TEMA 3 PARTE 2 PDF
Document Details
Uploaded by PoisedNephrite4849
Tags
Summary
This document provides information about basic concepts of meteorology and aeronautics, including units of measurement for pressure, atmospheric factors such as temperature and its variation, and humidity. It explains the relationship between temperature, pressure, and air density. In addition, the document explains orography and the role of factors like altitude and air content on various characteristics such as temperature and humidity.
Full Transcript
3. Orografía. La presencia de accidentes orográficos puede provocar acumulaciones o déficits de masa de aire que, respectivamente, hagan aumentar o disminuir localmente la presión. UNIDADES DE MEDIDA Existen varias unidades para indicar la presión. Para establecer las equivalencias entre estas unida...
3. Orografía. La presencia de accidentes orográficos puede provocar acumulaciones o déficits de masa de aire que, respectivamente, hagan aumentar o disminuir localmente la presión. UNIDADES DE MEDIDA Existen varias unidades para indicar la presión. Para establecer las equivalencias entre estas unidades se parte de la definición de la unidad “atmósfera”. Una atmósfera (1013,25 hPa) es igual al peso de una columna de mercurio de 1 cm2 de sección y de 76 cm de altura. Esta unidad se estableció en el experimento de Torricelli, en el que se invirtió un tubo de vidrio lleno de mercurio de 1m de largo por 1cm2 de sección sobre una cubeta que contenía el mismo líquido. El líquido de mercurio en el tubo descendió hasta una altura de 76 cm, debido a que la fuerza ejercida por la atmósfera fuera del tubo de vidrio estaba equilibrada con la que ejercía el mercurio dentro del tubo de vidrio. Experimento de Torricelli Equivalencia entre las 3 principales unidades de presión. Atmósfera Milímetros de Milibares/ (Atm) mercurio (mm de Hg) hectopascales (mb/hPa) 1 760 1013.25 2.5. Temperatura. La temperatura del aire es la medida de la energía cinética promediada de las moléculas que lo componen, que se hallan en continuo movimiento y que experimentan infinitos choques entre sí. FACTORES QUE AFECTAN A LA TEMPERATURA 1. Altura Se denomina gradiente térmico vertical a la variación de la temperatura con la altura. a. Gradiente térmico positivo: la temperatura desciende con la altura. b. Gradiente térmico negativo: la temperatura aumenta con la altura. 2. Variación a lo largo del día La temperatura del aire presenta una variación diaria, mostrando normalmente un máximo aproximadamente dos horas después del mediodía, y un mínimo poco después del amanecer. El hecho de que los máximos y mínimos no aparezcan exactamente a mediodía o al ponerse el Sol, se debe a que lleva un tiempo el que el aire se caliente o enfríe al recibir la radiación solar (inercia térmica). 3. La nubosidad Suaviza los máximos y mínimos al reflejar parte de la radiación solar y absorber parte de la radiación terrestre. Por tanto, la diferencia entre la temperatura máxima y mínima (amplitud térmica) es menor. 4. El viento Con el viento se remueve el aire y, por tanto, se mezclan capas de aire a diferente temperatura. Esto hace que la variación diurna sea menos marcada. 5. La naturaleza de la superficie terrestre en la que se mide la temperatura, así como la de la superficie circundante La variación diaria de temperatura será mayor en la superficie terrestre que en el mar y zonas costeras, al tener el agua un calor específico más bajo que las zonas terrestres. Por otra parte, esta temperatura se verá influenciada por el flujo de aire caliente o aire frío que venga de las zonas circundantes debida a su naturaleza, con lo que también afectará a la variación diaria de temperatura. ESCALAS La temperatura se puede medir usando diferentes escalas. La temperatura de fusión y ebullición del agua para cada una de ellas se muestra a continuación: PUNTO DE FUSIÓN DEL HIELO PUNTO DE EBULLICIÓN DEL AGUA 0ºC 100ºC 273,16 K 373,16 K 32ºF 212ºF ESCALA CENTÍGRADA ESCALA KELVIN ESCALA FAHRENHEIT Puntos de fusión y ebullición del agua en las 3 principales escalas de temperaturas. Donde la relación entre la equivalencia de temperaturas en las escalas centígrada y Fahrenheit viene 5 dada por la ecuación: C= ∙ (F-32), mientras que la escala centígrada y kelvin se relacionan mediante: 9 K= C + 100. 2.6. Densidad. La densidad es la masa que tiene un gas en la unidad de volumen, por tanto, es también el cociente de la masa entre el volumen del mismo: ρ = m/V Donde ρ es la densidad, m es la masa y V el volumen. El volumen dependerá de la sección (S) y la altura (h): V=Sh Sin embargo, la densidad (molar) del aire está relacionada con la presión y temperatura. Esta relación es consecuencia de la ecuación de estado de los gases perfectos que se define a continuación: P= dRT Siendo “P” la presión, “d” la densidad, “R” la constante de los gases ideales (R= 2870 hPa cm3/ Kg K) y “T” la temperatura. Por tanto, a una presión constante, un aire es menos denso cuanto mayor es su temperatura y viceversa. De aquí se deduce también que, a una presión constante, la columna de aire más caliente será la menos densa y, por tanto, su altura será mayor; es decir, la columna de aire tiende a expandirse cuanto mayor es su temperatura. 2.7. Humedad. La humedad ambiental de la atmósfera es la cantidad de vapor de agua que contiene. FACTORES QUE AFECTAN A LA HUMEDAD 1. Temperatura La cantidad de vapor de agua que un volumen de aire puede almacenar viene determinada por la temperatura. A mayor temperatura, mayor cantidad de vapor de agua puede almacenar. Cuando un volumen de aire contiene la máxima cantidad de vapor de agua que puede almacenar se dice que este volumen de aire está saturado. Los mecanismos por los que un volumen de aire se satura son: Disminuyendo la temperatura de un volumen de aire no saturado. Inyectando vapor de agua en un volumen de aire no saturado. Una vez que el volumen de aire está saturado y no admite más vapor de agua, si se añade más vapor de agua o se enfría todavía más, una parte de este vapor de agua se transforma en agua líquida o, lo que es lo mismo, se condensa. VALORES RELACIONADOS CON LA HUMEDAD 2. La humedad relativa Es el cociente entre la cantidad de vapor de agua que realmente contiene un volumen de aire determinado a una temperatura dada y la cantidad de vapor de agua máxima que puede almacenar ese volumen de aire a la misma temperatura. Por tanto, cuando el volumen de aire esté saturado, su humedad relativa será del 100%. 3. El punto de rocío Es la temperatura a la cual hay que enfriar un volumen de aire para saturarlo, manteniéndolo a presión constante. Es decir, es la temperatura a la que hay que enfriar un volumen de aire para que la humedad relativa sea del 100%. Conocer el punto de rocío en superficie puede ayudar a predecir la posibilidad de presencia de nieblas, que aparecen en ocasiones cuando la temperatura del aire se aproxima o alcanza la del punto de rocío. 2.8. Estructura física de la atmósfera: Capas. La atmósfera se divide verticalmente en cinco capas. Estas capas no son uniformes alrededor del globo terrestre, sino que dependen de la latitud a la que se encuentren en su vertical. Extensión Se extiende desde la superficie hasta una altitud promedio de 8 Km en latitudes altas (tropopausa polar), mientras que en latitudes bajas se extiende desde la superficie hasta una altura promedio de 18 Km (tropopausa tropical) y en latitudes medias, de hasta 12 Km (tropopausa de latitudes medias). Temperatura Desciende con la altitud hasta llegar a los -56,5ºC. y altitud Presión Densidad La presión y la densidad también disminuyen con la altitud. Vapor de agua Contiene casi todo el vapor de agua y la mayor parte de la masa de la atmósfera y, además, se producen movimientos verticales muy marcados, lo que implica que la mayor parte de los fenómenos meteorológicos se produzcan en esta capa. Límite superior El límite superior de la troposfera se llama tropopausa y puede considerarse como una superficie de discontinuidad donde la temperatura se mantiene constante en torno a aproximadamente -56ºC. La tropopausa no es continua alrededor del todo el globo terrestre y existen unas “roturas” entre las tropopausas a diferentes latitudes, en donde se originan corrientes de viento muy fuertes denominadas corriente en chorro. Extensión Esta capa se encuentra situada encima de la troposfera y se extiende desde la tropopausa hasta unos 50 o 55 Km de altitud. TROPOSFERA Temperatura La temperatura asciende con la altitud, lo que se debe fundamentalmente a la y altitud abundancia de ozono en esta capa. ESTRATOSFERA Presión Densidad Vapor de agua La presión continúa descendiendo exponencialmente con la altitud, pero es tan sólo alrededor del 0.1% de la que existe a nivel del mar. Su contenido de vapor de agua es pequeño y apenas hay nubes; sólo nubes nacaradas que se sitúan a 20 o 30 Km de altitud y topes de cumulonimbos que por inercia perforan la tropopausa alcanzando la parte más baja de la estratosfera. Límite superior El límite superior de la estratosfera es denominado estratopausa, situada a 50 Km de altitud aproximadamente y a partir de la cual la temperatura disminuye de nuevo. Extensión Esta capa se encuentra situada encima de la estratosfera y se extiende desde la estratopausa hasta unos 80 Km de altitud. Temperatura La temperatura disminuye con la altitud hasta alcanzar una temperatura de y altitud 95ºC aproximadamente. Presión Densidad MESOESFERA Vapor de agua Disminuyen la presión y la densidad. En esta capa no se forman apenas nubes, excepto en latitudes altas en las que, cuando el Sol se sitúa entre 5º y 13º, se pueden observar nubes noctilucentes3. Límite superior El límite superior de la mesosfera se denomina mesopausa y se caracteriza porque es el nivel con la temperatura más fría de toda la atmósfera. En este nivel es donde termina la atmósfera con una composición de gases homogénea. Esta zona donde la atmósfera es homogénea y comprende la troposfera, la estratosfera y la mesosfera recibe el nombre de homosfera. Extensión Esta capa se encuentra situada encima de la mesosfera y se extiende desde la mesopausa hasta unos 500 Km. Temperatura La temperatura aumenta con la altitud debido a la radiación solar, hasta y altitud alcanzar una temperatura de 1.100ºC. Presión TERMOESFERA O IONOSFERA Densidad EXOSFERA Disminuye. A estas altitudes extremas las moléculas de gas se encuentran ampliamente separadas, quedando por tanto libres los átomos que las constituían. Al estar también libres los iones durante largos períodos de tiempo, la ionización es importante y da lugar a fenómenos como la aurora boreal. En el ámbito de las radiocomunicaciones, los iones presentes en esta capa pueden reflejar las ondas de radio, permitiendo la comunicación entre distintos lugares del globo terrestre. Vapor de agua En esta capa no se forma ninguna nube. Límite superior El límite superior de la termosfera se denomina termopausa. Extensión Esta capa es la última capa de la atmósfera, se encuentra situada encima de la termosfera y su espesor es muy elevado, hasta confundirse con el gas interplanetario. Capas de la atmósfera y sus grosores. Principales fenómenos presentes en cada capa de la atmósfera Perfil vertical de la temperatura en la atmósfera. 2.9. Estabilidad e inestabilidad de la atmósfera. En la atmósfera, se define la estabilidad como la capacidad que tiene una masa de aire de resistirse al desplazamiento vertical desde su posición inicial o nivel de equilibrio. A. La atmósfera será tanto más estable cuanto más difícil sea que se den los movimientos verticales en ella, e inestable en caso contrario. B. La intensidad de los movimientos verticales dependerá de cuánto más o menos inestable sea la atmósfera. C. En el aire, la inestabilidad se origina cuando una burbuja de aire está más caliente (es menos densa) que el aire que la rodea, y asciende. La estabilidad es la situación contraria, en la que la burbuja de aire está más fría que su entorno. o Cielo despejado o con nubes estratiformes o En las capas bajas, si hay humedad suficiente y sobre todo en invierno, pueden formarse nieblas. o El humo y los contaminantes, al no poder elevarse, reducen la visibilidad y disminuyen la calidad del aire. o Nubes a veces turbulencia. o Buena visibilidad, excepto dentro de las nubes y en caso de chubascos. Aire estable Aire inestable muy desarrolladas, chubascos y 2.10. ANEXO: la atmósfera en la aviación. 2.10.1 La atmósfera estándar. La determinación de la altitud se realiza a partir de una atmósfera ideal, no real, en la que la distribución de la presión, densidad y temperatura en la atmósfera es independiente de la latitud y época del año. Esta atmósfera la definió la OACI y fue denominada atmósfera ISA (International Standard Atmosphere). La atmósfera estándar tiene las siguientes características: 1. Está formada por aire seco, considerado como un gas perfecto que obedece a la ley de los gases perfectos y con una masa molecular media de 0,02896442 kg/mol. 2. A nivel del mar tiene una temperatura de 15ºC (288,15 K), una presión de 1013,25 hPa (760 mm Hg) y una densidad de 1,2250 kg/m3. 3. La temperatura absoluta del punto de fusión del hielo es de 273,15º K. 4. El gradiente térmico en la troposfera es de 2ºC por cada 1.000 ft de elevación (6,5ºC cada 1.000 metros) desde el suelo hasta la altitud de la tropopausa, donde la temperatura se encuentra alrededor de los – 56,5ºC, siendo el perfil vertical del resto de las capas el que se muestra en la figura siguiente: Perfil vertical de temperatura según atmósfera ISA. Por tanto, en la atmósfera estándar queda fijado para cada valor de presión un valor de altitud junto con su temperatura. Algunos de estos valores son: Valores de presión y temperatura de la atmósfera ISA a distintas altitudes. La atmósfera estándar es utilizada sólo para aplicaciones aeronáuticas. En la práctica, las constantes fluctuaciones de la presión y la temperatura en la atmósfera, así como la diferencia de estas variables según la latitud, hacen que la atmósfera real pueda diferir significativamente de la atmósfera ISA. 2.10.2 Altimetría. La altimetría se ocupa de determinar la altitud de vuelo de la aeronave a partir del valor de presión medido. La altura es la distancia vertical entre un punto en el seno del aire y una superficie horizontal de referencia que generalmente es el suelo o superficie terrestre. La altitud es la distancia vertical entre un punto en el seno del aire y el nivel medio del mar (MSL). La elevación es la distancia vertical entre un punto del terreno y el nivel medio del mar. Representación gráfica de altura, altitud y elevación. 2.10.3 Altímetro y su calado. Los altímetros son los instrumentos que permiten determinar la posición vertical de la aeronave, indicando la altitud de la aeronave en función de la presión. Miden la presión atmosférica y, mediante el uso de las reglas de la altimetría y según la atmósfera ISA definida anteriormente, convierten dicha presión en la altitud a la que se encuentra el avión. Los altímetros son barómetros aneroides graduados para leer altitudes. Altímetro. En la atmósfera real se dan variaciones de presión y temperatura, por lo que la presión a nivel del mar en general no es de 1013.25 hPa. Por tanto, las altitudes indicadas por el altímetro obtenidas teniendo en cuenta las condiciones de la atmósfera ISA, pueden presentar diferencias con respecto a las altitudes reales. Para obtener valores ajustados a las condiciones reales de presión resulta necesario ajustar o calar el altímetro a la presión real existente a nivel del mar o a la presión en un punto de la superficie de altitud conocida. Inicialmente se ajusta el altímetro a cero metros (o al punto de la superficie de altitud conocida que corresponda, en su caso) y, seguidamente y a partir de esta referencia, el altímetro realiza las conversiones de presión a altitud. QNH: Es la presión atmosférica del aeródromo reducida al nivel del mar en condiciones ISA. La indicación del altímetro de la aeronave será la altitud con relación al nivel medio del mar. Por tanto, cuando una aeronave se encuentre en tierra con este calado, el altímetro indicará la altitud del aeródromo en el que se encuentre. QFE: Es la presión atmosférica del aeródromo medida por el barómetro de la oficina meteorológica del aeródromo. La indicación del altímetro será la altura. Por tanto, cuando una aeronave se encuentre en tierra con este calado, el altímetro indicará cero. QNE: Es la presión estándar a nivel del mar. La ventanilla del altímetro se ajustará a la referencia de 1.013,25 hPa y así, la indicación del altímetro será la distancia a la superficie de presión de referencia 1.013,25 hPa. Los reglamentos aéreos establecen que todos los aviones vuelen en ruta con la misma presión de referencia (QNE). De esta manera, los aviones vuelan a determinados niveles de vuelo. Los valores para reglar un altímetro a QNH o QFE no son fijos, ya que varían con el paso del tiempo y con el lugar de medición, así que es necesario ir actualizando estos valores obteniéndolos de la estación meteorológica más cercana. En el caso de que el aeropuerto esté al nivel del mar, el QNH coincidirá con el QFE, si el aeropuerto está por debajo del nivel del mar, QNH será menor que QFE y, si está por encima del nivel del mar, QNH será mayor que QFE. 2.10.4 Niveles de vuelo. Los niveles de vuelo son superficies de presión atmosférica constante que se encuentran a una distancia determinada de la superficie de presión 1013,25 hPa calculados a partir de la atmósfera estándar de la OACI. Estos niveles de vuelo son niveles de crucero que siempre quedan por encima de la altitud de transición que más adelante se define. Los niveles de vuelo se expresan en centenares de pies y la separación o distancia entre ellos la establece el Reglamento de Circulación Aérea4. 2.10.5 Altitud, nivel y capa de transición. La magnitud de referencia a la que debe calarse el altímetro cambia durante la trayectoria. La referencia escogida para el reglaje del altímetro dependerá del punto en el que se encuentre la aeronave. Hay dos puntos en los que se debe cambiar la referencia escogida para el reglaje del altímetro: Altitud de Definición y calado transición Es la altitud: o Por debajo de la cual se controla la posición vertical de la aeronave en referencia a altitudes. Por tanto, el altímetro está calado a QNH. o Por encima de la cual se controla la posición de la aeronave con niveles de vuelo. Por tanto, el altímetro está calado a QNE. Fase del vuelo La aeronave tiene en cuenta la altitud de transición en el afectado despegue. Es un valor que se encuentra fijado para cada aeropuerto. Valores En España existe tres: Para Madrid TMA: 13000 ft, Para Granada CTA: 7000 ft, Para el resto: 6000 ft. Nivel de Definición y calado transición Es el nivel de vuelo más bajo disponible por encima de la altitud de transición: o Por debajo del nivel de transición se ha de operar en altitudes y el altímetro está calado en QNH. o Por encima del nivel de transición ha de operar en niveles de vuelo y el altímetro debe estar calado a QNE. Fase del vuelo La aeronave tiene en cuenta el nivel de transición en la afectado aproximación para el aterrizaje. Valores Su valor depende de las condiciones meteorológicas, pero por lo general debe estar a 1000 ft como mínimo por encima de la altitud de transición. Capa de transición Es la capa situada entre el nivel de transición y la altitud de transición. Su espesor es variable y siempre mayor o igual a 1000 ft. Altitud de transición, nivel de transición y cambios de reglaje.