities sin2 (θ) = 1 2 (1 − cos(2θ)) 1 − cos(2θ) tan2 (θ) = cos2 (θ) = 12 (1 + cos(2θ)) 1 + cos(2θ) sin2 (θ) + cos2 (θ) = 1 tan2 (θ) + 1 = sec2 (θ) Sum and Difference Formulas 2 1 + cot (θ) = csc2 (θ) sin(α ± β) = sin(α) cos(β) ± cos(α) sin(β) Even/Odd Formulas cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β) sin(−θ) = − sin(θ) csc(−θ) = − csc(θ) tan(α) ± tan(β) tan(α ± β) = cos(−θ) = cos(θ) sec(−θ) = sec(θ) 1 ∓ tan(α) tan(β) tan(−θ) = − tan(θ) cot(−θ) = − cot(θ) Product to Sum Formulas 1 Periodic Formulas sin(α) sin(β) = 2 [cos(α − β) − cos(α + β)] 1 If n is an integer then, cos(α) cos(β) = 2 [cos(α − β) + cos(α + β)] 1 sin(θ + 2πn) = sin(θ) csc(θ + 2πn) = csc(θ) sin(α) cos(β) = 2 [sin(α + β) + sin(α − β)] 1 cos(θ + 2πn) = cos(θ) sec(θ + 2πn) = sec(θ) cos(α) sin(β) = 2 [sin(α + β) − sin(α − β)] tan(θ + πn) = tan(θ) cot(θ + πn) = cot(θ) Sum to Product Formulas α+β α−β Degrees to Radians Formulas sin(α) + sin(β) = 2 sin cos 2 2 If x is an angle in degrees and t is an angle in α+β α−β radians then sin(α) − sin(β) = 2 cos sin 2 2 π t πx 180t = ⇒ t= and x= 180 x 180 π α+β α−β cos(α) + cos(β) = 2 cos cos 2 2 Double Angle Formulas α+β α−β cos(α)−cos(β) = −2 sin sin sin(2θ) = 2 sin(θ) cos(θ) 2 2 cos(2θ) = cos2 (θ) − sin2 (θ) Cofunction Formulas π π 2 = 2 cos (θ) − 1 sin − θ = cos(θ) cos − θ = sin(θ) 2π π 2 = 1 − 2 sin2 (θ) csc − θ = sec(θ) sec − θ = csc(θ) 2 tan(θ) π2 π2 tan(2θ) = tan − θ = cot(θ) cot − θ = tan(θ) 1 − tan2 (θ) 2 2 © Paul Dawkins - https://tutorial.math.lamar.edu Trig Cheat Sheet For any ordered pair on the unit circle (x, y) : cos(θ) = x and sin(θ) = y Example √ 5π 1 5π 3 cos = sin =− 3 2 3 2 © Paul Dawkins - https://tutorial.math.lamar.edu Trig Cheat Sheet Inverse Trig Functions Definition Inverse Properties −1 cos cos−1 (x) = x cos−1 (cos(θ)) = θ y = sin (x) is equivalent to x = sin(y) sin sin−1 (x) = x sin−1 (sin(θ)) = θ y = cos−1 (x) is equivalent to x = cos(y) tan tan−1 (x) = x tan−1 (tan(θ)) = θ y = tan−1 (x) is equivalent to x = tan(y) Domain and Range Alternate Notation Function Domain Range sin−1 (x) = arcsin(x) π π y = sin−1 (x) −1 ≤ x ≤ 1 − ≤y≤ cos−1 (x) = arccos(x) 2 2 y = cos−1 (x) −1 ≤ x ≤ 1 0≤y≤π tan−1 (x) = arctan(x) π π y = tan−1 (x) −∞ < x < ∞ −