Topic#4 Equilibrium of a Rigid Body PDF
Document Details
Uploaded by Deleted User
Helwan National University
Dr. Mohamed Salah
Tags
Summary
This document presents lecture notes on the equilibrium of rigid bodies, covering 2D and 3D cases. It includes examples demonstrating the application of equilibrium principles in various scenarios.
Full Transcript
Helwan National University Faculty of Engineering GEN 0004: Mechanics Part One Static Ch4 :Equilibrium of a Rigid Body Dr. Mohamed Salah Equilibrium of a Rigid Body (2D) Condition of Equilibrium If the resultant force and couple moment are both equal to zero, th...
Helwan National University Faculty of Engineering GEN 0004: Mechanics Part One Static Ch4 :Equilibrium of a Rigid Body Dr. Mohamed Salah Equilibrium of a Rigid Body (2D) Condition of Equilibrium If the resultant force and couple moment are both equal to zero, then the body is said to be in equilibrium: ฯ ๐๐ = ๐ ๐น = ฯ๐ญ = ๐ ฯ ๐๐ = ๐ ๐ด๐น ๐ถ = ฯ ๐ด๐ถ = ๐ Where O is any point on a rigid body Free body diagram 2 Support Reactions We consider the various types of reactions that occur at supports and points of contact between bodies subjected to coplanar force systems. As a general rule: If a support prevents the translation of a body in a given direction, then a force is developed on the body in that direction. If rotation is prevented, a couple moment is exerted on the body. 3 Support Reactions Roller, Rocker or Smooth Surface One unknown two Pin or Hinge unknown Fixed Support three unknown 4 Equilibrium of a Rigid Body (2D) Procedure for solving problems 1- Draw the Free Body Diagram a-Weight: ๐ b-Applied force: Any force on the body, T , ๐๐ , f, โฆ c-Support Reactions: 5 Equilibrium of a Rigid Body (2D) 2- Force resolution 3-Apply the equilibrium equations ฯ ๐๐ = ๐----------------------------1 ๐ = ฯ ๐ ิฆ = ๐ ฯ ๐๐ = ๐----------------------------2 ฯ ๐ด๐ถ = ๐------------------------------------------------------3 4- Solve the resulting equations 6 Example 1 Determine the horizontal and vertical components of reaction on the beam caused by the pin at B and the rocker at A as shown in Figure. Neglect the weight of the beam. Solution: Rocker pin ๐ฉ๐ ๐ฉ๐ ๐จ๐ 7 Example 1 ๐๐๐ ๐๐๐ ๐๐ 600 N 200 N ๐๐๐ ๐๐๐ ๐๐ 45ยฐ ๐ฉ๐ ๐จ๐ ๐ฉ๐ 100 N โถ + ฯ ๐๐ต =0 100 ร 2 + 600 sin 45 ร 5 โ 600 cos 45 ร 0.2 โ(๐ด๐ฆ ร 7) = 0 100 ร2 + 600 sin 45ร5 โ 600 cos 45ร0.2 ๐ด๐ฆ = = 319.5 ๐ 7 8 Example 1 โ + เท ๐๐ฅ = 0 600 cos 45 โ๐ต๐ฅ = 0 ๐ต๐ฅ = 600 cos 45 ๐ต๐ฅ = 424.3 ๐ โ + เท ๐๐ฆ = 0 ๐ด๐ฆ = 319.5 ๐ ๐ต๐ฆ +๐ด๐ฆ โ600 ๐ ๐๐45 โ100 โ200 = 0 ๐ต๐ฆ = 405 ๐ 9 Example 2 The member shown in Figure is pin-connected at A and rests against a smooth support at B. Determine the horizontal and vertical components of reaction at the pin A. Smooth ๐ฉ Solution: pin ๐จ๐ ๐จ๐ 10 Example 2 ๐ฉ ๐๐๐ ๐๐ ๐ฉ ๐ฉ ๐๐๐ ๐๐ ๐จ๐ ๐จ๐ 60 N โถ + ฯ ๐๐ด =0 โน ๐ต ร 0.75 โ 60 ร 1 โ90 = 0 โด ๐ต = 200 ๐ โ + ฯ ๐๐ฅ = 0 โน ๐ด๐ฅ โ๐ต sin 30 = 0 โด ๐ด๐ฅ = 100 ๐ โ + ฯ ๐๐ฆ = 0 โน ๐ด๐ฆ โ ๐ต cos 30 โ60 = 0 โด ๐ด๐ฆ = 233.2 ๐ 11 Equilibrium of a Rigid Body 3D Condition of Equilibrium The conditions for equilibrium of a rigid body subjected to a three-dimensional force system require that both the resultant force and resultant couple moment acting on the body be equal to zero. ฯ ๐ด๐ = ๐ ฯ ๐ญ๐ = ๐ ฯ ๐ด๐ถ = ๐ ฯ ๐ด๐ = ๐ ฯ๐ญ = ๐ ฯ ๐ญ๐ = ๐ ฯ ๐ด๐ = ๐ ฯ ๐ญ๐ = ๐ 12 Equilibrium of a Rigid Body 3D Procedure for solving problems 1- Draw the Free Body Diagram a-Weight: ๐ b-Tension force in cable: T A A T B c-Spring force: ๐๐ = ๐ โ ๐ Where ๐ = ๐ โ ๐๐ 13 Equilibrium of a Rigid Body 3D d-Support Reactions: Roller or Smooth Surface One unknown Ball and socket three unknown Fixed Support six unknown 14 Equilibrium of a Rigid Body 3D 2- Force representation 3-Apply the equilibrium equation ฯ ๐ด๐ถ = ๐ 4- Equating coefficients ๐ิฆ ฯ ๐ด๐ = ๐ -----------------1 ๐ิฆ ฯ ๐ด๐ = ๐-----------------2 ๐ ฯ ๐ด๐ = ๐ -----------------3 5- Solve the resulting equations 15 Equilibrium of a Rigid Body 3D 6-Apply the equilibrium equation ๐ญ = ๐ 7- Equating coefficients ๐ิฆ ฯ ๐ญ๐ = ๐ -----------------4 ๐ิฆ ฯ ๐ญ๐ = ๐-----------------5 ๐ ฯ ๐ญ๐ = ๐ -----------------6 8- Solve the resulting equations 16 Example 3 Draw the free-body diagram of the 5 x 8 ft plate weighing 270 lb and is supported by a ball and socket joint at A and by two cables. Solution: 17 Example 4 The assembly shown in Figure is used to support the load has a weight of 200 N. Determine the reaction at the ball-and-socket joint A and the tension in each of the wires. Solution: 18 Example 4 The free body diagram of rigid body ABCE is shown in Figure 19 Example 4 Express the tensions and forces in Cartesian vectors form. The coordinates of points A, B, G, C, D, F, and E are: A=(0, 0, 0), B=(4, 0, 0), G=(4, 2, 0), C=(4, 4, 0), D=(4, 0, 3), F=(2, 4, 3), and E=(2,4, 0). Thus, ๐ดิฆ = ๐ด๐ฅ ๐ิฆ + ๐ด๐ฆ ๐ิฆ + ๐ด๐ง ๐ ๐๐ต๐ท = ๐๐ต๐ท ๐ ๐ = โ200๐ ิฆ 3๐ โ4๐+ โ4 3 ๐๐ถ๐ท = ๐๐ถ๐ท = ๐๐ถ๐ท ( ๐ิฆ + ๐) 5 5 5 ๐๐ธ๐น = ๐๐ธ๐น ๐ 20 Example 4 Applying the equilibrium equation. First summing moments about point A: ฯ ๐๐ด = 0 ๐ิฆ๐ด๐ต ร ๐๐ต๐ท + (๐ิฆ๐ด๐ถ ร ๐๐ถ๐ท ) + (๐ิฆ๐ด๐ธ ร ๐๐ธ๐น ) + (๐ิฆ๐ด๐บ ร W) = 0 ๐ิฆ ๐ิฆ ๐ ๐ิฆ ๐ิฆ ๐ ๐ิฆ ๐ิฆ ๐ ๐ิฆ ๐ิฆ ๐ 4 0 0 + 4 4 0 + 2 4 0 + 4 2 0 =0 0 0 ๐๐ต๐ท 0 โ0.8๐๐ถ๐ท 0.6๐๐ถ๐ท 0 0 ๐๐ธ๐น 0 0 โ200 Equating the respective ๐ , ๐ิฆ, ๐ components to zero, we have: ๐ิฆ 2.4๐๐ถ๐ท + 4๐๐ธ๐น โ 400 = 0----------------------------------(1) ๐ิฆ โ4๐๐ต๐ท โ 2.4๐๐ถ๐ท โ 2๐๐ธ๐น + 800 = 0---------------------(2) ๐ โ3.2๐๐ถ๐ท = 0 โด ๐๐ถ๐ท = 0 21 Example 4 From equations 1&2 ๐๐ธ๐น = 100 ๐ and ๐๐ต๐ท = 150 ๐ Second summing forces equal to zero: ฯ ๐นิฆ = 0 ๐ดิฆ + TBD + ๐ + TCD + TEF = 0 Equating the respective ๐ , ๐ิฆ, ๐ components to zero, we have: ๐ิฆ ๐ด๐ฅ = 0 4 ๐ิฆ ๐ด๐ฆ โ ๐๐ถ๐ท = 0 ๐ด๐ฆ = 0 5 3 ๐ ๐ด๐ง + TBD โ 200 + ๐๐ถ๐ท + TEF = 0 ๐ด๐ง = โ50 ๐ 5 22 Example 5 The pipe assembly supports the vertical loads shown. Determine the components of reaction at the ball and socket joint A, and the tension in the cables BC and BD. Solution: 23 Example 5 The free body diagram of rigid body AB is shown right figure. 24 Example 5 Express the tensions and forces in Cartesian vectors form. The coordinates of points A, B, E, and H are: A=(0, 0, 0), B=(0, 1.5, 1), C=(3, 0, 2), D=(-3, 0, 2), E=(0, 4.5, 2), and H=(0,6, 2). Thus, ๐ดิฆ = ๐ด๐ฅ ๐ิฆ + ๐ด๐ฆ ๐ิฆ + ๐ด๐ง ๐ 3ิฆ๐ โ 1.5ิฆ๐ + 1๐ 3 1.5 1 ๐๐ต๐ถ = ๐๐ต๐ถ = ๐๐ต๐ถ ( ๐ิฆ โ ๐ิฆ + ๐) 3.5 3.5 3.5 3.5 โ3ิฆ๐ โ 1.5ิฆ๐ + 1๐ โ3 1.5 1 ๐๐ต๐ท = ๐๐ต๐ท = ๐๐ต๐ท ( ๐ิฆ โ ๐ิฆ + ๐) 3.5 3.5 3.5 3.5 ๐นิฆ1 = โ4๐ ๐นิฆ2 = โ3๐ 25 Example 5 Applying the equilibrium equation. First summing moments about point A: ฯ ๐๐ด = 0 ๐ิฆ๐ด๐ต ร ๐๐ต๐ถ + (๐ิฆ๐ด๐ต ร ๐๐ต๐ท ) + (๐ิฆ๐ด๐ป ร ๐นิฆ1 ) + (๐ิฆ๐ด๐ธ ร ๐นิฆ2 ) = 0 ๐ิฆ๐ด๐ต = 1.5 ๐ิฆ + ๐ ๐ิฆ๐ด๐ป = 6 ๐ิฆ + 2๐ ๐ิฆ๐ด๐ธ = 4.5 ๐ิฆ + 2ิฆ๐ ิฆi ิฆj k ิฆi ิฆj k 0 1.5 1 + 0 1.5 1 3 โ1.5 1 โ3 โ1.5 1 ๐ ๐ ๐ ๐ ๐ ๐ 3.5 ๐ต๐ถ 3.5 ๐ต๐ถ 3.5 ๐ต๐ถ 3.5 ๐ต๐ท 3.5 ๐ต๐ท 3.5 ๐ต๐ท ิฆi ิฆj k ิฆi ิฆj k + 0 6 2 + 0 4.5 2 = 0 0 0 โ4 0 0 โ3 26 Example 5 Equating the respective ๐ , ๐ิฆ, ๐ components to zero, we have: 3 3 ๐ิฆ ๐ + ๐ โ 37.5 = 0----------------------------------(1) 3.5 ๐ต๐ถ 3.5 ๐ต๐ท 3 3 ๐ิฆ ๐๐ต๐ถ โ ๐๐ต๐ท = 0------------------------------------------(2) 3.5 3.5 4.5 4.5 ๐ โ ๐ + ๐ = 0-----------------------------------------(3) 3.5 ๐ต๐ถ 3.5 ๐ต๐ท Solving equations (1) through (3), ๐๐ต๐ถ = ๐๐ต๐ท = 21.87๐พ๐ 27 Example 5 Second summing forces equal to zero: ฯ ๐นิฆ = 0 ๐ดิฆ + ๐๐ต๐ถ + ๐๐ต๐ท + ๐นิฆ1 + ๐นิฆ2 = 0 Equating the respective ๐ , ๐ิฆ, ๐ components to zero, we have: 3 3 ๐ิฆ ๐ด๐ฅ + ๐๐ต๐ถ โ ๐๐ต๐ท = 0 ๐ด๐ฅ = 0 3.5 3.5 1.5 1.5 ๐ิฆ ๐ด๐ฆ โ ๐๐ต๐ถ โ ๐๐ต๐ท = 0 ๐ด๐ฆ = 18.74 ๐๐ 3.5 3.5 1 1 ๐ ๐ด๐ง + ๐๐ต๐ถ + ๐๐ต๐ท โ 7 = 0 ๐ด๐ง = โ5.5 ๐๐ 3.5 3.5 28