Topic#4 Equilibrium of a Rigid Body PDF

Document Details

Uploaded by Deleted User

Helwan National University

Dr. Mohamed Salah

Tags

mechanics engineering equilibrium rigid body

Summary

This document presents lecture notes on the equilibrium of rigid bodies, covering 2D and 3D cases. It includes examples demonstrating the application of equilibrium principles in various scenarios.

Full Transcript

Helwan National University Faculty of Engineering GEN 0004: Mechanics Part One Static Ch4 :Equilibrium of a Rigid Body Dr. Mohamed Salah Equilibrium of a Rigid Body (2D) Condition of Equilibrium If the resultant force and couple moment are both equal to zero, th...

Helwan National University Faculty of Engineering GEN 0004: Mechanics Part One Static Ch4 :Equilibrium of a Rigid Body Dr. Mohamed Salah Equilibrium of a Rigid Body (2D) Condition of Equilibrium If the resultant force and couple moment are both equal to zero, then the body is said to be in equilibrium: ฯƒ ๐’‡๐’™ = ๐ŸŽ ๐‘น = ฯƒ๐‘ญ = ๐ŸŽ ฯƒ ๐’‡๐’š = ๐ŸŽ ๐‘ด๐‘น ๐‘ถ = ฯƒ ๐‘ด๐‘ถ = ๐ŸŽ Where O is any point on a rigid body Free body diagram 2 Support Reactions We consider the various types of reactions that occur at supports and points of contact between bodies subjected to coplanar force systems. As a general rule: If a support prevents the translation of a body in a given direction, then a force is developed on the body in that direction. If rotation is prevented, a couple moment is exerted on the body. 3 Support Reactions Roller, Rocker or Smooth Surface One unknown two Pin or Hinge unknown Fixed Support three unknown 4 Equilibrium of a Rigid Body (2D) Procedure for solving problems 1- Draw the Free Body Diagram a-Weight: ๐’˜ b-Applied force: Any force on the body, T , ๐‘“๐‘  , f, โ€ฆ c-Support Reactions: 5 Equilibrium of a Rigid Body (2D) 2- Force resolution 3-Apply the equilibrium equations ฯƒ ๐’‡๐’™ = ๐ŸŽ----------------------------1 ๐‘ = ฯƒ ๐…ิฆ = ๐ŸŽ ฯƒ ๐’‡๐’š = ๐ŸŽ----------------------------2 ฯƒ ๐‘ด๐‘ถ = ๐ŸŽ------------------------------------------------------3 4- Solve the resulting equations 6 Example 1 Determine the horizontal and vertical components of reaction on the beam caused by the pin at B and the rocker at A as shown in Figure. Neglect the weight of the beam. Solution: Rocker pin ๐‘ฉ๐’™ ๐‘ฉ๐’š ๐‘จ๐’š 7 Example 1 ๐Ÿ”๐ŸŽ๐ŸŽ ๐’”๐’Š๐’ ๐Ÿ’๐Ÿ“ 600 N 200 N ๐Ÿ”๐ŸŽ๐ŸŽ ๐’„๐’๐’” ๐Ÿ’๐Ÿ“ 45ยฐ ๐‘ฉ๐’™ ๐‘จ๐’š ๐‘ฉ๐’š 100 N โ†ถ + ฯƒ ๐‘€๐ต =0 100 ร— 2 + 600 sin 45 ร— 5 โˆ’ 600 cos 45 ร— 0.2 โˆ’(๐ด๐‘ฆ ร— 7) = 0 100 ร—2 + 600 sin 45ร—5 โˆ’ 600 cos 45ร—0.2 ๐ด๐‘ฆ = = 319.5 ๐‘ 7 8 Example 1 โ†’ + เท ๐‘“๐‘ฅ = 0 600 cos 45 โˆ’๐ต๐‘ฅ = 0 ๐ต๐‘ฅ = 600 cos 45 ๐ต๐‘ฅ = 424.3 ๐‘ โ†‘ + เท ๐‘“๐‘ฆ = 0 ๐ด๐‘ฆ = 319.5 ๐‘ ๐ต๐‘ฆ +๐ด๐‘ฆ โˆ’600 ๐‘ ๐‘–๐‘›45 โˆ’100 โˆ’200 = 0 ๐ต๐‘ฆ = 405 ๐‘ 9 Example 2 The member shown in Figure is pin-connected at A and rests against a smooth support at B. Determine the horizontal and vertical components of reaction at the pin A. Smooth ๐‘ฉ Solution: pin ๐‘จ๐’™ ๐‘จ๐’š 10 Example 2 ๐‘ฉ ๐’„๐’๐’” ๐Ÿ‘๐ŸŽ ๐‘ฉ ๐‘ฉ ๐’”๐’Š๐’ ๐Ÿ‘๐ŸŽ ๐‘จ๐’™ ๐‘จ๐’š 60 N โ†ถ + ฯƒ ๐‘€๐ด =0 โŸน ๐ต ร— 0.75 โˆ’ 60 ร— 1 โˆ’90 = 0 โˆด ๐ต = 200 ๐‘ โ†’ + ฯƒ ๐‘“๐‘ฅ = 0 โŸน ๐ด๐‘ฅ โˆ’๐ต sin 30 = 0 โˆด ๐ด๐‘ฅ = 100 ๐‘ โ†‘ + ฯƒ ๐‘“๐‘ฆ = 0 โŸน ๐ด๐‘ฆ โˆ’ ๐ต cos 30 โˆ’60 = 0 โˆด ๐ด๐‘ฆ = 233.2 ๐‘ 11 Equilibrium of a Rigid Body 3D Condition of Equilibrium The conditions for equilibrium of a rigid body subjected to a three-dimensional force system require that both the resultant force and resultant couple moment acting on the body be equal to zero. ฯƒ ๐‘ด๐’™ = ๐ŸŽ ฯƒ ๐‘ญ๐’™ = ๐ŸŽ ฯƒ ๐‘ด๐‘ถ = ๐ŸŽ ฯƒ ๐‘ด๐’š = ๐ŸŽ ฯƒ๐‘ญ = ๐ŸŽ ฯƒ ๐‘ญ๐’š = ๐ŸŽ ฯƒ ๐‘ด๐’› = ๐ŸŽ ฯƒ ๐‘ญ๐’› = ๐ŸŽ 12 Equilibrium of a Rigid Body 3D Procedure for solving problems 1- Draw the Free Body Diagram a-Weight: ๐’˜ b-Tension force in cable: T A A T B c-Spring force: ๐’‡๐’” = ๐’Œ โˆ— ๐’” Where ๐’” = ๐’ โˆ’ ๐’๐ŸŽ 13 Equilibrium of a Rigid Body 3D d-Support Reactions: Roller or Smooth Surface One unknown Ball and socket three unknown Fixed Support six unknown 14 Equilibrium of a Rigid Body 3D 2- Force representation 3-Apply the equilibrium equation ฯƒ ๐‘ด๐‘ถ = ๐ŸŽ 4- Equating coefficients ๐’Šิฆ ฯƒ ๐‘ด๐’™ = ๐ŸŽ -----------------1 ๐’‹ิฆ ฯƒ ๐‘ด๐’š = ๐ŸŽ-----------------2 ๐’Œ ฯƒ ๐‘ด๐’› = ๐ŸŽ -----------------3 5- Solve the resulting equations 15 Equilibrium of a Rigid Body 3D 6-Apply the equilibrium equation ๐‘ญ = ๐ŸŽ 7- Equating coefficients ๐’Šิฆ ฯƒ ๐‘ญ๐’™ = ๐ŸŽ -----------------4 ๐’‹ิฆ ฯƒ ๐‘ญ๐’š = ๐ŸŽ-----------------5 ๐’Œ ฯƒ ๐‘ญ๐’› = ๐ŸŽ -----------------6 8- Solve the resulting equations 16 Example 3 Draw the free-body diagram of the 5 x 8 ft plate weighing 270 lb and is supported by a ball and socket joint at A and by two cables. Solution: 17 Example 4 The assembly shown in Figure is used to support the load has a weight of 200 N. Determine the reaction at the ball-and-socket joint A and the tension in each of the wires. Solution: 18 Example 4 The free body diagram of rigid body ABCE is shown in Figure 19 Example 4 Express the tensions and forces in Cartesian vectors form. The coordinates of points A, B, G, C, D, F, and E are: A=(0, 0, 0), B=(4, 0, 0), G=(4, 2, 0), C=(4, 4, 0), D=(4, 0, 3), F=(2, 4, 3), and E=(2,4, 0). Thus, ๐ดิฆ = ๐ด๐‘ฅ ๐‘–ิฆ + ๐ด๐‘ฆ ๐‘—ิฆ + ๐ด๐‘ง ๐‘˜ ๐‘‡๐ต๐ท = ๐‘‡๐ต๐ท ๐‘˜ ๐‘Š = โˆ’200๐‘˜ ิฆ 3๐‘˜ โˆ’4๐‘—+ โˆ’4 3 ๐‘‡๐ถ๐ท = ๐‘‡๐ถ๐ท = ๐‘‡๐ถ๐ท ( ๐‘—ิฆ + ๐‘˜) 5 5 5 ๐‘‡๐ธ๐น = ๐‘‡๐ธ๐น ๐‘˜ 20 Example 4 Applying the equilibrium equation. First summing moments about point A: ฯƒ ๐‘€๐ด = 0 ๐‘Ÿิฆ๐ด๐ต ร— ๐‘‡๐ต๐ท + (๐‘Ÿิฆ๐ด๐ถ ร— ๐‘‡๐ถ๐ท ) + (๐‘Ÿิฆ๐ด๐ธ ร— ๐‘‡๐ธ๐น ) + (๐‘Ÿิฆ๐ด๐บ ร— W) = 0 ๐‘–ิฆ ๐‘—ิฆ ๐‘˜ ๐‘–ิฆ ๐‘—ิฆ ๐‘˜ ๐‘–ิฆ ๐‘—ิฆ ๐‘˜ ๐‘–ิฆ ๐‘—ิฆ ๐‘˜ 4 0 0 + 4 4 0 + 2 4 0 + 4 2 0 =0 0 0 ๐‘‡๐ต๐ท 0 โˆ’0.8๐‘‡๐ถ๐ท 0.6๐‘‡๐ถ๐ท 0 0 ๐‘‡๐ธ๐น 0 0 โˆ’200 Equating the respective ๐‘– , ๐‘—ิฆ, ๐‘˜ components to zero, we have: ๐’Šิฆ 2.4๐‘‡๐ถ๐ท + 4๐‘‡๐ธ๐น โˆ’ 400 = 0----------------------------------(1) ๐’‹ิฆ โˆ’4๐‘‡๐ต๐ท โˆ’ 2.4๐‘‡๐ถ๐ท โˆ’ 2๐‘‡๐ธ๐น + 800 = 0---------------------(2) ๐’Œ โˆ’3.2๐‘‡๐ถ๐ท = 0 โˆด ๐‘‡๐ถ๐ท = 0 21 Example 4 From equations 1&2 ๐‘‡๐ธ๐น = 100 ๐‘ and ๐‘‡๐ต๐ท = 150 ๐‘ Second summing forces equal to zero: ฯƒ ๐นิฆ = 0 ๐ดิฆ + TBD + ๐‘Š + TCD + TEF = 0 Equating the respective ๐‘– , ๐‘—ิฆ, ๐‘˜ components to zero, we have: ๐’Šิฆ ๐ด๐‘ฅ = 0 4 ๐’‹ิฆ ๐ด๐‘ฆ โˆ’ ๐‘‡๐ถ๐ท = 0 ๐ด๐‘ฆ = 0 5 3 ๐’Œ ๐ด๐‘ง + TBD โˆ’ 200 + ๐‘‡๐ถ๐ท + TEF = 0 ๐ด๐‘ง = โˆ’50 ๐‘ 5 22 Example 5 The pipe assembly supports the vertical loads shown. Determine the components of reaction at the ball and socket joint A, and the tension in the cables BC and BD. Solution: 23 Example 5 The free body diagram of rigid body AB is shown right figure. 24 Example 5 Express the tensions and forces in Cartesian vectors form. The coordinates of points A, B, E, and H are: A=(0, 0, 0), B=(0, 1.5, 1), C=(3, 0, 2), D=(-3, 0, 2), E=(0, 4.5, 2), and H=(0,6, 2). Thus, ๐ดิฆ = ๐ด๐‘ฅ ๐‘–ิฆ + ๐ด๐‘ฆ ๐‘—ิฆ + ๐ด๐‘ง ๐‘˜ 3ิฆ๐‘– โˆ’ 1.5ิฆ๐‘— + 1๐‘˜ 3 1.5 1 ๐‘‡๐ต๐ถ = ๐‘‡๐ต๐ถ = ๐‘‡๐ต๐ถ ( ๐‘–ิฆ โˆ’ ๐‘—ิฆ + ๐‘˜) 3.5 3.5 3.5 3.5 โˆ’3ิฆ๐‘– โˆ’ 1.5ิฆ๐‘— + 1๐‘˜ โˆ’3 1.5 1 ๐‘‡๐ต๐ท = ๐‘‡๐ต๐ท = ๐‘‡๐ต๐ท ( ๐‘–ิฆ โˆ’ ๐‘—ิฆ + ๐‘˜) 3.5 3.5 3.5 3.5 ๐นิฆ1 = โˆ’4๐‘˜ ๐นิฆ2 = โˆ’3๐‘˜ 25 Example 5 Applying the equilibrium equation. First summing moments about point A: ฯƒ ๐‘€๐ด = 0 ๐‘Ÿิฆ๐ด๐ต ร— ๐‘‡๐ต๐ถ + (๐‘Ÿิฆ๐ด๐ต ร— ๐‘‡๐ต๐ท ) + (๐‘Ÿิฆ๐ด๐ป ร— ๐นิฆ1 ) + (๐‘Ÿิฆ๐ด๐ธ ร— ๐นิฆ2 ) = 0 ๐‘Ÿิฆ๐ด๐ต = 1.5 ๐‘—ิฆ + ๐‘˜ ๐‘Ÿิฆ๐ด๐ป = 6 ๐‘—ิฆ + 2๐‘˜ ๐‘Ÿิฆ๐ด๐ธ = 4.5 ๐‘–ิฆ + 2ิฆ๐‘— ิฆi ิฆj k ิฆi ิฆj k 0 1.5 1 + 0 1.5 1 3 โˆ’1.5 1 โˆ’3 โˆ’1.5 1 ๐‘‡ ๐‘‡ ๐‘‡ ๐‘‡ ๐‘‡ ๐‘‡ 3.5 ๐ต๐ถ 3.5 ๐ต๐ถ 3.5 ๐ต๐ถ 3.5 ๐ต๐ท 3.5 ๐ต๐ท 3.5 ๐ต๐ท ิฆi ิฆj k ิฆi ิฆj k + 0 6 2 + 0 4.5 2 = 0 0 0 โˆ’4 0 0 โˆ’3 26 Example 5 Equating the respective ๐‘– , ๐‘—ิฆ, ๐‘˜ components to zero, we have: 3 3 ๐’Šิฆ ๐‘‡ + ๐‘‡ โˆ’ 37.5 = 0----------------------------------(1) 3.5 ๐ต๐ถ 3.5 ๐ต๐ท 3 3 ๐’‹ิฆ ๐‘‡๐ต๐ถ โˆ’ ๐‘‡๐ต๐ท = 0------------------------------------------(2) 3.5 3.5 4.5 4.5 ๐’Œ โˆ’ ๐‘‡ + ๐‘‡ = 0-----------------------------------------(3) 3.5 ๐ต๐ถ 3.5 ๐ต๐ท Solving equations (1) through (3), ๐‘‡๐ต๐ถ = ๐‘‡๐ต๐ท = 21.87๐พ๐‘ 27 Example 5 Second summing forces equal to zero: ฯƒ ๐นิฆ = 0 ๐ดิฆ + ๐‘‡๐ต๐ถ + ๐‘‡๐ต๐ท + ๐นิฆ1 + ๐นิฆ2 = 0 Equating the respective ๐‘– , ๐‘—ิฆ, ๐‘˜ components to zero, we have: 3 3 ๐’Šิฆ ๐ด๐‘ฅ + ๐‘‡๐ต๐ถ โˆ’ ๐‘‡๐ต๐ท = 0 ๐ด๐‘ฅ = 0 3.5 3.5 1.5 1.5 ๐’‹ิฆ ๐ด๐‘ฆ โˆ’ ๐‘‡๐ต๐ถ โˆ’ ๐‘‡๐ต๐ท = 0 ๐ด๐‘ฆ = 18.74 ๐‘˜๐‘ 3.5 3.5 1 1 ๐’Œ ๐ด๐‘ง + ๐‘‡๐ต๐ถ + ๐‘‡๐ต๐ท โˆ’ 7 = 0 ๐ด๐‘ง = โˆ’5.5 ๐‘˜๐‘ 3.5 3.5 28

Use Quizgecko on...
Browser
Browser