Techniques for Measuring Depth with One Beam - PDF

Summary

This document provides a detailed explanation and analysis of depth measurement techniques, particularly those involving a single beam. It explores general concepts, applications, basic principles, and influential factors like sound speed variations and the correction measures needed for accurate depth determination. The technical information presented is essential, especially in hydrographic projects and engineering applications.

Full Transcript

‫ﻣﺘﺮﺟﻢ ﻣﻦ ﺍﻹﻧﺠﻠﻴﺰﻳﺔ ﺇﻟﻰ ﺍﻟﻌﺮﺑﻴﺔ ‪www.onlinedoctranslator.com -‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﺍﻟﻔﺼﻞﺍﻟﺘﺎﺳﻊ‬ ‫ﺗﻘﻨﻴﺎﺕﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ ﺑﺎﺳﺘﺨﺪ...

‫ﻣﺘﺮﺟﻢ ﻣﻦ ﺍﻹﻧﺠﻠﻴﺰﻳﺔ ﺇﻟﻰ ﺍﻟﻌﺮﺑﻴﺔ ‪www.onlinedoctranslator.com -‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﺍﻟﻔﺼﻞﺍﻟﺘﺎﺳﻊ‬ ‫ﺗﻘﻨﻴﺎﺕﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺣﺰﻣﺔ ﻭﺍﺣﺪﺓ‬ ‫‪.9-1‬ﺍﻟﻨﻄﺎﻕ ﺍﻟﻌﺎﻡ ﻭﺍﻟﺘﻄﺒﻴﻘﺎﺕ‬ ‫ﺇﻥﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺣﺰﻣﺔ ﻭﺍﺣﺪﺓ ﻫﻮ ﺑﻼ ﺷﻚ ﺃﻛﺜﺮ ﺗﻘﻨﻴﺎﺕ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﺳﺘﺨﺪﺍﻣﺎً ﻓﻲ ﺳﻼﺡ ﺍﻟﻤﻬﻨﺪﺳﻴﻦ‬ ‫ﻓﻲﺍﻟﺠﻴﺶ ﺍﻷﻣﺮﻳﻜﻲ ﻟﻤﺴﺢ ﻣﺸﺎﺭﻳﻊ ﺍﻟﻤﻼﺣﺔ ﻓﻲ ﺍﻷﻧﻬﺎﺭ ﻭﺍﻟﻤﻮﺍﻧﺊ‪.‬ﻭﻗﺪ ﺍﺳﺘﺨُﺪﻡ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ ﻷﻭﻝ ﻣﺮﺓ ﻓﻲ‬ ‫ﺳﻼﺡﺍﻟﻤﻬﻨﺪﺳﻴﻦ ﻓﻲ ﺛﻼﺛﻴﻨﻴﺎﺕ ﺍﻟﻘﺮﻥ ﺍﻟﻌﺸﺮﻳﻦ‪ ،‬ﻭﻟﻜﻨﻪ ﻟﻢ ﻳﺤﻞ ﻣﺤﻞ ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﻗﻴﺎﺱ ﻋﻤﻖ ﺍﻟﺨﻂ ﺍﻟﺮﺉﻴﺴﻲ ﺣﺘﻰ‬ ‫ﺧﻤﺴﻴﻨﻴﺎﺕﺃﻭ ﺳﺘﻴﻨﻴﺎﺕ ﺍﻟﻘﺮﻥ ﺍﻟﻌﺸﺮﻳﻦ‪.‬ﻭﺗﺴُﺘﺨﺪﻡ ﻣﺠﻤﻮﻋﺔ ﻣﺘﻨﻮﻋﺔ ﻣﻦ ﺃﻧﻈﻤﺔ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ ﻓﻲ ﺟﻤﻴﻊ ﺃﻧﺤﺎء ﺳﻼﺡ‬ ‫ﺍﻟﻤﻬﻨﺪﺳﻴﻦ‪،‬ﺍﻋﺘﻤﺎﺩﺍً ﻋﻠﻰ ﻇﺮﻭﻑ ﺍﻟﻤﺸﺮﻭﻉ ﻭﺃﻋﻤﺎﻗﻪ‪.‬ﻭﺗﺸﻤﻞ ﻫﺬﻩ ﺃﻧﻈﻤﺔ ﻣﺤﻮﻝ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻮﺍﺣﺪ‪ ،‬ﻭﺃﻧﻈﻤﺔ ﻣﺴﺢ ﻗﻨﻮﺍﺕ‬ ‫ﺍﻟﻤﺤﻮﻻﺕﺍﻟﻤﺘﻌﺪﺩﺓ‪ ،‬ﻭﺃﻧﻈﻤﺔ ﺍﻟﻤﺴﺢ ﻣﺘﻌﺪﺩﺓ ﺍﻟﺤﺰﻡ‪.‬ﻭﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺃﻧﻈﻤﺔ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻤﺘﻌﺪﺩ ﺑﺸﻜﻞ ﻣﺘﺰﺍﻳﺪ ﻓﻲ‬ ‫ﻣﺴﺢﻣﺸﺎﺭﻳﻊ ﺍﻟﻤﺴﻮﺩﺍﺕ ﺍﻟﻌﻤﻴﻘﺔ‪ ،‬ﺇﻻ ﺃﻥ ﺃﻧﻈﻤﺔ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻮﺍﺣﺪ ﻻ ﺗﺰﺍﻝ ﺗﺴﺘﺨﺪﻡ ﻣﻦ ﻗﺒﻞ ﺍﻟﻐﺎﻟﺒﻴﺔ ﺍﻟﻌﻈﻤﻰ ﻣﻦ ﺍﻟﻤﻨﺎﻃﻖ‪.‬‬ ‫ﻭﻳﻐﻄﻲﻫﺬﺍ ﺍﻟﻔﺼﻞ ﻣﺒﺎﺩﺉ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ ﻟﻸﻧﻈﻤﺔ ﺍﻟﺘﻘﻠﻴﺪﻳﺔ ﺫﺍﺕ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻮﺍﺣﺪ ﺍﻟﻤﺜﺒﺘﺔ ﺭﺃﺳﻴﺎً‪.‬ﻛﻤﺎ ﺗﻨﻄﺒﻖ‬ ‫ﺍﻟﻌﺪﻳﺪﻣﻦ ﻫﺬﻩ ﺍﻟﻤﺒﺎﺩﺉ ﻋﻠﻰ ﺃﻧﻈﻤﺔ ﺍﻟﻤﺴﺢ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻤﺤﻮﻻﺕ ﻭﺃﻧﻈﻤﺔ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻤﺘﻌﺪﺩ‪.‬ﻭﻳﺮﻛﺰ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ﺑﺸﻜﻞ ﺧﺎﺹ‬ ‫ﻋﻠﻰﺍﻟﻤﻌﺎﻳﺮﺍﺕ ﺍﻟﺤﺮﺟﺔ ﺍﻟﻤﻄﻠﻮﺑﺔ ﻟﻠﺤﻔﺎﻅ ﻋﻠﻰ ﻣﺮﺍﻗﺒﺔ ﺍﻟﺠﻮﺩﺓ ﻓﻲ ﻣﻌﺪﺍﺕ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺣﺰﻣﺔ ﻭﺍﺣﺪﺓ‪.‬‬ ‫ﻭﻗﺪﺗﻢ ﺗﻠﺨﻴﺺ ﻫﺬﻩ ﺍﻟﻤﻌﺎﻳﻴﺮ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ‪ 6-9‬ﻓﻲ ﻧﻬﺎﻳﺔ ﻫﺬﺍ ﺍﻟﻔﺼﻞ‪.‬‬ ‫‪.9-2‬ﻣﺒﺎﺩﺉ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ‬ ‫ﺳﻄﺢﺍﻟﻤﺎء ﺍﻟﻤﺮﺟﻌﻲ‬ ‫ﻣﺤﻮﻝ‬ ‫ﺻﺎﺩﺭ‬ ‫ﺇﺷﺎﺭﺓ‬ ‫ﺍﻟﻨﺒﻀﺔﺍﻟﺼﻮﺗﻴﺔ ﺍﻟﻤﺮﺳﻠﺔ‬ ‫ﺳﺮﻋﺔ‬ ‫ﻭﺍﻟﻤﺮﺗﺠﻌﺔ‬ ‫ﻭﻗﺖ‬ ‫ﻣﺴﻮﺩﺓﺩ‬ ‫ﺍﻟﺴﺮﻋﺔ× ﺍﻟﺰﻣﻦ‬ ‫ﺍﻟﻤﻘﺎﺱ ﻫﻮ ﺩﺍﻟﺔ ﻋﻠﻰ‪:‬‬ ‫ﺍﻟﻌﻤﻖ‬ ‫‪2‬‬ ‫ ﺯﻣﻦﺍﻧﺘﻘﺎﻝ ﺍﻟﻨﺒﻀﺔ )ﺕ(‬ ‫ﺩ‬ ‫ﻓﻬِﺮﺱِ‬ ‫ ﺳﺮﻋﺔﺍﻟﻨﺒﻀﺔ ﻓﻲ ﺍﻟﻤﺎء )ﻓﻮﻟﺖ(‬ ‫ﺩ= ‪ * 1/2‬ﻑ * ﺕ‬ ‫ﺇﻧﻌﻜﺎﺱ ﺩ‬ ‫ﺇﺷﺎﺭﺓ‬ ‫ﺍﻟﺸﻜﻞ‪.1-9‬ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ‬ ‫‪9-1‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﺃ‪.‬ﺍﻟﻤﺒﺪﺃ ﺍﻷﺳﺎﺳﻲ‪.‬ﺗﻘﻴﺲ ﺃﻧﻈﻤﺔ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺼﻮﺗﻲ ﺍﻟﻮﻗﺖ ﺍﻟﻤﻨﻘﻀﻲ ﺍﻟﺬﻱ ﻳﺴﺘﻐﺮﻗﻪ‬ ‫ﺗﺴﺘﻐﺮﻕﺍﻟﻨﺒﻀﺔ ﺍﻟﺼﻮﺗﻴﺔ ﻭﻗﺘﺎً ﻟﻼﻧﺘﻘﺎﻝ ﻣﻦ ﻣﺤﻮﻝ ﺗﻮﻟﻴﺪ ﺇﻟﻰ ﻗﺎﻉ ﺍﻟﻤﻤﺮ ﺍﻟﻤﺎﺉﻲ ﻭﺍﻟﻌﻮﺩﺓ‪.‬ﻭﻳﺘﻀﺢ ﺫﻟﻚ ﻓﻲ ﺍﻟﺸﻜﻞ ‪1-9‬‬ ‫ﺣﻴﺚﻳﻜﻮﻥ ﺍﻟﻌﻤﻖ ﺍﻟﻤﻘﺎﺱ )‪ (D‬ﺑﻴﻦ ﺍﻟﻤﺤﻮﻝ ﻭﻧﻘﻄﺔ ﻣﺎ ﻋﻠﻰ ﺍﻟﻘﺎﻉ ﺍﻟﻌﺎﻛﺲ ﻟﻠﺼﻮﺕ‪.‬ﻭﻳﻌﺘﻤﺪ ﻭﻗﺖ ﺍﻧﺘﻘﺎﻝ ﺍﻟﻨﺒﻀﺔ‬ ‫ﺍﻟﺼﻮﺗﻴﺔﻋﻠﻰ ﺳﺮﻋﺔ ﺍﻻﻧﺘﺸﺎﺭ )ﻑ( ﻓﻲ ﻋﻤﻮﺩ ﺍﻟﻤﺎء‪.‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺳﺮﻋﺔ ﺍﻧﺘﺸﺎﺭ ﺍﻟﺼﻮﺕ ﻓﻲ ﻋﻤﻮﺩ ﺍﻟﻤﺎء ﻣﻌﺮﻭﻓﺔ‪ ،‬ﺇﻟﻰ ﺟﺎﻧﺐ‬ ‫ﺍﻟﻤﺴﺎﻓﺔﺑﻴﻦ ﺍﻟﻤﺤﻮﻝ ﻭﺳﻄﺢ ﺍﻟﻤﺎء ﺍﻟﻤﺮﺟﻌﻲ‪ ،‬ﻓﺈﻥ ﺍﻟﻌﻤﻖ ﺍﻟﻤﺼﺤﺢ )ﺩ( ﻳﻤﻜﻦ ﺣﺴﺎﺑﻬﺎ ﻣﻦ ﺧﻼﻝ ﺯﻣﻦ ﺍﻧﺘﻘﺎﻝ ﺍﻟﻨﺒﻀﺔ‬ ‫ﺍﻟﻤﻘﺎﺱ‪.‬ﻭﻳﺘﻢ ﺍﻟﺘﻌﺒﻴﺮ ﻋﻦ ﺫﻟﻚ ﺑﺎﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻣﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫ﺭ‬‫ﺩ= ½ )ﻑ · ﺕ( ‪ +‬ﻙ ‪ +‬ﺩ‬ ‫ﺗﻢﺗﺼﺤﻴﺢ ﺍﻟﻌﻤﻖ ﻟﺴﻄﺢ ﺍﻟﻤﺎء ﺍﻟﻤﺮﺟﻌﻲ‬ ‫)ﺍﻟﻤﻌﺎﺩﻟﺔ ‪(1-9‬‬ ‫ﺃﻳﻦ‪:‬‬ ‫ﺩ = ﻋﻤﻖﻣﺼﺤﺢ ﻣﻦ ﻣﺘﻮﺳﻂ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﻋﻠﻰ‬ ‫ﻑ = ﺳﻄﺢﺍﻟﻤﺎء ﻓﻲ ﻋﻤﻮﺩ ﺍﻟﻤﺎء‬ ‫ﺕ = ﻗﻴﺎﺱﺍﻟﻮﻗﺖ ﺍﻟﻤﻨﻘﻀﻲ ﻣﻦ ﺍﻟﻤﺤﻮﻝ ﺇﻟﻰ ﺍﻟﻘﺎﻉ ﻭﺍﻟﻌﻮﺩﺓ ﺇﻟﻰ ﻧﻈﺎﻡ ﺍﻟﻤﺤﻮﻝ ﺛﺎﺑﺖ‬ ‫ﻙ = ﺍﻟﻤﺆﺷﺮ‬ ‫ﺩﺭ = ﺍﻟﻤﺴﺎﻓﺔﻣﻦ ﺳﻄﺢ ﺍﻟﻤﺎء ﺍﻟﻤﺮﺟﻌﻲ ﺇﻟﻰ ﺍﻟﻤﺤﻮﻝ )ﺍﻟﻤﺴﻮﺩﺓ(‬ ‫ﺍﻟﻤﻌﻠﻤﺎﺕﻑ‪,‬ﺕ‪ ،‬ﻭﺩﺭﻻ ﻳﻤﻜﻦ ﺗﺤﺪﻳﺪﻫﺎ ﺑﺸﻜﻞ ﻣﺜﺎﻟﻲ ﺃﺛﻨﺎء ﻋﻤﻠﻴﺔ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ‪ ،‬ﻭﻙﻳﺠﺐ ﺗﺤﺪﻳﺪ ﺫﻟﻚ ﻣﻦ ﺧﻼﻝ‬ ‫ﺍﻟﻤﻌﺎﻳﺮﺓﺍﻟﺪﻭﺭﻳﺔ ﻟﻠﻤﻌﺪﺍﺕ‪.‬ﺍﻟﻮﻗﺖ ﺍﻟﻤﻨﻘﻀﻲ‪،‬ﺕ‪,‬ﻳﻌﺘﻤﺪ ﺫﻟﻚ ﻋﻠﻰ ﺍﻧﻌﻜﺎﺱ ﺍﻟﻘﺎﻉ ﻭﻃﺮﻕ ﻣﻌﺎﻟﺠﺔ ﺍﻹﺷﺎﺭﺓ ﺫﺍﺕ ﺍﻟﺼﻠﺔ‬ ‫ﺍﻟﻤﺴﺘﺨﺪﻣﺔﻟﺘﻤﻴﻴﺰ ﻋﻮﺩﺓ ﺻﺎﻟﺤﺔ‪.‬ﺳﻴﻠﻌﺐ ﺷﻜﻞ ﺃﻭ ﺣﺪﺓ ﺍﻟﻨﺒﻀﺔ ﺍﻟﻌﺎﺉﺪﺓ ﺍﻟﻤﻮﺿﺤﺔ ﻓﻲ ﺍﻟﺸﻜﻞ ‪ 1-9‬ﺩﻭﺭﺍً ﺭﺉﻴﺴﻴﺎً ﻓﻲ‬ ‫ﺩﻗﺔﻭﻗﺪﺭﺍﺕ ﺍﻟﻜﺸﻒ ﻋﻦ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ‪.‬‬ ‫ﺏ‪.‬ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﻓﻲ ﺍﻟﻤﺎء‪.‬ﺗﺤﺪﻳﺪ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ‪،‬ﻑ‪ ،‬ﺭﺑﻤﺎ ﻫﻮ ﺍﻷﻛﺜﺮ ﺃﻫﻤﻴﺔ‬ ‫ﻋﺎﻣﻞﻣﻬﻢ ﻓﻲ ﺍﺳﺘﺨﺪﺍﻡ ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺍﻷﻋﻤﺎﻕ ﺍﻟﺼﻮﺗﻴﺔ‪.‬ﺗﺨﺘﻠﻒ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﺑﺎﺧﺘﻼﻑ ﻛﺜﺎﻓﺔ ﺍﻟﻤﺎء ﻭﺧﻮﺍﺻﻪ ﺍﻟﻤﺮﻧﺔ‪.‬‬ ‫ﻫﺬﻩﺍﻟﺨﺼﺎﺉﺺ‪ ،‬ﺑﺎﻟﻨﺴﺒﺔ ﻷﻋﻤﺎﻕ ﻣﺸﺎﺭﻳﻊ ﺍﻷﻧﻬﺎﺭ ﻭﺍﻟﻤﻮﺍﻧﺊ ﺍﻟﻨﻤﻮﺫﺟﻴﺔ‪ ،‬ﺗﻌﺘﻤﺪ ﻓﻲ ﺍﻟﻤﻘﺎﻡ ﺍﻷﻭﻝ ﻋﻠﻰ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﻟﻤﺎء‬ ‫ﻭﺍﻟﻤﺤﺘﻮﻳﺎﺕﺍﻟﻤﻌﻠﻘﺔ ﺃﻭ ﺍﻟﻤﺬﺍﺑﺔ‪ ،‬ﺃﻱ ﺍﻟﻤﻠﻮﺣﺔ‪.‬ﻭﺑﺴﺒﺐ ﻫﺬﻩ ﺍﻟﺘﺄﺛﻴﺮﺍﺕ‪ ،‬ﻓﺈﻥ ﺍﻟﺴﺮﻋﺔ )ﻫـ( ﻳﻤﻜﻦ ﺃﻥ ﻳﺘﺮﺍﻭﺡ ﻣﻦ ‪ 4600‬ﺇﻟﻰ‬ ‫‪5000‬ﻗﺪﻡ‪/‬ﺛﺎﻧﻴﺔ‪.‬ﻭﻧﻈﺮﺍً ﻷﻥ ﻣﻌﻈﻢ ﻣﺸﺎﺭﻳﻊ ﺍﻷﻧﻬﺎﺭ ﻭﺍﻟﻤﻮﺍﻧﺊ ﻳﻤﻜﻦ ﺃﻥ ﺗﻈﻬﺮ ﺍﺧﺘﻼﻓﺎﺕ ﻛﺒﻴﺮﺓ ﻓﻲ ﺩﺭﺟﺔ ﺍﻟﺤﺮﺍﺭﺓ ﻭ‪/‬ﺃﻭ‬ ‫ﺍﻟﻤﻠﻮﺣﺔﻣﻊ ﺍﻟﻌﻤﻖ‪ ،‬ﻓﺈﻥ ﺳﺮﻋﺔ ﺍﻟﻤﻮﺟﺔ ﺍﻟﺼﻮﺗﻴﺔ ﺍﻟﻤﺘﻮﻗﻌﺔ ﻟﻦ ﺗﻜﻮﻥ ﺛﺎﺑﺘﺔ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ﻣﻦ ﻣﺤﻮﻝ ﺍﻟﻘﺎﺭﺏ ﺇﻟﻰ ﺍﻟﻘﺎﻉ‬ ‫ﻭﺍﻟﻌﻮﺩﺓ‪.‬ﻭﺗﺄﺛﻴﺮ ﻫﺬﺍ ﺍﻻﺧﺘﻼﻑ ﻛﺒﻴﺮ‪.‬ﺳﻴﺆﺩﻱ ﺗﻐﻴﻴﺮ ﺩﺭﺟﺔ ﺍﻟﺤﺮﺍﺭﺓ ﺑﻤﻘﺪﺍﺭ ‪ 10‬ﺩﺭﺟﺎﺕ ﻓﻬﺮﻧﻬﺎﻳﺖ ﺇﻟﻰ ﺗﻐﻴﻴﺮ ﺍﻟﺴﺮﻋﺔ ﺑﻤﺎ ﻳﺼﻞ‬ ‫ﺇﻟﻰ‪ 70‬ﻗﺪﻣﺎً‪/‬ﺛﺎﻧﻴﺔ‪ ،‬ﺃﻭ ‪ 0.8‬ﻗﺪﻡ ﻓﻲ ‪ 50‬ﻗﺪﻣﺎً ﻣﻦ ﺍﻟﻤﺎء‪.‬ﻳﻤﻜﻦ ﺃﻥ ﻳﺆﺩﻱ ﺗﻐﻴﻴﺮ ﺍﻟﻤﻠﻮﺣﺔ ﺑﻤﻘﺪﺍﺭ ‪ 10‬ﺃﺟﺰﺍء ﻓﻲ ﺍﻷﻟﻒ ﺇﻟﻰ‬ ‫ﺗﻐﻴﻴﺮﺍﻟﺴﺮﻋﺔ ﺑﺤﻮﺍﻟﻲ ‪ 40‬ﻗﺪﻣﺎً‪/‬ﺛﺎﻧﻴﺔ‪ ،‬ﺃﻭ ‪ 0.4‬ﻗﺪﻡ ﻓﻲ ‪ 50‬ﻗﺪﻣﺎً‪.‬ﺑﺎﻟﻨﺴﺒﺔ ﻷﻋﻤﺎﻝ ﺍﻟﻤﺴﺢ ﺍﻟﺼﺪﻯ ﺃﺣﺎﺩﻳﺔ ﺍﻟﺤﺰﻣﺔ ﺍﻟﻌﻤﻠﻴﺔ‬ ‫ﻓﻲﺍﻟﻤﻴﺎﻩ ﺍﻟﻀﺤﻠﺔ‪ ،‬ﻳﻔُﺘﺮﺽ ﻋﺎﺩﺓ ًﻣﺘﻮﺳﻂ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ )ﻋﻦ ﻃﺮﻳﻖ ﺍﻟﻤﻌﺎﻳﺮﺓ(‪.‬ﻗﺪ ﻻ ﻳﻜﻮﻥ ﺍﺳﺘﺨﺪﺍﻡ ﻣﺘﻮﺳﻂ ﺳﺮﻋﺔ‬ ‫ﺍﻟﺼﻮﺕﺻﺎﻟﺤﺎً ﻓﻲ ﺍﻟﻤﺸﺎﺭﻳﻊ ﺍﻟﺴﺎﺣﻠﻴﺔ ﺍﻟﻤﻌﺮﺿﺔ ﻟﺠﺮﻳﺎﻥ ﺍﻟﻤﻴﺎﻩ ﺍﻟﻌﺬﺑﺔ ﻭﻟﻦ ﻳﻜﻮﻥ ﺛﺎﺑﺘﺎً ﻋﻠﻰ ﻛﺎﻣﻞ ﻣﻨﻄﻘﺔ ﺍﻟﻤﺸﺮﻭﻉ ﺍﻟﺘﻲ‬ ‫ﺗﻢﻣﺴﺤﻬﺎ‪.‬ﺇﺫﺍ ﺣﺪﺛﺖ ﺍﺧﺘﻼﻓﺎﺕ ﻛﺒﻴﺮﺓ ﻓﻲ ﺍﻟﺴﺮﻋﺔ ﻓﻮﻕ ﻋﻤﻮﺩ ﺍﻟﻤﺎء‪ ،‬ﻓﻴﺠﺐ ﺃﻥ ﺗﻜﻮﻥ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﺍﻟﻤﺘﻮﺳﻄﺔ‬ ‫ﺍﻟﻤﺴﺘﺨﺪﻣﺔﻫﻲ ﺗﻠﻚ ﺍﻟﻤﻮﺟﻮﺩﺓ ﻋﻨﺪ ﺃﻭ ﺑﺎﻟﻘﺮﺏ ﻣﻦ ﻣﺘﻮﺳﻂ ﻋﻤﻖ ﺍﻟﻤﺴﺢ ﻟﻠﻤﺸﺮﻭﻉ‪ ،‬ﻭﻟﻴﺲ ﻓﻮﻕ ﻋﻤﻮﺩ ﺍﻟﻤﺎء ﺑﺎﻟﻜﺎﻣﻞ‪.‬‬ ‫ﻳﻤﻜﻦﻗﻴﺎﺱ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﺑﺸﻜﻞ ﻣﺒﺎﺷﺮ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻣﺴﺒﺎﺭ ﺍﻟﺴﺮﻋﺔ ﺃﻭ ﺑﺸﻜﻞ ﻏﻴﺮ ﻣﺒﺎﺷﺮ ﻣﻦ ﺧﻼﻝ ﻣﻌﺎﻳﺮﺓ ﺍﺧﺘﺒﺎﺭ‬ ‫ﺍﻟﺸﺮﻳﻂ‪.‬ﻳﻤﻜﻦ ﻟﻤﺴﺒﺎﺭ ﺍﻟﺴﺮﻋﺔ ﻗﻴﺎﺱ ﺳﺮﻋﺎﺕ ﺍﻟﺼﻮﺕ ﻋﻨﺪ ﻛﻞ ﻧﻘﻄﺔ ﻓﻲ ﻋﻤﻮﺩ ﺍﻟﻤﺎء )ﻋﻠﻰ ﺳﺒﻴﻞ ﺍﻟﻤﺜﺎﻝ‪ ،‬ﻛﻞ ﻗﺪﻡ(‪.‬‬ ‫ﻳﻤﻜﻦﺍﺳﺘﺨﺪﺍﻡ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻟﺤﺴﺎﺏ ﻣﺘﻮﺳﻂ ﺍﻟﺴﺮﻋﺔ ﻓﻮﻕ ﺍﻟﻌﻤﻮﺩ ﺑﺎﻟﻜﺎﻣﻞ‪ ،‬ﺃﻭ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﺴﺮﻋﺎﺕ ﻋﻨﺪ ﻛﻞ ﺯﻳﺎﺩﺓ‬ ‫ﻟﺘﺼﺤﻴﺢﺍﻷﻋﻤﺎﻕ‪.‬ﻳﻘﻴﺲ ﺍﺧﺘﺒﺎﺭ ﺍﻟﺸﺮﻳﻂ ﺍﻷﻋﻤﺎﻕ ﺍﻟﻔﻌﻠﻴﺔ ﻧﺴﺒﺔ ﺇﻟﻰ ﺍﻷﻋﻤﺎﻕ ﺍﻟﻤﺴﺠﻠﺔ ﻋﻠﻰ ﺟﻬﺎﺯ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﺑﺴﺮﻋﺔ‬ ‫ﻣﺘﻮﺳﻄﺔﻣﻔﺘﺮﺿﺔ‪.‬ﻳﻌﺪ ﺗﺤﺪﻳﺪ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﺃﻛﺜﺮ ﺃﻫﻤﻴﺔ ﻓﻲ ﺃﻧﻈﻤﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﺤﺰﻡ ‪ -‬ﻭﺧﺎﺻﺔ ﻋﻠﻰ ﺍﻟﺤﺰﻡ ﺍﻟﺨﺎﺭﺟﻴﺔ‪.‬‬ ‫ﻭﺑﺎﻟﺘﺎﻟﻲ‪،‬ﻓﺈﻥ ﻗﻴﺎﺳﺎﺕ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﺍﻷﻛﺜﺮ ﺗﻜﺮﺍﺭﺍً ﻭﺩﻗﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻤﺠﺴﺎﺕ ﻣﻄﻠﻮﺑﺔ ﻷﻧﻈﻤﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﺤﺰﻡ‪.‬‬ ‫ﺝ‪.‬ﻣﺴﻮﺩﺓ ﺍﻟﻤﺤﻮﻝ ﻭﺛﺎﺑﺖ ﺍﻟﻤﺆﺷﺮ‪.‬ﻳﺠﺐ ﺗﻄﺒﻴﻖ ﻣﺴﻮﺩﺓ ﺍﻟﻤﺤﻮﻝ ﻭﺛﺎﺑﺖ ﺍﻟﻤﺆﺷﺮ‬ ‫ﺇﻟﻰﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺰﻣﻨﻴﺔ ﺍﻟﻤﺨﺘﺼﺮﺓ ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ ﺍﻟﻌﻤﻖ ﺍﻟﻤﺼﺤﺢ ﻣﻦ ﺳﻄﺢ ﺍﻟﻤﺎء ﺍﻟﻤﺮﺟﻌﻲ‪.‬ﻳﺤﺘﻮﻱ ﺛﺎﺑﺖ ﺍﻟﻤﺆﺷﺮ ﻋﻠﻰ ﺃﻱ‬ ‫ﺗﺄﺧﻴﺮﺍﺕﻛﻬﺮﺑﺎﺉﻴﺔ ﻭ‪/‬ﺃﻭ ﻣﻴﻜﺎﻧﻴﻜﻴﺔ ﻣﺘﺄﺻﻠﺔ ﻓﻲ ﻧﻈﺎﻡ ﺍﻟﻘﻴﺎﺱ‪ ،‬ﺑﻤﺎ ﻓﻲ ﺫﻟﻚ ﺍﺧﺘﻼﻓﺎﺕ ﺍﻛﺘﺸﺎﻑ ﻋﺘﺒﺔ ﺇﺷﺎﺭﺓ ﺍﻟﻌﻮﺩﺓ‪.‬ﻛﻤﺎ‬ ‫ﻳﺤﺘﻮﻱﻋﻠﻰ ﺃﻱ ﺗﺼﺤﻴﺢ ﺛﺎﺑﺖ ﺑﺴﺒﺐ ﺍﻟﺘﻐﻴﺮ ﻓﻲ ﺍﻟﺴﺮﻋﺔ ﺑﻴﻦ ﻣﺴﺘﻮﻯ ﺍﻟﺴﻄﺢ ﺍﻟﻌﻠﻮﻱ ﻭﺍﻟﻤﺴﺘﻮﻯ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻛﻤﺘﻮﺳﻂ‬ ‫ﻟﻨﻄﺎﻕﻋﻤﻖ ﺍﻟﻤﺸﺮﻭﻉ‪.‬ﻟﻬﺬﺍ ﺍﻟﺴﺒﺐ‪ ،‬ﻓﺈﻥ ﺇﻋﺪﺍﺩ "ﺍﻟﻤﺴﻮﺩﺓ" ﺍﻟﻈﺎﻫﺮ ﺃﻭ ﺍﻟﻘﺮﺍءﺓ ﻋﻠﻰ ﺳﺠﻞ ﺭﻗﻤﻲ ﺃﻭ ﺗﻨﺎﻇﺮﻱ ﻫﻮﻻﺑﺎﻟﻀﺮﻭﺭﺓ‬ ‫ﺍﻟﻔﻌﻠﻴﺔ‬ ‫‪9-2‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﻣﺴﻮﺩﺓﺍﻟﻤﺤﻮﻝ‪ ،‬ﻛﻤﺎ ﻳﻤﻜﻦ ﺍﻟﺤﺼﻮﻝ ﻋﻠﻴﻬﺎ ﻣﻦ ﺧﻼﻝ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻔﻴﺰﻳﺎﺉﻲ ﺑﻴﻦ ﺳﻄﺢ ﺍﻟﻤﺎء ﻭﺍﻟﻤﺤﻮﻝ‪.‬ﻛﺬﻟﻚ‪ ،‬ﻓﺈﻥ‬ ‫ﻣﺴﻮﺩﺓﺍﻟﺴﻔﻴﻨﺔ ﻟﻴﺴﺖ ﻫﻲ ﻧﻔﺴﻬﺎ ﻣﺴﻮﺩﺓ ﺍﻟﻤﺤﻮﻝ ﻷﻥ ﻣﺴﻮﺩﺓ ﺍﻟﺴﻔﻴﻨﺔ ﻳﻤﻜﻦ ﻗﻴﺎﺳﻬﺎ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺰﻋﺎﻧﻒ ﺃﻭ‬ ‫ﺍﻟﻨﻘﺎﻁﺍﻷﺧﺮﻯ ﻋﻠﻰ ﺍﻟﻬﻴﻜﻞ‪.‬ﺍﻟﻄﺮﻳﻘﺔ ﺍﻟﻔﻌﺎﻟﺔ ﺍﻟﻮﺣﻴﺪﺓ ﻟﺘﺤﺪﻳﺪ ﺍﻟﺜﻮﺍﺑﺖ ﺍﻟﻤﺠﻤﻌﺔ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ 1-9‬ﻫﻲ ﻣﻌﺎﻳﺮﺓ ﻓﺤﺺ‬ ‫ﺍﻟﺸﺮﻳﻂ‪.‬‬ ‫ﺩ‪.‬ﺗﺼﺤﻴﺤﺎﺕ ﺃﺧﺮﻯ ﻟﻸﻋﻤﺎﻕ ﺍﻟﻤﺮﺻﻮﺩﺓ‪.‬ﻳﺠﺐ ﺃﻥ ﻳﻜﻮﻥ ﺍﻟﻌﻤﻖ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ 1-9‬ﻻﺣﻘﺎً‬ ‫ﻳﺘﻢﺗﺼﺤﻴﺢ ﺍﻟﺘﻐﻴﺮﺍﺕ ﻗﺼﻴﺮﺓ ﺍﻟﻤﺪﻯ ﻓﻲ ﻣﺴﻮﺩﺓ ﺍﻟﺴﻔﻴﻨﺔ ﺑﺴﺒﺐ ﺗﻐﻴﻴﺮﺍﺕ ﺍﻟﺘﺤﻤﻴﻞ‪ ،‬ﻭﺍﻟﻘﺮﻓﺼﺎء‪ ،‬ﻭﺍﻟﻬﺒﻮﻁ‪ ،‬ﻭﺍﻻﺭﺗﻔﺎﻉ‪ ،‬ﻭﺍﻟﻤﻴﻞ‪،‬‬ ‫ﻭﺍﻻﻧﻘﻼﺏ‪،‬ﻭﻣﺎ ﺇﻟﻰ ﺫﻟﻚ‪.‬ﻳﺠﺐ ﺑﻌﺪ ﺫﻟﻚ ﺗﻘﻠﻴﻞ ﺳﻄﺢ ﺍﻟﻤﺎء ﺍﻟﻤﺮﺟﻌﻲ ﺇﻟﻰ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺮﺃﺳﻴﺔ ﺍﻟﻤﺤﻠﻴﺔ ﺑﻨﺎء ًﻋﻠﻰ ﻣﺮﺣﻠﺔ ﺍﻟﻨﻬﺮ‪/‬‬ ‫ﺍﻟﺒﺤﻴﺮﺓﻓﻲ ﺍﻟﻮﻗﺖ ﺍﻟﻔﻌﻠﻲ‪ ،‬ﺃﻭ ﺍﻟﻤﺴﺒﺢ‪ ،‬ﺃﻭ ﻣﻼﺣﻈﺎﺕ ﺍﻟﻤﺪ ﻭﺍﻟﺠﺰﺭ‪.‬ﻳﺘﻢ ﺗﻌﻤﻴﻢ ﺍﻟﺘﺼﺤﻴﺤﺎﺕ ﺍﻟﻤﺨﺘﻠﻔﺔ ﺍﻟﻤﻄﻠﻮﺑﺔ ﻓﻲ ﻗﻴﺎﺱ‬ ‫ﺍﻟﻌﻤﻖﺍﻟﺼﻮﺗﻲ ﻓﻲ ﺍﻟﺮﺳﻢ ﺍﻟﺘﺨﻄﻴﻄﻲ ﺍﻟﻤﻮﺿﺢ ﻓﻲ ﺍﻟﺸﻜﻞ ‪ 2-9‬ﻭﻳﺘﻢ ﻣﻨﺎﻗﺸﺘﻬﺎ ﻓﻲ ﺍﻷﻗﺴﺎﻡ ﺍﻟﻼﺣﻘﺔ ﻓﻲ ﻫﺬﺍ ﺍﻟﻔﺼﻞ‪.‬‬ ‫ﺍﻟﻤﺪﻭﺍﻟﺠﺰﺭ‪/‬ﺍﻟﻤﺮﺣﻠﺔ‬ ‫ﺟﺎﺭﻱ‬ ‫ﺛﺎﺑﺖ‬ ‫ﺗﺼﺤﻴﺢﻓﻲ‬ ‫ﺗﺒﺎﻳﻦﺍﻟﻤﺴﻮﺩﺓ ﺑﻤﺮﻭﺭ ﺍﻟﻮﻗﺖ‬ ‫ﻣﺴﻮﺩﺓﻣﺴﺠﻠﺔ‬ ‫ﺍﻟﻤﻮﻇﻔﻴﻦ‪/‬ﻣﻮﻗﻊ ‪BM‬‬ ‫ﻣﺴﻮﺩﺓﺍﻟﻤﺤﻮﻝ‬ ‫ﺍﻟﻘﺮﻓﺼﺎء‬ ‫ﺳﻄﺢ‬ ‫ﺍﻟﺘﺪﺭﺝ‬ ‫ﺍﻟﺘﺪﺭﺝ‬ ‫ﺗﺼﺤﻴﺢ‬ ‫ﺭﻓﻊ‬ ‫ﻣﺴﺘﻮﻯﻣﺮﺟﻌﻲ ﻣﻨﺨﻔﺾ ﻟﻠﻤﻴﺎﻩ‬ ‫ﺍﻟﻌﻤﻖﺍﻟﺤﻘﻴﻘﻲ ﻣﻦ ﺍﻟﺴﻄﺢ‬ ‫ﺍﻟﻤﺤﻮﻝ‬ ‫ﺻﻮﺗﻲ‬ ‫ﺍﻟﻌﻤﻖﺍﻟﻤﺴﺠﻞ‬ ‫ﻗﺎﻉ‬ ‫ﻋﻤﻖﻣﺮﺟﻌﻲ ﺛﺎﺑﺖ‬ ‫)ﺷﺮﻳﻂ ﺍﻻﺧﺘﻴﺎﺭ(‬ ‫ﺍﻟﺴﺒﺮ‬ ‫ﺭﻓﺾﺍﻟﻘﻄﺐ‬ ‫)ﺍﻟﻘﺮﻓﺼﺎء ‪ +‬ﺗﺒﺎﻳﻦ ﺍﻟﻤﺴﻮﺩﺓ(‬ ‫ﺳﺮﻋﺔﺍﻵﻟﺔ ‪ +‬ﺗﺼﺤﻴﺢ ﺍﻟﻤﺆﺷﺮ‬ ‫)ﻳﺨﺘﻠﻒ ﺣﺴﺐ ﺍﻟﻌﻤﻖ(‬ ‫ﺭﻓﺾﺧﻂ ﺍﻟﺮﺻﺎﺹ‬ ‫ﺍﻟﻌﻤﻖﺍﻟﻤﺴﺠﻞ‬ ‫ﻣﻌُﺎﻳﺮﺓ‬ ‫ﺗﺼﺤﻴﺢﺍﻟﺴﺮﻋﺔ ‪ +‬ﺍﻟﺘﻴﺎﺭ ﺗﺼﺤﻴﺢ ﺗﺒﺎﻳﻦ ﺍﻟﻘﺮﻓﺼﺎء ﻭﺍﻟﺘﻴﺎﺭ‬ ‫ﻗﺎﻉ‬ ‫ﺗﺼﺤﻴﺢﺍﻟﻤﺪ ﻭﺍﻟﺠﺰﺭ‬ ‫ﺗﻢﺗﻌﺪﻳﻠﻪ‬ ‫ﺗﺼﺤﻴﺢ‬ ‫ﺗﺼﺤﻴﺢﺗﺪﺭﺝ ﺍﻟﻤﺪ ﻭﺍﻟﺠﺰﺭ‬ ‫ﻋﻤﻖ‬ ‫ﺗﺼﺤﻴﺢﺍﻟﻘﺎﻉ ﺍﻟﻤﻌُﺎﻳﺮ ﻟﺘﺼﺤﻴﺢ ﺍﻻﺭﺗﻔﺎﻉ ﻭﺍﻻﻧﺤﺪﺍﺭ‬ ‫ﻭﺍﻻﻧﻘﻼﺏ‬ ‫ﺍﻟﺸﻜﻞ‪.2-9‬ﺗﺼﺤﻴﺤﺎﺕ ﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺴﺒﺮ ﺑﺎﻟﺼﺪﻯ ﺍﻟﻤﺮﺻﻮﺩﺓ‬ ‫ﻫـ‪.‬ﺩﻗﺔ ﺃﺩﺍﺓ ﺍﻟﻘﻴﺎﺱ‪.‬ﻳﺘﻢ ﻗﻴﺎﺱ ﺯﻣﻦ ﺍﻧﺘﻘﺎﻝ ﺍﻟﻨﺒﻀﺔ ﺍﻟﺼﻮﺗﻴﺔ ﺇﻣﺎ‬ ‫ﻳﺘﻢﻗﻴﺎﺱ ﺍﻟﻮﻗﺖ ﺍﻟﻤﻄﻠﻖ ﺇﻣﺎ ﺇﻟﻜﺘﺮﻭﻧﻴﺎً ﻓﻲ ﺟﻬﺎﺯ ﺭﻗﻤﻨﺔ ﺍﻟﻌﻤﻖ ﺃﻭ ﻣﻴﻜﺎﻧﻴﻜﻴﺎً )ﺭﺳﻮﻣﻴﺎً( ﻋﻠﻰ ﺟﻬﺎﺯ ﺗﺴﺠﻴﻞ ﺗﻨﺎﻇﺮﻱ‪.‬ﺗﺨﺘﻠﻒ‬ ‫ﺩﻗﺔﻗﻴﺎﺱ ﺍﻟﻮﻗﺖ ﺍﻟﻤﻄﻠﻖ ﻋﻤﻮﻣﺎً ﻣﻊ ﺍﻟﻌﻤﻖ‪.‬ﻭﻳﺮﺟﻊ ﻫﺬﺍ ﺇﻟﻰ ﺇﺿﻌﺎﻑ ﺍﻹﺷﺎﺭﺓ ﻭﺍﻟﻀﻮﺿﺎء ﻭﻗﺪﺭﺓ ﺩﺍﺉﺮﺓ ﺍﻟﻘﻴﺎﺱ ﻋﻠﻰ ﺭﺑﻂ‬ ‫ﺍﻟﻨﺒﻀﺎﺕﺍﻟﺼﺎﺩﺭﺓ ﻭﺍﻟﻮﺍﺭﺩﺓ‪.‬ﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ ﺫﻟﻚ‪ ،‬ﻳﻤﻜﻦ ﻟﺨﺼﺎﺉﺺ ﺍﻻﻧﻌﻜﺎﺱ ﺍﻟﺼﻮﺗﻲ ﻟﻠﻬﺪﻑ‪ ،‬ﺃﻱ ﺍﻟﺤﺠﻢ ﻭﺍﻟﺸﻜﻞ‬ ‫ﻭﺍﻟﺘﻮﺟﻴﻪﻭﺍﻟﻤﺎﺩﺓ ﻭﻣﺎ ﺇﻟﻰ ﺫﻟﻚ‪ ،‬ﺃﻥ ﺗﺆﺛﺮ ﺑﺸﻜﻞ ﻛﺒﻴﺮ ﻋﻠﻰ ﺍﻟﻨﺒﻀﺔ ﺍﻟﻌﺎﺉﺪﺓ‪.‬ﺳﺘﺆﺛﺮ ﺍﻻﺧﺘﻼﻓﺎﺕ ﻓﻲ ﻗﻮﺓ ﺍﻹﺷﺎﺭﺓ ﺍﻟﻌﺎﺉﺪﺓ‬ ‫ﻭﻭﺿﻮﺣﻬﺎﻋﻠﻰ ﺩﻗﺔ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ‪.‬ﻳﺆﺩﻱ ﻋﺪﻡ ﺍﻧﺘﻈﺎﻡ ﺍﻟﻨﺒﻀﺔ ﺍﻟﻤﻨﻌﻜﺴﺔ ﺇﻟﻰ ﻋﺪﻡ ﺍﻟﻴﻘﻴﻦ ﻓﻲ ﻋﻤﻠﻴﺔ ﻗﻴﺎﺱ ﺍﻟﻮﻗﺖ‬ ‫ﺍﻹﺟﻤﺎﻟﻴﺔ‪.‬ﻻ ﺗﻮﺟﺪ ﻋﻤﻠﻴﺔ ﻣﻌﺎﻳﺮﺓ ﻋﻤﻠﻴﺔ ﻟﺘﻘﻠﻴﻞ ﻫﺬﺍ ﺍﻟﺨﻄﺄ‪.‬ﺍﻻﺳﻤﻲﻋﺎﺩﺓ ﻣﺎ ﻳﺘﻢ ﺗﻘﻴﻴﻢ ﺩﻗﺔ ﻗﻴﺎﺱ ﻭﻗﺖ ﺻﺪﻯ ﺍﻟﺼﻮﺕ ﻣﻦ‬ ‫ﺧﻼﻝ‬ ‫‪9-3‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﺍﻟﺸﺮﻛﺎﺕﺍﻟﻤﺼﻨﻌﺔ ﻓﻲ‪ 0.1+‬ﻗﺪﻡ ﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ ‪ 0.1‬ﺇﻟﻰ ‪ 0.5‬ﺑﺎﻟﻤﺎﺉﺔ ﻣﻦ ﺍﻟﻌﻤﻖ‪.‬ﻭﻫﺬﺍ ﻳﻌﺎﺩﻝ ﻧﻄﺎﻕ ﺩﻗﺔ ﻳﺒﻠﻎ‪ 0.15+‬ﺇﻟﻰ‬ ‫‪0.35+‬ﻗﺪﻡ ﻓﻲ ‪ 50‬ﻗﺪﻡ ﻭﻫﻲ ﻣﺴﺘﻘﻠﺔ ﻋﻦ ﺧﺼﺎﺉﺺ ﺍﻻﻧﻌﻜﺎﺱ ﺍﻟﺼﻮﺗﻲ‪.‬ﺗﻌﺘﺒﺮ ﺃﻭﻗﺎﺕ ﺍﻻﻧﻘﻀﺎء ﺍﻟﻤﻘﺎﺳﺔ ﺭﻗﻤﻴﺎً ﺃﻛﺜﺮ‬ ‫ﺩﻗﺔﻣﻦ ﺗﻠﻚ ﺍﻟﺘﻲ ﻳﺘﻢ ﺇﺟﺮﺍﺅﻫﺎ ﻋﻠﻰ ﺃﺟﻬﺰﺓ ﺍﻟﺘﺴﺠﻴﻞ ﺍﻟﻤﻴﻜﺎﻧﻴﻜﻴﺔ ﺍﻟﻘﺪﻳﻤﺔ‪.‬‬ ‫‪.9-3‬ﻣﻮﺍﺻﻔﺎﺕ ﺗﺮﺩﺩ ﺍﻟﻤﺤﻮﻝ‬ ‫ﻳﻘﻮﻡﺍﻟﻤﺤﻮﻝ ﺑﺘﺤﻮﻳﻞ ﺍﻟﻄﺎﻗﺔ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺇﻟﻰ ﻧﺒﻀﺎﺕ ﺻﻮﺗﻴﺔ ﻭﺍﻟﻌﻜﺲ ﺻﺤﻴﺢ‪.‬ﺇﻥ ﻧﻮﻉ ﺍﻟﻤﺤﻮﻝ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻫﻮ ﻋﺎﻣﻞ‬ ‫ﺣﺎﺳﻢﺭﺉﻴﺴﻲ ﻓﻲ ﻛﻔﺎﻳﺔ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ‪.‬ﺇﻥ ﺍﻟﺘﺮﺩﺩ ﺍﻷﻣﺜﻞ ﻟﻠﻤﺤﻮﻝ ﻳﻌﺘﻤﺪ ﺑﺸﻜﻞ ﻛﺒﻴﺮ ﻋﻠﻰ ﺍﻟﻤﺸﺮﻭﻉ ﺃﻭ ﺍﻟﻤﻮﻗﻊ‪.‬ﻓﻲ ﺟﻤﻴﻊ‬ ‫ﻣﺸﺎﺭﻳﻊﺍﻷﻧﻬﺎﺭ ﻭﺍﻟﻤﻮﺍﻧﺊ ﺍﻟﺘﺎﺑﻌﺔ ﻟﻬﻴﺉﺔ ﺍﻟﻤﻬﻨﺪﺳﻴﻦ ﺑﺎﻟﺠﻴﺶ ﺍﻷﻣﺮﻳﻜﻲ‪ ،‬ﺗﻢ ﺍﺳﺘﺨﺪﺍﻡ ﻣﺠﻤﻮﻋﺔ ﻣﺘﻨﻮﻋﺔ ﻣﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ‪.‬‬ ‫ﺗﺘﺮﺍﻭﺡﻫﺬﻩ ﺍﻟﺘﺮﺩﺩﺍﺕ ﻋﻤﻮﻣﺎً ﺑﻴﻦ ‪ 20‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﻭ‪ 1000‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ‪.‬ﻳﺘﻤﺘﻊ ﻛﻞ ﺗﺮﺩﺩ‪/‬ﻣﺤﻮﻝ ﺑﺨﺼﺎﺉﺺ ﻓﻴﺰﻳﺎﺉﻴﺔ ﺗﻨﺎﺳﺒﻪ‬ ‫ﺑﺸﻜﻞﺧﺎﺹ ﻟﺘﻄﺒﻴﻖ ﻓﺮﺩﻱ ﺃﻭ ﻣﻮﻗﻊ ﻣﺸﺮﻭﻉ‪.‬ﺗﻌﺘﻤﺪ ﺍﺳﺘﺠﺎﺑﺔ ﺍﻟﻤﺤﻮﻝ )ﺃﻱ ﺍﻟﺴﺒﺮ( ﻋﻠﻰ ﺍﻟﺘﺮﺩﺩ ﻭﻇﺮﻭﻑ ﺍﻟﻤﺸﺮﻭﻉ ﻭﻣﻜﺴﺐ‬ ‫ﺍﻟﻤﺼﻔﻮﻓﺔﻭﻧﻤﻂ ﺍﻟﺸﻌﺎﻉ ﻛﻤﺎ ﻫﻮ ﻣﻌﻤﻢ ﻓﻲ ﺍﻟﺸﻜﻞ ‪.3-9‬ﻳﺘﻢ ﻗﻴﺎﺱ ﺍﻟﺤﺴﺎﺳﻴﺎﺕ ﻋﻨﺪ‬ ‫‪-‬ﻧﻘﺎﻁ ﻧﺼﻒ ﺍﻟﻘﺪﺭﺓ ‪ 3‬ﺩﻳﺴﻴﺒﻞ‪.‬ﺑﺸﻜﻞ ﻋﺎﻡ‪ ،‬ﺗﻮﻓﺮ ﺍﻟﻤﺤﻮﻻﺕ ﺫﺍﺕ ﺍﻟﺘﺮﺩﺩ ﺍﻷﻋﻠﻰ )‪ 100‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﺇﻟﻰ ‪ 1000‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ(‬ ‫ﻗﻴﺎﺳﺎًﺃﻛﺜﺮ ﺩﻗﺔ ﻟﻠﻌﻤﻖ‪ ،‬ﻧﻈﺮﺍً ﻟﺨﺼﺎﺉﺺ ﺍﻟﺘﺮﺩﺩ ﻭﻋﺮﺽ ﺍﻟﺸﻌﺎﻉ ﺍﻷﻛﺜﺮ ﺗﺮﻛﻴﺰﺍً )ﺃﻱ ﺍﻟﻀﻴﻖ(‪.‬ﻗﺪ ﺗﺘﻄﻠﺐ ﺍﻟﻤﺤﻮﻻﺕ ﺫﺍﺕ‬ ‫ﺍﻟﺸﻌﺎﻉﺍﻟﻀﻴﻖ )ﺃﻱ ﺃﻗﻞ ﻣﻦ ‪ 8‬ﺩﺭﺟﺎﺕ( ﺗﺼﺤﻴﺤﺎً ﻟﻠﺘﺪﺣﺮﺝ ﻭﺍﻟﻤﻴﻞ ﻷﻥ ﺍﻟﺸﻌﺎﻉ ﺍﻷﻛﺜﺮ ﺗﺮﻛﻴﺰﺍً ﺳﻴﻘﻴﺲ ﻣﺴﺎﻓﺔ ﺍﻟﻤﻨﺤﺪﺭ ﻋﻨﺪ‬ ‫ﻧﻘﺎﻁﻏﻴﺮ ﺭﺃﺳﻴﺔ‪.‬ﻭﻣﻊ ﺫﻟﻚ‪ ،‬ﻳﻤﻜﻦ ﻟﻠﻔﺼﻮﺹ ﺍﻟﺠﺎﻧﺒﻴﺔ ﺍﻟﻤﻮﺿﺤﺔ ﻓﻲ ﺍﻟﺸﻜﻞ ‪ 3-9‬ﺃﻥ ﺗﻮﻓﺮ ﻋﻮﺩﺓ ﺭﺃﺳﻴﺔ ﻓﻲ ﺍﻟﻤﻴﺎﻩ‬ ‫ﺍﻟﻀﺤﻠﺔ‪.‬ﻳﺠﺐ ﺍﻟﺤﺼﻮﻝ ﻋﻠﻰ ﻣﺤﻮﻻﺕ ﺫﺍﺕ ﺷﻌﺎﻉ ﺿﻴﻖ ﻣﻊ ﻓﺼﻮﺹ ﺟﺎﻧﺒﻴﺔ ﺩﻧﻴﺎ‪.‬ﺗﻤﻴﻞ ﺍﻟﻤﺤﻮﻻﺕ ﺫﺍﺕ ﺍﻟﺘﺮﺩﺩ ﺍﻷﻗﻞ )‬ ‫ﺃﻗﻞﻣﻦ ‪ 40‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ( ﺇﻟﻰ ﺃﻥ ﻳﻜﻮﻥ ﻟﻬﺎ ﻋﺮﺽ ﺷﻌﺎﻉ ﺃﻛﺒﺮ‪ ،‬ﻣﻤﺎ ﻗﺪ ﻳﺘﺴﺒﺐ ﻓﻲ ﺗﺸﻮﻳﻪ ﻭﺗﻨﻌﻴﻢ ﺍﻟﻤﻴﺰﺍﺕ ﻓﻲ ﺍﻟﻘﻴﻌﺎﻥ ﻏﻴﺮ‬ ‫ﺍﻟﻤﻨﺘﻈﻤﺔﺃﻭ ﻋﻠﻰ ﺍﻟﻤﻨﺤﺪﺭﺍﺕ ﺍﻟﺠﺎﻧﺒﻴﺔ‪.‬ﻭﻣﻊ ﺫﻟﻚ‪ ،‬ﻓﺈﻥ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﺔ ﺃﻗﻞ ﻋﺮﺿﺔ ﻟﻠﺘﻮﻫﻴﻦ‪ ،‬ﻣﻤﺎ ﻳﺴﻤﺢ ﺑﻘﻴﺎﺱ‬ ‫ﻋﻤﻖﺃﻛﺒﺮ ﻭﺍﺧﺘﺮﺍﻕ ﺍﻟﺮﻭﺍﺳﺐ ﺍﻟﻤﻌﻠﻘﺔ‪.‬ﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﻋﺪﻡ ﺍﻟﺤﺎﺟﺔ ﺇﻟﻰ ﻗﻴﺎﺱ ﻋﻤﻖ ﺃﻛﺒﺮ ﻟﻤﺸﺎﺭﻳﻊ ﺍﻷﻧﻬﺎﺭ ﻭﺍﻟﻤﻮﺍﻧﺊ‪ ،‬ﻓﺈﻥ‬ ‫ﺍﻟﻘﺪﺭﺓﻋﻠﻰ ﺍﺧﺘﺮﺍﻕ ﺍﻟﺮﻭﺍﺳﺐ ﺍﻟﻤﻌﻠﻘﺔ ﺗﻌﺪ ﻣﻴﺰﺓ ﺣﺎﺳﻤﺔ‪ ،‬ﻭﺧﺎﺻﺔ ﻓﻲ ﺇﺟﺮﺍء ﺍﻟﻤﺴﻮﺣﺎﺕ ﻟﻤﺸﺎﺭﻳﻊ ﺍﻟﺘﺠﺮﻳﻒ‪.‬ﻭﻣﻦ ﺍﻟﻌﻴﻮﺏ‬ ‫ﺍﻟﺮﺉﻴﺴﻴﺔﻟﻠﻤﺤﻮﻻﺕ ﺫﺍﺕ ﺍﻟﺘﺮﺩﺩ ﺍﻷﻋﻠﻰ ﺃﻥ ﻫﻨﺎﻙ ﺇﺿﻌﺎﻓﺎً ﻛﺒﻴﺮﺍً ﻟﻺﺷﺎﺭﺓ ﻣﻊ ﺍﻟﻌﻤﻖ‪ ،‬ﻭﺳﻮﻑ ﺗﻌﻜﺲ ﺍﻟﺮﻭﺍﺳﺐ ﺍﻟﻤﻌﻠﻘﺔ‬ ‫ﺫﺍﺕﺍﻟﺠﺎﺫﺑﻴﺔ ﺍﻟﻨﻮﻋﻴﺔ ﺍﻟﻤﻨﺨﻔﻀﺔ )ﺍﻟﺰﻏﺐ( ﺃﻭ ﺍﻟﻨﺒﺎﺗﺎﺕ ﺍﻟﺴﻔﻠﻴﺔ ﺍﻹﺷﺎﺭﺓ ﺑﺴﻬﻮﻟﺔ‪.‬ﻻ ﻳﻨُﺼﺢ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻤﺤﻮﻻﺕ ﺫﺍﺕ‬ ‫ﺍﻟﺘﺮﺩﺩﺍﻟﻌﺎﻟﻲ ﻓﻲ ﺍﻟﻤﻨﺎﻃﻖ ﺍﻟﺘﻲ ﺗﻮﺟﺪ ﻓﻴﻬﺎ ﻃﺒﻘﺎﺕ ﺍﻟﺮﻭﺍﺳﺐ ﺍﻟﻤﻌﻠﻘﺔ ﺑﺸﻜﻞ ﺷﺎﺉﻊ‪ ،‬ﺃﻭ ﺣﻴﺚ ﻗﺪ ﺗﺤﺠﺐ ﺍﻟﻨﺒﺎﺗﺎﺕ‬ ‫ﺍﻟﺴﻔﻠﻴﺔ"ﺍﻟﺪﺭﺟﺔ ﺍﻟﻤﻄﻠﻮﺑﺔ"‪.‬ﻓﻲ ﻣﺜﻞ ﻫﺬﻩ ﺍﻟﻤﻨﺎﻃﻖ‪ ،‬ﺗﺴُﺘﺨﺪﻡ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺘﻲ ﺗﺘﺮﺍﻭﺡ ﺑﻴﻦ ‪ 20‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﻭ‪ 50‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ‬ ‫ﻋﺎﺩﺓ ًﻟﺘﺤﺪﻳﺪ ﺍﻟﺪﻓﻊ‪.‬‬ ‫‪4-‬‬ ‫ﺩﻳ‬ ‫ﺴ‬ ‫ﻴﺒ‬ ‫ﻞ‬ ‫‪2‬‬ ‫‪-‬‬ ‫ﺩﻳ‬ ‫ﺴﻴ‬ ‫ﺒﻞ‬ ‫ﺍﻟﻔﺼﻮﺹﺍﻟﺠﺎﻧﺒﻴﺔ‬ ‫‪ 3-‬ﺩﻳﺴﻴﺒﻞ‬ ‫ﺍﻟﺸﻜﻞ‪.3-9‬ﺯﺍﻭﻳﺔ ﺷﻌﺎﻉ ﺍﻟﻤﺤﻮﻝ‬ ‫‪9-4‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﺃ‪.‬ﺗﻐﻄﻴﺔ ﺍﻟﺘﻨﻮﻳﻢ ﺍﻟﻤﻐﻨﺎﻃﻴﺴﻲ‪.‬ﻳﻘﻮﻡ ﻛﻞ ﻣﺤﻮﻝ ﺑﺈﺭﺳﺎﻝ ﺇﺷﺎﺭﺓ ﺻﻮﺗﻴﺔ ﻟﻤﻨﻄﻘﺔ ﻣﻦ ﺍﻟﻘﺎﻉ‪.‬ﺣﺠﻢ‬ ‫ﻫﺬﻩﺍﻟﻤﻨﻄﻘﺔ ﺍﻟﺘﻲ ﻳﺘﻢ ﻓﻴﻬﺎ ﺇﺟﺮﺍء ﻋﻤﻠﻴﺔ ﺍﻟﺮﻧﻴﻦ ﻫﻲ ﺩﺍﻟﺔ ﻟﻌﺮﺽ ﺷﻌﺎﻉ ﺍﻟﻤﺤﻮﻝ ﻭﺧﺼﺎﺉﺺ ﺍﻟﻤﺤﻮﻝ )ﺃﻱ ﺍﻟﻔﺼﻮﺹ ﺍﻟﺠﺎﻧﺒﻴﺔ(‪.‬‬ ‫ﺗﻘﻮﻡﺍﻟﻤﺤﻮﻻﺕ ﺫﺍﺕ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻀﻴﻖ ﺍﻟﻤﺴﺘﺨﺪﻣﺔ ﻓﻲ ‪ Corps‬ﺑﺈﺟﺮﺍء ﻋﻤﻠﻴﺔ ﺍﻟﺮﻧﻴﻦ ﻋﻠﻰ ﻣﻨﻄﻘﺔ ﺃﺻﻐﺮ ﻣﻦ ﺍﻟﻘﺎﻉ؛ ﻣﻤﺎ ﻳﺆﺩﻱ ﺇﻟﻰ‬ ‫ﺗﺸﻮﻳﻪﺃﻭ ﺗﻨﻌﻴﻢ ﺃﻗﻞ ﻟﺨﺼﺎﺉﺺ ﺍﻟﻘﺎﻉ ﺩﺍﺧﻞ ﻫﺬﻩ ﺍﻟﻤﻨﻄﻘﺔ‪.‬ﻭﻣﻊ ﺫﻟﻚ‪ ،‬ﻳﺘﻢ ﺇﺟﺮﺍء ﻋﻤﻠﻴﺔ ﺍﻟﺮﻧﻴﻦ ﻋﻠﻰ ﺟﺰء ﺻﻐﻴﺮ ﻓﻘﻂ ﻣﻦ ﺍﻟﻘﻨﺎﺓ‬ ‫ﺑﻮﺍﺳﻄﺔﺍﻟﻤﺤﻮﻻﺕ ﺫﺍﺕ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻀﻴﻖ‪.‬ﻳﻤﻜﻦ ﺣﺴﺎﺏ ﺣﺠﻢ ﺍﻟﺒﺼﻤﺔ ﺍﻟﺴﻔﻠﻴﺔ ﺍﻟﺘﻘﺮﻳﺒﻴﺔ ﻟﻠﻤﺤﻮﻝ ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺘﺎﻟﻲ‪:‬‬ ‫ﺍﻟﺘﻐﻄﻴﺔﺍﻟﺨﻄﻴﺔ )ﻗﺪﻡ( = ‪D · tan )a/2( · 2‬‬ ‫)ﺍﻟﻤﻌﺎﺩﻻﺕ ‪(2-9‬‬ ‫ﺗﻐﻄﻴﺔﻣﺴﺎﺣﺔ ﺍﻟﺒﺼﻤﺔ )ﻗﺪﻡ ﻣﺮﺑﻊ( = ‪ · 3.14‬ﺩ‪ ·2‬ﺗﺎﻥ‪)2‬ﺃ‪(2/‬‬ ‫ﺃﻳﻦ‪،‬‬ ‫ﺩ=ﺍﻟﻌﻤﻖ ﺑﺎﻟﻘﺪﻡ‬ ‫ﺃ=ﻋﺮﺽ ﺍﻟﺸﻌﺎﻉ ﺑﺎﻟﺪﺭﺟﺎﺕ‬ ‫ﻳﻮﺿﺢﺍﻟﺠﺪﻭﻝ ‪ 1-9‬ﺍﻟﺘﻐﻄﻴﺔ ﺍﻟﺨﻄﻴﺔ ﻟﻤﺤﻮﻻﺕ ‪ USACE‬ﺍﻟﻨﻤﻮﺫﺟﻴﺔ‪.‬ﻳﺤﺴﺐ ﺍﻟﺠﺪﻭﻝ ‪ 2-9‬ﺗﻐﻄﻴﺔ ﺍﻟﻤﺴﺎﺣﺔ ﺍﻟﻨﺎﺗﺠﺔ‪.‬‬ ‫ﺍﻟﺠﺪﻭﻝ‪.1-9‬ﺍﻟﺘﻐﻄﻴﺔ ﺍﻟﺨﻄﻴﺔ ﺍﻟﺘﻘﺮﻳﺒﻴﺔ ﻟﻤﺤﻮﻻﺕ ﺫﺍﺕ ﻋﺮﺽ ﺷﻌﺎﻉ ﻣﺨﺘﻠﻒ‬ ‫ﻋﺮﺽﺍﻟﺸﻌﺎﻉ‬ ‫‪20‬ﺩﺭﺟﺔ‬ ‫‪8‬ﺩﺭﺟﺔ‬ ‫‪3‬ﺩﺭﺟﺔ‬ ‫‪1.5‬ﺩﺭﺟﺔ‬ ‫ﻋﻤﻖﺍﻟﻤﺸﺮﻭﻉ‬ ‫‪3.5‬ﻗﺪﻡ‬ ‫‪1.4‬ﻗﺪﻡ‬ ‫‪0.5‬ﻗﺪﻡ‬ ‫‪0.3‬ﻗﺪﻡ‬ ‫‪10‬ﻗﺪﻡ‬ ‫‪9‬ﻗﺪﻡ‬ ‫‪3.5‬ﻗﺪﻡ‬ ‫‪1.3‬ﻗﺪﻡ‬ ‫‪0.7‬ﻗﺪﻡ‬ ‫‪25‬ﻗﺪﻡ‬ ‫‪18‬ﻗﺪﻡ‬ ‫‪7‬ﻗﺪﻡ‬ ‫‪2.6‬ﻗﺪﻡ‬ ‫‪1.3‬ﻗﺪﻡ‬ ‫‪50‬ﻗﺪﻡ‬ ‫‪26‬ﻗﺪﻡ‬ ‫‪10‬ﻗﺪﻡ‬ ‫‪4‬ﻗﺪﻡ‬ ‫‪2‬ﻗﺪﻡ‬ ‫‪75‬ﻗﺪﻡ‬ ‫ﺍﻟﺠﺪﻭﻝ‪.2-9‬ﺗﻐﻄﻴﺔ ﺍﻟﻤﺴﺎﺣﺔ ﺍﻟﺘﻘﺮﻳﺒﻴﺔ ﻟﻤﺤﻮﻻﺕ ﺫﺍﺕ ﻋﺮﺽ ﺷﻌﺎﻉ ﻣﺨﺘﻠﻒ‬ ‫ﻋﺮﺽﺍﻟﺸﻌﺎﻉ‬ ‫‪20‬ﺩﺭﺟﺔ‬ ‫‪8‬ﺩﺭﺟﺔ‬ ‫‪3‬ﺩﺭﺟﺔ‬ ‫‪1.5‬ﺩﺭﺟﺔ‬ ‫ﻋﻤﻖﺍﻟﻤﺸﺮﻭﻉ‬ ‫‪10‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫> ‪ 2‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫> ‪ 1‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫> ‪ 1‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪10‬ﻗﺪﻡ‬ ‫‪60‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪10‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫> ‪ 2‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫> ‪ 1‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪25‬ﻗﺪﻡ‬ ‫‪250‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪40‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪5‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫> ‪ 2‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪50‬ﻗﺪﻡ‬ ‫‪550‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪90‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪10‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪3‬ﻗﺪﻡ ﻣﺮﺑﻊ‬ ‫‪75‬ﻗﺪﻡ‬ ‫ﻳﺸﻴﺮﺍﻟﺠﺪﻭﻝ ‪ 2-9‬ﺑﻮﺿﻮﺡ ﺇﻟﻰ ﺃﻥ ﺍﻟﺘﻐﻄﻴﺔ ﺍﻟﺴﻔﻠﻴﺔ ﺻﻐﻴﺮﺓ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﺤﻮﻻﺕ ﺫﺍﺕ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻀﻴﻖ‪.‬ﻭﺑﺎﻟﺘﺎﻟﻲ‪ ،‬ﻋﻨﺪ ﺇﺟﺮﺍء‬ ‫ﻣﺴﻮﺣﺎﺕﺍﻟﻤﻘﻄﻊ ﺍﻟﻌﺮﺿﻲ‪ ،‬ﻳﺘﻢ ﺗﻀﺨﻴﻢ ﺟﺰء ﺻﻐﻴﺮ ﺟﺪﺍً ﻓﻘﻂ ﻣﻦ ﺍﻟﻘﻨﺎﺓ‪.‬ﻳﻮﺿﺢ ﺍﻟﺠﺪﻭﻝ ‪ 3-9‬ﺇﺟﻤﺎﻟﻲ ﺍﻟﺘﻐﻄﻴﺔ‬ ‫ﺍﻟﺘﻀﺨﻴﻤﻴﺔﻟﻤﺴﻮﺣﺎﺕ ﺍﻟﻤﻘﻄﻊ ﺍﻟﻌﺮﺿﻲ ﺍﻟﻨﻤﻮﺫﺟﻴﺔ ﻋﻨﺪ ﻣﺴﺎﻓﺎﺕ ‪ 100‬ﻗﺪﻡ ﻭ‪ 200‬ﻗﺪﻡ‪.‬‬ ‫‪9-5‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﺍﻟﺠﺪﻭﻝ‪.3-9‬ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺉﻮﻳﺔ ﺍﻟﺘﻘﺮﻳﺒﻴﺔ ﻟﺘﻐﻄﻴﺔ ﺍﻟﻘﺎﻉ ﻟﻤﺴﻮﺣﺎﺕ ﺍﻟﻤﻘﻄﻊ ﺍﻟﻌﺮﺿﻲ‬ ‫ﻣﻘﺎﻃﻊﻋﺮﺿﻴﺔ ﺑﻄﻮﻝ ‪ 200‬ﻗﺪﻡ‬ ‫ﻣﻘﺎﻃﻊﻋﺮﺿﻴﺔ ﺑﻄﻮﻝ ‪ 100‬ﻗﺪﻡ‬ ‫‪1.5‬ﺩﺭﺟﺔ ‪ 3‬ﺩﺭﺟﺔ ‪ 8‬ﺩﺭﺟﺔ‬ ‫‪1.5‬ﺩﺭﺟﺔ ‪ 3‬ﺩﺭﺟﺔ ‪ 8‬ﺩﺭﺟﺔ‬ ‫ﻋﻤﻖﺍﻟﻤﺸﺮﻭﻉ‬ ‫‪0.7%‬‬ ‫‪0.2%‬‬ ‫‪0.1%‬‬ ‫‪1.4%‬‬ ‫‪0.5%‬‬ ‫‪0.3%‬‬ ‫‪10‬ﻗﺪﻡ‬ ‫‪2%‬‬ ‫‪0.6%‬‬ ‫‪0.3%‬‬ ‫‪3.5%‬‬ ‫‪1.3%‬‬ ‫‪0.7%‬‬ ‫‪25‬ﻗﺪﻡ‬ ‫‪4%‬‬ ‫‪1%‬‬ ‫‪0.6%‬‬ ‫‪7%‬‬ ‫‪2.6%‬‬ ‫‪1.3%‬‬ ‫‪50‬ﻗﺪﻡ‬ ‫‪5%‬‬ ‫‪2%‬‬ ‫‪1%‬‬ ‫‪10%‬‬ ‫‪4%‬‬ ‫‪2%‬‬ ‫‪75‬ﻗﺪﻡ‬ ‫ﻳﺸﻴﺮﺍﻟﺠﺪﻭﻝ ‪ 3-9‬ﺇﻟﻰ ﺃﻥ ‪ %1‬ﺇﻟﻰ ‪ %5‬ﻓﻘﻂ ﻣﻦ ﻗﺎﻉ ﺍﻟﻘﻨﺎﺓ ﻳﺘﻢ ﻋﺎﺩﺓ ًﺗﻀﺨﻴﻤﻪ ﺑﻮﺍﺳﻄﺔ ﻣﺴﻮﺣﺎﺕ ﺍﻟﻤﻘﻄﻊ ﺍﻟﻌﺮﺿﻲ ﺫﺍﺕ‬ ‫ﺍﻟﺸﻌﺎﻉﺍﻟﻮﺍﺣﺪ‪.‬ﻭﻣﻦ ﻫﺬﻩ ﺍﻟﻌﻴﻨﺔ ﺍﻟﺼﻐﻴﺮﺓ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﻳﺘﻢ ﺍﻟﺘﻨﺒﺆ ﺑﻈﺮﻭﻑ ﺍﻟﺘﻜﺘﻼﺕ ﻭﺗﻘﺪﻳﺮ ﻛﻤﻴﺎﺕ ﺍﻟﻤﻮﺍﺩ ﺑﺎﺳﺘﺨﺪﺍﻡ‬ ‫ﻃﺮﻕﺇﺳﻘﺎﻁ ﺍﻟﻤﻨﻄﻘﺔ ﺍﻟﻨﻬﺎﺉﻴﺔ‪.‬ﻭﻓﻲ ﺍﻟﻮﺍﻗﻊ‪ ،‬ﻳﺘﻢ "ﺍﺳﺘﻘﺮﺍء" ﺣﺴﺎﺑﺎﺕ ﺗﺤﺪﻳﺪ ﺍﻟﻜﻤﻴﺔ ﻭﺗﻘﺪﻳﺮﺍﺕ ﺍﻟﺘﻜﺘﻼﺕ ﻋﻠﻰ ‪%99-95‬‬ ‫ﻣﻦﺍﻟﻘﻨﺎﺓ ﺍﻟﺘﻲ ﻟﻢ ﻳﺘﻢ ﻣﺴﺤﻬﺎ‪.‬ﻭﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻟﺘﻘﺪﻳﺮﺍﺕ ﻣﻨﺎﺳﺒﺔ ﻋﺎﺩﺓ ًﻷﻏﺮﺍﺽ ﺍﻟﻬﻨﺪﺳﺔ ﻭﺍﻟﺒﻨﺎء؛ ﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ ﺃﻧﻬﺎ ﻛﺎﻧﺖ‬ ‫ﺗﻌﺘﺒﺮﻋﻤﻠﻴﺔ ﻧﻈﺮﺍً ﻟﻠﺘﻜﻠﻔﺔ ﺍﻟﻌﺎﻟﻴﺔ ﻟﺠﻤﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻟﻜﻞ ﻣﻘﻄﻊ ﻋﺮﺿﻲ‪.‬ﻓﻲ ﺍﻟﻤﺎﺿﻲ ﻛﺎﻥ ﻫﺬﺍ ﺍﻷﺳﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ ﺻﺎﻟﺤﺎً؛ ﻭﻣﻊ‬ ‫ﺫﻟﻚ‪،‬ﻳﻤﻜﻦ ﻷﻧﻈﻤﺔ ﺍﻟﻤﺴﺢ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻤﺤﻮﻻﺕ ﻭﺃﻧﻈﻤﺔ ﺍﻟﺤﺰﻡ ﺍﻟﻤﺘﻌﺪﺩﺓ ﺍﻵﻥ ﺟﻤﻊ ﺗﻐﻄﻴﺔ ﻗﺎﻋﻴﺔ ﺑﻨﺴﺒﺔ ‪ %100‬ﺑﺴﻬﻮﻟﺔ‪.‬‬ ‫ﺏ‪.‬ﺗﺼﺤﻴﺢ ﻟﻔﺔ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻮﺍﺣﺪ ﻭﺩﺭﺟﺔ ﻣﻴﻠﻪﻳﻘﻮﻡ ﺍﻟﻤﺤﻮﻝ ﺑﻘﻴﺎﺱ ﺍﻟﻌﻤﻖ ﻣﻦ ﺍﻟﺼﺪﻯ ﺍﻷﻭﻝ‬ ‫ﺍﻟﻌﻮﺩﺓ‪.‬ﻛﻠﻤﺎ ﻛﺎﻥ ﺍﻟﺸﻌﺎﻉ ﺃﻭﺳﻊ‪ ،‬ﻗﻞ ﺗﺄﺛﻴﺮ ﺗﺪﺣﺮﺝ ﺍﻟﺴﻔﻴﻨﺔ ﺃﻭ ﻣﻴﻠﻬﺎ ﻷﻥ ﻋﺮﺽ ﺷﻌﺎﻉ ﺍﻟﻤﺤﻮﻝ ﻳﻘﻊ ﺿﻤﻦ ﺍﻟﻌﻤﻮﺩﻱ‪.‬ﺑﺎﻟﻨﺴﺒﺔ‬ ‫ﻟﻠﻤﺤﻮﻻﺕﺫﺍﺕ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻀﻴﻖ‪ ،‬ﻳﺘﻢ ﻗﻴﺎﺱ ﺍﻟﻤﻨﺤﺪﺭ ﺑﺪﻻ ًﻣﻦ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺮﺃﺳﻴﺔ‪.‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺘﺪﺣﺮﺝ ﻭﺍﻟﻤﻴﻞ ﺷﺪﻳﺪﻳﻦ ‪ -‬ﻋﻠﻰ‬ ‫ﺳﺒﻴﻞﺍﻟﻤﺜﺎﻝ‪ ،‬ﺗﺪﺣﺮﺝ ﺑﻤﻘﺪﺍﺭ ‪ 15-10‬ﺩﺭﺟﺔ ‪ -‬ﻓﺴﻴﻜﻮﻥ ﺍﻟﻌﻤﻖ ﺍﻟﻤﺴﺠﻞ ﻣﺴﺎﻓﺔ ﻣﻴﻞ ﺃﻃﻮﻝ‪.‬ﻳﺠﺐ ﺭﻓﺾ ﻫﺬﺍ ﺍﻟﻘﻴﺎﺱ ﺇﻣﺎ‬ ‫ﺑﺴﺒﺐﺍﻟﺘﺪﺣﺮﺝ‪/‬ﺍﻟﻤﻴﻞ ﺍﻟﻤﻔﺮﻁ ﺃﻭ ﺗﺼﺤﻴﺤﻪ ﻟﻤﻴﻞ ﺇﻟﻰ ﻋﻤﻮﺩﻱ ﻧﻈﺮﺍً ﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﺪﺣﺮﺝ‪/‬ﺍﻟﻤﻴﻞ ﺍﻟﻤﻠﺤﻮﻇﺔ ﻣﻦ ﻣﺴﺘﺸﻌﺮ‬ ‫ﺍﻟﺤﺮﻛﺔ‪.‬ﺗﻮﻓﺮ ﺑﺮﺍﻣﺞ ﺍﻟﻤﻌﺎﻟﺠﺔ ﻣﺜﻞ ‪ HYPACK‬ﺗﺼﺤﻴﺢ ﻋﻤﻖ ﻣﻴﻞ‪/‬ﺍﻟﺘﺪﺣﺮﺝ ﺇﻟﻰ ﻋﻤﻮﺩﻱ ﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ ﺗﺼﺤﻴﺢ ﺍﻻﻧﺤﺮﺍﻑ‬ ‫ﺍﻟﻤﻮﺿﻌﻲ)‪ (XY‬ﺃﻭ ﺍﻟﻤﺤﻮﻝ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻬﻮﺍﺉﻲ ﺍﻟﺘﻤﻮﺿﻊ‪.‬‬ ‫ﺝ‪.‬ﺍﻛﺘﺸﺎﻑ ﺍﺻﻄﺪﺍﻡ ﺍﻟﺸﻌﺎﺏ ﺍﻟﻤﺮﺟﺎﻧﻴﺔ ﺃﻭ ﺍﻷﺟﺴﺎﻡ‪.‬ﺇﻥ ﺗﺄﺛﻴﺮ ﺍﻟﺘﺮﺩﺩ ﻋﻠﻰ ﺍﻟﻜﺸﻒ ﺃﻛﺜﺮ ﺗﻌﻘﻴﺪﺍً‬ ‫ﺇﻥﺍﻟﻜﺸﻒ ﻋﻦ ﺷﻈﺎﻳﺎ ﺍﻟﺼﺨﻮﺭ ﺍﻟﻤﺘﻔﺠﺮﺓ ﺃﻭ ﻏﻴﺮﻫﺎ ﻣﻦ ﺍﻷﺟﺴﺎﻡ ﺍﻟﺨﻄﺮﺓ ﻓﻮﻕ ﻣﺴﺘﻮﻯ ﺳﻄﺢ ﺍﻟﺒﺤﺮ ﻋﻤﻠﻴﺔ ﺻﻌﺒﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ‬ ‫ﺃﺟﻬﺰﺓﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﺍﻟﺘﻘﻠﻴﺪﻳﺔ‪ ،‬ﺑﻐﺾ ﺍﻟﻨﻈﺮ ﻋﻦ ﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﺴﺘﺨﺪﻡ‪.‬ﻭﺑﺸﻜﻞ ﻋﺎﻡ‪ ،‬ﻗﺪ ﺗﻜﻮﻥ ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﺫﺍﺕ ﺍﻟﺘﺮﺩﺩ‬ ‫ﺍﻟﻤﻨﺨﻔﺾﻭﺍﻟﺤﺰﻣﺔ ﺍﻷﻋﺮﺽ ﺃﻛﺜﺮ ﻣﻼءﻣﺔ ﻟﻠﻜﺸﻒ ﻋﻦ ﺍﻟﻀﺮﺑﺎﺕ ﻣﻦ ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﺫﺍﺕ ﺍﻟﺘﺮﺩﺩ ﺍﻷﻋﻠﻰ ﻭﺍﻟﺤﺰﻣﺔ ﺍﻟﻀﻴﻘﺔ‪.‬‬ ‫ﻭﻣﻊﺫﻟﻚ‪ ،‬ﻓﺈﻥ ﺇﻋﺪﺍﺩﺍﺕ ﺍﻟﻜﺸﻒ ﻋﻦ ﺍﻟﻌﺘﺒﺔ ﻓﻲ ﻧﻈﺎﻡ ﺍﻟﻘﻴﺎﺱ‪ ،‬ﻭﺇﻋﺪﺍﺩﺍﺕ ﺍﻟﺒﻮﺍﺑﺔ‪ ،‬ﻭﻃﺮﻕ ﺍﻟﻌﺮﺽ‪ ،‬ﻭﻣﺎ ﺇﻟﻰ ﺫﻟﻚ‪ ،‬ﻣﻬﻤﺔ ﺃﻳﻀﺎً‬ ‫ﻟﻠﻜﺸﻒﻋﻦ ﺍﻟﻀﺮﺑﺎﺕ‪.‬ﻗﺪ ﻻ ﺗﻜﻮﻥ ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﺫﺍﺕ ﺍﻟﺤﺰﻣﺔ ﺍﻟﻀﻴﻘﺔ ﺍﻟﻤﺜﺒﺘﺔ ﺭﺃﺳﻴﺎ ً)ﺳﻮﺍء ﻛﺎﻧﺖ ﻣﺜﺒﺘﺔ ﻋﻠﻰ ﻫﻴﻜﻞ‬ ‫ﻭﺍﺣﺪﺃﻭ ﺃﻧﻈﻤﺔ "ﻣﺴﺢ" ﺍﻟﺬﺭﺍﻉ( ﻫﻲ ﺍﻟﺘﻜﻮﻳﻦ ﺍﻷﻓﻀﻞ ﻟﺘﻮﻓﻴﺮ ﻋﺎﺉﺪ ﻃﺎﻗﺔ ﻣﺜﺎﻟﻲ ﻣﻦ ﺍﻟﻀﺮﺑﺎﺕ ﺍﻟﺼﻐﻴﺮﺓ ﺗﺤﺖ ﺍﻟﻤﺎء؛ ﻋﻠﻰ ﺍﻟﺮﻏﻢ‬ ‫ﻣﻦﺑﺼﻤﺘﻬﺎ ﺍﻟﺼﻮﺗﻴﺔ ﺍﻟﺼﻐﻴﺮﺓ‪.‬ﻗﺪ ﺗﻮﻓﺮ ﺃﻧﻈﻤﺔ ﺍﻟﺤﺰﻡ ﺍﻟﻤﺘﻌﺪﺩﺓ ﺫﺍﺕ ﺍﻟﻨﻈﺮ ﺍﻟﺠﺎﻧﺒﻲ ﻭﺃﺟﻬﺰﺓ ﺍﻟﺴﻮﻧﺎﺭ ﺫﺍﺕ ﺍﻟﻤﺴﺢ ﺍﻟﺠﺎﻧﺒﻲ ﻋﻮﺍﺉﺪ‬ ‫ﺃﻓﻀﻞﻣﻦ ﻣﺜﻞ ﻫﺬﻩ ﺍﻷﺟﺴﺎﻡ‪.‬ﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ ﺫﻟﻚ‪ ،‬ﻓﺈﻥ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﻣﻦ ﻧﻮﻉ "ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ" ﺍﻟﻤﺴﺘﺨﺪﻣﺔ‬ ‫ﻓﻲﺳﻼﺡ ﺍﻟﻤﻬﻨﺪﺳﻴﻦ ﻓﻲ ﺍﻟﺠﻴﺶ ﺍﻷﻣﺮﻳﻜﻲ ﻟﻴﺴﺖ ﻣﺼﻤﻤﺔ )ﺃﻭ ﻣﺤُﺴﻨَّﺔ( ﻟﻠﻌﻤﻞ ﻋﻠﻰ ﺍﻛﺘﺸﺎﻑ ﺍﻟﻀﺮﺑﺎﺕ‪.‬‬ ‫ﺩ‪.‬ﺍﻟﺘﺮﺩﺩ ﺍﻟﻘﻴﺎﺳﻲ ‪ 200‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ‪.‬ﺗﺮﺩﺩ ﺍﻟﻤﺤﻮﻝ ﺍﻷﻛﺜﺮ ﺍﺳﺘﺨﺪﺍﻣﺎً ﻓﻲ ‪USACE‬‬ ‫ﺗﺘﺮﺍﻭﺡﺗﺮﺩﺩﺍﺕ ﻣﺸﺮﻭﻋﺎﺕ ﺍﻟﻤﻼﺣﺔ ﺍﻟﻨﻬﺮﻳﺔ ﻭﺍﻟﻤﻮﺍﻧﺊ ﺑﻴﻦ ‪ 200‬ﻭ‪ 208‬ﻛﻴﻠﻮﻫﺮﺗﺰ‪.‬ﻭﻋﺎﺩﺓ ﻣﺎ ﺗﻜﻮﻥ ﺍﻟﻤﺤﻮﻻﺕ ﺍﻟﻌﺎﻣﻠﺔ ﺑﻬﺬﺍ‬ ‫ﺍﻟﺘﺮﺩﺩﺫﺍﺕ ﺣﺰﻡ ﺿﻴﻘﺔ )ﺑﻴﻦ ‪ 1.5‬ﺩﺭﺟﺔ ﻭ‪ 8‬ﺩﺭﺟﺎﺕ ﻋﻨﺪ ﻧﻘﺎﻁ ‪ 3-‬ﺩﻳﺴﻴﺒﻞ( ﻟﺘﻮﻓﻴﺮ ﺗﻔﺎﺻﻴﻞ ﺃﻛﺜﺮ ﺩﻗﺔ ﻟﻠﻘﺎﻉ‪.‬ﻭﻳﻮﺻﻰ‬ ‫ﺑﺎﺳﺘﺨﺪﺍﻡﺣﺰﻡ ﺃﺿﻴﻖ ﻟﻠﻤﺸﺮﻭﻋﺎﺕ ﺫﺍﺕ ﺍﻟﺪﺭﺟﺎﺕ ﺍﻟﺼﻠﺒﺔ ﻭﺍﻟﻨﺎﻋﻤﺔ ﻧﺴﺒﻴﺎً‪ ،‬ﻣﺜﻞ ﻗﻄﻊ ﺍﻟﺼﺨﻮﺭ ﺃﻭ ﺍﻟﻘﻴﻌﺎﻥ ﺍﻟﺮﻣﻠﻴﺔ‪.‬ﻭﺳﻮﻑ‬ ‫ﻳﻮﻓﺮﺍﻟﻤﺤﻮﻝ ﺫﻭ ﺍﻟـ ‪ 3‬ﺩﺭﺟﺎﺕ ﺗﺼﻮﻳﺮﺍً ﺃﻋﻠﻰ ﻗﻠﻴﻼ ًﻟﺴﻤﺎﺕ ﺍﻟﻘﺎﻉ ﺍﻟﺼﻐﻴﺮﺓ‪ (10% +.‬ﺍﻟﺘﺮﺩﺩ ﻫﻮﻻﻻ ﻳﻮﺟﺪ ﻣﻌﻴﺎﺭ ﺗﺮﺩﺩ ﺇﻟﺰﺍﻣﻲ‬ ‫ﻟﻬﻴﺉﺔﺍﻟﻤﻬﻨﺪﺳﻴﻦ ﺑﺎﻟﺠﻴﺶ ﺍﻷﻣﺮﻳﻜﻲ‪ ،‬ﻭﻻ ﻳﻮﺟﺪ ﻋﺮﺽ ﺷﻌﺎﻉ ﻣﻌﻴﻦ‪.‬ﻳﺴُﻤﺢ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻣﺤﻮﻻﺕ ﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﻨﺨﻔﻀﺔ ﺃﻭ‬ ‫ﺍﻟﻌﺎﻟﻴﺔ‪،‬ﺍﻟﺘﻲ ﺗﺘﺮﺍﻭﺡ ﺑﻴﻦ ‪ 20‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﻭ‪ 1000‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ‪ ،‬ﻭﺑﻌﺮﺽ ﺷﻌﺎﻉ ﻣﺘﻔﺎﻭﺕ‪ ،‬ﻷﻱ ﻓﺉﺔ ﻣﻦ ﺍﻟﻤﺴﺢ ﺃﻭ ﻧﻮﻉ ﻣﻦ‬ ‫ﺃﻧﻈﻤﺔﺍﻟﻘﻴﺎﺱ ﺍﻟﺼﻮﺗﻲ )ﻋﻠﻰ ﺳﺒﻴﻞ ﺍﻟﻤﺜﺎﻝ‪ ،‬ﺃﻧﻈﻤﺔ ﺃﺣﺎﺩﻳﺔ ﺃﻭ ﻛﺎﺳﺤﺔ ﺃﻭ ﻣﺘﻌﺪﺩﺓ ﺍﻟﺸﻌﺎﻉ(‪.‬ﺳﺘﺤﺪﺩ ﺍﻟﻈﺮﻭﻑ ﺍﻟﻤﺤﻠﻴﺔ‬ ‫ﻭﻣﺘﻄﻠﺒﺎﺕﺍﻟﻤﺸﺮﻭﻉ ﺍﻟﻔﺮﻳﺪﺓ ﺍﻟﻨﻮﻉ ﺍﻷﻣﺜﻞ ﻟﻨﻈﺎﻡ ﺍﻟﻤﺴﺢ ﻭﺍﻟﺘﺮﺩﺩ ﺍﻟﺬﻱ ﻳﺠﺐ ﺍﺳﺘﺨﺪﺍﻣﻪ‪.‬ﻭﻣﻊ ﺫﻟﻚ‪ ،‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻤﺴﻮﺣﺎﺕ‬ ‫ﺍﻟﻤﻼﺣﺔﻭﺩﻓﻊ ﺍﻟﺘﺠﺮﻳﻒ‪ ،‬ﻳﺠﺐ ﺃﻥ ﻳﻜﻮﻥ ﻧﻈﺎﻡ ﺍﻟﻤﺴﺢ ﺍﻟﺼﻮﺗﻲ ﻭ‪/‬ﺃﻭ ﺗﺮﺩﺩ ﺍﻟﻤﺤﻮﻝ ﺛﺎﺑﺘﺎً ﻃﻮﺍﻝ ﻣﺪﺓ ﺍﻟﻤﺸﺮﻭﻉ ‪ -‬ﻭﻣﺤﺪﺩﺍً‬ ‫ﺑﻮﺿﻮﺡﻓﻲ ﻣﻮﺍﺻﻔﺎﺕ ﺍﻟﺒﻨﺎء‪.‬ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺃﻧﻈﻤﺔ ﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﺘﻌﺪﺩﺓ ﻟﺘﺤﻠﻴﻞ ﻃﺒﻘﺎﺕ ﺍﻟﺮﻭﺍﺳﺐ ﺫﺍﺕ ﺍﻟﻜﺜﺎﻓﺎﺕ ﺍﻟﻤﺘﻔﺎﻭﺗﺔ‬ ‫‪-‬ﻋﺎﺩﺓ ًﺑﺎﺳﺘﺨﺪﺍﻡ ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺛﻨﺎﺉﻴﺔ ﺍﻟﺘﺮﺩﺩ ‪ 200‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﻭ‪ 28‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ‪.‬‬ ‫‪9-6‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﻫـ‪.‬ﺗﺮﻛﻴﺐ ﻣﺤﻮﻝ ﺷﻌﺎﻋﻲ ﻭﺍﺣﺪ‪.‬ﻳﺠﺐ ﺃﻥ ﻳﻜﻮﻥ ﺍﻟﻤﺤﻮﻝ ﻟﺠﻬﺎﺯ ﻗﻴﺎﺱ ﺻﺪﻯ ﺍﻟﻤﻮﺟﺎﺕ ﺃﺣﺎﺩﻱ ﺍﻟﺤﺰﻣﺔ‬ ‫ﻳﺠﺐﺃﻥ ﻳﺘﻢ ﺗﺮﻛﻴﺐ ﺍﻟﻤﺤﻮﻝ ﻓﻲ ﻣﻨﺘﺼﻒ ﺍﻟﺴﻔﻴﻨﺔ ﺗﻘﺮﻳﺒﺎً ﻭﻓﻲ ﺃﻗﺮﺏ ﻣﻜﺎﻥ ﻣﻤﻜﻦ ﻣﻦ ﻣﺮﻛﺰ ﺩﻭﺭﺍﻥ ﻣﻘﺪﻣﺔ ﺍﻟﺴﻔﻴﻨﺔ‬ ‫ﻭﺧﻠﻔﻬﺎ‪.‬ﻳﺠﺐ ﺃﻥ ﻳﻜﻮﻥ ﺍﻟﻤﺤﻮﻝ ﻣﻮﺿﻮﻋﺎً ﺑﺸﻜﻞ ﺩﺍﺉﻢ ﻓﻲ ﺇﻃﺎﺭ ﺃﻭ ﺑﺉﺮ ﻣﺤﻮﻝ ﻣﺠﺎﻭﺭ ﻟﻌﺎﺭﺿﺔ ﺍﻟﺴﻔﻴﻨﺔ‪.‬ﻻ ﻳﺴُﻤﺢ‬ ‫ﺑﺎﻟﺘﺮﻛﻴﺒﺎﺕﺍﻟﺠﺎﻧﺒﻴﺔ ﺃﻭ ﺍﻷﻣﺎﻣﻴﺔ ﺃﻭ ﺍﻟﺨﻠﻔﻴﺔ ﺇﻻ ﺇﺫﺍ ﺗﻢ ﺗﻌﻮﻳﺾ ﺣﺮﻛﺔ ﺍﻟﺘﺪﺣﺮﺝ ﻭﺍﻟﻤﻴﻼﻥ ﻭﺍﻟﺪﻭﺭﺍﻥ ﻭﺍﺧﺘﻼﻓﺎﺕ ﺍﻟﻤﻮﻗﻊ‪.‬‬ ‫ﻳﻔﻀﻞﺃﻥ ﻳﻜﻮﻥ ﻫﻮﺍﺉﻲ ﻧﻈﺎﻡ ﺗﺤﺪﻳﺪ ﺍﻟﻤﻮﺍﻗﻊ ﻣﻮﺟﻮﺩﺍً ﻣﺒﺎﺷﺮﺓ ﻓﻮﻕ ﺍﻟﻤﺤﻮﻝ ‪ -‬ﻳﺠﺐ ﻗﻴﺎﺱ ﺃﻱ ﺇﺯﺍﺣﺎﺕ ‪ XYZ‬ﺑﺪﻗﺔ‬ ‫ﻭﺇﺩﺧﺎﻟﻬﺎﻓﻲ ﺑﺮﻧﺎﻣﺞ ﺍﻟﻤﻌﺎﻟﺠﺔ‪.‬‬ ‫‪.9-4‬ﻣﻌﺪﺍﺕ ﻭﺇﺟﺮﺍءﺍﺕ ﻗﻴﺎﺱ ﺻﺪﻯ ﺍﻟﻤﻮﺟﺎﺕ ﺃﺣﺎﺩﻳﺔ ﺍﻟﺸﻌﺎﻉ‬ ‫ﻗﺒﻞﺳﺒﻌﻴﻨﻴﺎﺕ ﺍﻟﻘﺮﻥ ﺍﻟﻌﺸﺮﻳﻦ‪ ،‬ﻛﺎﻧﺖ ﺃﻏﻠﺐ ﺍﻟﻤﻨﺎﻃﻖ ﺗﺴﺘﺨﺪﻡ ﻣﺴﺠﻼﺕ ﻋﻤﻖ ﺗﻨﺎﻇﺮﻳﺔ ﻣﻴﻜﺎﻧﻴﻜﻴﺔ‪.‬ﻭﻛﺎﻧﺖ ﺍﻟﻨﻤﺎﺫﺝ‬ ‫ﺍﻷﻛﺜﺮﺍﺳﺘﺨﺪﺍﻣﺎً ﻫﻲ ‪ Bludworth‬ﻭ‪.Raytheon 719‬ﻭﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻷﺟﻬﺰﺓ ﺗﺤﺪﺩ ﻣﻠﻒ ﺗﻌﺮﻳﻒ ﺍﻟﻌﻤﻖ ﺍﻟﻤﺴﺘﻤﺮ ﻋﻠﻰ‬ ‫ﻭﺭﻕﺭﺳﻢ ﺑﻴﺎﻧﻲ ﻣﻄﺒﻮﻉ ﻣﺴﺒﻘﺎً ﺑﺎﺳﺘﺨﺪﺍﻡ ﺁﻟﻴﺔ ﻗﻠﻢ ﺩﻭﺍﺭ‪.‬ﻭﻛﺎﻧﺖ ﺳﺮﻋﺔ ﺍﻟﻘﻠﻢ ﺍﻟﻤﻴﻜﺎﻧﻴﻜﻲ ﺍﻟﺪﻭﺍﺭ ﺩﺍﻟﺔ ﻋﻠﻰ ﻋﻤﻖ ﺍﻟﻤﺎء‬ ‫ﻭﺳﺮﻋﺔﺍﻟﺼﻮﺕ‪.‬ﻭﻟﺴﻮء ﺍﻟﺤﻆ‪ ،‬ﻛﺎﻧﺖ ﺍﻟﺴﺮﻋﺔ ﺍﻟﺪﻭﺭﺍﻧﻴﺔ ﻟﻠﻤﺴﺠﻼﺕ ﺍﻟﻤﻴﻜﺎﻧﻴﻜﻴﺔ ﻏﻴﺮ ﻣﺴﺘﻘﺮﺓ ﻓﻲ ﻛﺜﻴﺮ ﻣﻦ ﺍﻷﺣﻴﺎﻥ‬ ‫ﻭﺗﺘﻄﻠﺐﻣﻌﺎﻳﺮﺓ ﻭﻣﺤﺎﺫﺍﺓ ﺛﺎﺑﺘﺔ‪.‬ﻭﻻ ﻳﺰﺍﻝ ﻋﺪﺩ ﻗﻠﻴﻞ ﻣﻦ ﺃﻧﻈﻤﺔ ﺍﻟﺘﺴﺠﻴﻞ ﺍﻟﺘﻨﺎﻇﺮﻳﺔ ﺍﻟﻤﻴﻜﺎﻧﻴﻜﻴﺔ ﻫﺬﻩ ﻣﺴﺘﺨﺪﻣﺎً ﻓﻲ ﺳﻼﺡ‬ ‫ﺍﻟﺒﺤﺮﻳﺔ‪.‬ﻭﻳﻮﺿﺢ ﺍﻟﺸﻜﻞ ‪ 4-9‬ﺟﻬﺎﺯ ‪ Raytheon DE 719‬ﺍﻷﻗﺪﻡ ﺇﻟﻰ ﺟﺎﻧﺐ ﺳﺠﻞ ﻣﻘﻄﻊ ﻋﺮﺿﻲ ﻧﻤﻮﺫﺟﻲ‪.‬ﻭﻓﻲ‬ ‫ﺳﺒﻌﻴﻨﻴﺎﺕﺍﻟﻘﺮﻥ ﺍﻟﻌﺸﺮﻳﻦ‪ ،‬ﺑﺪﺃﺕ ﺍﻟﻤﻨﺎﻃﻖ ﻓﻲ ﺍﻗﺘﻨﺎء ﺃﻧﻈﻤﺔ ﺗﺴﺠﻴﻞ ﻋﻤﻖ ﺭﻗﻤﻴﺔ‪.‬ﻭﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻷﻧﻈﻤﺔ ﺗﺤﺪﺩ ﺍﻷﻋﻤﺎﻕ‬ ‫ﺍﻟﺘﻨﺎﻇﺮﻳﺔ)ﺍﻟﻤﻠﻒ ﺍﻟﺘﻌﺮﻳﻔﻲ( ﻣﺒﺎﺷﺮﺓ ﻋﻠﻰ ﻭﺭﻕ ﺗﺴﺠﻴﻞ ﺣﺮﺍﺭﻱ ﻓﺎﺭﻍ؛ ﻭﺑﺎﻟﺘﺎﻟﻲ ﺍﻟﻘﻀﺎء ﻋﻠﻰ ﻣﻌﻈﻢ ﺍﻷﺧﻄﺎء ﻓﻲ ﺍﻟﻤﺴﺠﻼﺕ‬ ‫ﺍﻟﻤﻴﻜﺎﻧﻴﻜﻴﺔ‪.‬ﻭﻳﻤﻜﻦ ﺃﻳﻀﺎً ﺇﺭﺳﺎﻝ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻤﻖ ﺍﻟﺮﻗﻤﻴﺔ ﺇﻟﻰ ﺟﻬﺎﺯ ﺗﺴﺠﻴﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺣﻴﺚ ﻳﺘﻢ ﺭﺑﻄﻬﺎ ﺑﺈﺩﺧﺎﻝ ﺑﻴﺎﻧﺎﺕ‬ ‫ﺗﺤﺪﻳﺪﺍﻟﻤﻮﺍﻗﻊ‪.‬ﺗﺴﺠﻞ ﺃﻧﻈﻤﺔ ﺍﻟﺠﻴﻞ ﺍﻷﺣﺪﺙ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻋﻠﻰ ﺃﻗﺮﺍﺹ ﺃﻭ ﻣﺤﺮﻛﺎﺕ ‪ WORM‬ﻟﻌﺮﺿﻬﺎ ﻋﻠﻰ ﺍﻟﺸﺎﺷﺔ ﻓﻲ‬ ‫ﺍﻟﻮﻗﺖﺍﻟﻔﻌﻠﻲ ﻭ‪/‬ﺃﻭ ﺍﻟﻄﺒﺎﻋﺔ ﺩﻭﻥ ﺍﺗﺼﺎﻝ ﺑﺎﻹﻧﺘﺮﻧﺖ‪.‬ﻳﻤﻜﻦ ﺗﻜﻮﻳﻦ ﺟﻤﻴﻊ ﺃﻧﻈﻤﺔ ﻗﻴﺎﺱ ﺍﻟﻌﻤﻖ ﺍﻟﺤﺪﻳﺜﺔ ﻹﺧﺮﺍﺝ ﺍﻷﻋﻤﺎﻕ‬ ‫ﺍﻟﻤﻘﺎﺳﺔﺇﻟﻰ ﺃﺟﻬﺰﺓ ﺗﺴﺠﻴﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ‪ ،‬ﺣﻴﺚ ﻳﻤﻜﻦ ﻭﺿﻊ ﻋﻼﻣﺔ ﺯﻣﻨﻴﺔ ﻋﻠﻴﻬﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﻴﺎﻧﺎﺕ ﺍﺳﺘﺸﻌﺎﺭ ﺍﻟﻤﻮﺿﻊ ﻭﺍﻟﺤﺮﻛﺔ‪.‬‬ ‫ﺍﻟﺸﻜﻞ‪.4-9‬ﺟﻬﺎﺯ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﺍﻟﻤﺤﻤﻮﻝ ﺍﻟﺬﻱ ﻳﺴﺠﻞ ﺍﻟﺼﻮﺕ ﺗﻨﺎﻇﺮﻳﺎً ‪ DE 719‬ﻣﻦ ﺇﻧﺘﺎﺝ ﺷﺮﻛﺔ ‪) Raytheon‬ﻣﻨﻄﻘﺔ ﺟﺎﻛﺴﻮﻧﻔﻴﻞ(‬ ‫‪9-7‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﺃ‪.‬ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﺫﺍﺕ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻮﺍﺣﺪ‪.‬ﻳﻮﺿﺢ ﺍﻟﺸﻜﻞ ‪ 5-9‬ﺑﻌﻀﺎً ﻣﻦ ﺃﻛﺜﺮ ﺍﻷﺻﻮﺍﺕ ﺍﻟﺮﻗﻤﻴﺔ ﺷﻴﻮﻋﺎً‬ ‫ﺍﻟﻮﺣﺪﺍﺕﺍﻟﺘﻲ ﺗﺴﺘﺨﺪﻣﻬﺎ ﺣﺎﻟﻴﺎً ﺃﻗﺴﺎﻡ ﺍﻟﻔﻴﻠﻖ‪.‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﻭﺻﻒ ﻣﻮﺟﺰ ﻟﻠﻤﻮﺍﺻﻔﺎﺕ ﺍﻟﺨﺎﺻﺔ ﺑﺒﻌﺾ ﻫﺬﻩ ﺍﻟﻮﺣﺪﺍﺕ‪.‬‬ ‫ﻭﻗﺪﺗﻢ ﺍﻟﺤﺼﻮﻝ ﻋﻠﻰ ﻫﺬﻩ ﺍﻟﻤﻮﺍﺻﻔﺎﺕ ﻣﺒﺎﺷﺮﺓ ﻣﻦ ﺃﺩﻟﺔ ﺍﻟﺘﺸﻐﻴﻞ ﺍﻟﺨﺎﺻﺔ ﺑﺎﻟﺸﺮﻛﺔ ﺍﻟﻤﺼﻨﻌﺔ ﻭ‪/‬ﺃﻭ ﻏﻴﺮﻫﺎ ﻣﻦ ﺍﻟﻤﺮﺍﺟﻊ‬ ‫‪-‬ﺭﺍﺟﻊ ﺍﻟﻤﺮﺍﺟﻊ ﻓﻲ ﻧﻬﺎﻳﺔ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ﻟﻤﺰﻳﺪ ﻣﻦ ﺍﻟﺘﻔﺎﺻﻴﻞ‪.‬‬ ‫ﺟﻬﺎﺯﻗﻴﺎﺱ ﺍﻷﻋﻤﺎﻕ ﻃﺮﺍﺯ ‪ 455‬ﻣﻦ ‪Innerspace‬‬ ‫ﺟﻬﺎﺯﻗﻴﺎﺱ ﺍﻟﺼﻮﺕ ﺍﻟﺬﻛﻲ ﻣﻦ ﻣﺨﺘﺒﺮﺍﺕ ﺭﻭﺱ‬ ‫ﻋﻨﺎﺻﺮﺍﻟﺘﺤﻜﻢ ﻓﻲ ﺍﻟﻄﺎﺑﻌﺔ‬ ‫ﺷﺎﺷﺔﺍﻟﻜﺮﻳﺴﺘﺎﻝ ﺍﻟﺴﺎﺉﻞ‬ ‫ﻣﻘﺎﺑﻠﺔ‬ ‫ﺟﻬﺎﺯﺍﻹﺭﺳﺎﻝ ﻭﺍﻻﺳﺘﻘﺒﺎﻝ‬ ‫ﻟﻮﺣﺔﺍﻟﻤﻔﺎﺗﻴﺢ‬ ‫ﺷﺎﺷﺔ‪LCD‬‬ ‫ﻋﻨﺎﺻﺮﺍﻟﺘﺤﻜﻢ‬ ‫ﺇﻧﺬﺍﺭ‬ ‫ﻗﻮﺓ‬ ‫ﺃﻭﺩﻭﻡﺇﻳﻜﻮﺗﺮﺍﻙ ‪DF3200 Mk II‬‬ ‫ﺟﻬﺎﺯﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ‪Knudsen 320M‬‬ ‫ﺍﻟﺸﻜﻞ‪.5-9‬ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﺃﺣﺎﺩﻳﺔ ﺍﻟﺤﺰﻣﺔ ﺍﻟﻨﻤﻮﺫﺟﻴﺔ ﺍﻟﻤﺴﺘﺨﺪﻣﺔ ﻓﻲ ﺳﻼﺡ ﺍﻟﺒﺤﺮﻳﺔ‬ ‫ﺍﻟﻄﺮﺍﺯ‪ 455‬ﻭﺍﻟﻄﺮﺍﺯ ‪.448‬ﻳﻈﻬﺮ ﺍﻟﻄﺮﺍﺯ ‪ 455‬ﻓﻲ ﺍﻟﺸﻜﻞ ‪)1( Innerspace Technology, Inc. 5-9‬‬ ‫ﺗﻮﻓﺮﺷﺎﺷﺔ ‪ LCD‬ﺍﻟﺘﻨﺎﻇﺮﻳﺔ ﻋﻤﻘﺎً ﺗﻨﺎﻇﺮﻳﺎً ﻭﺭﻗﻤﻴﺎً ﻋﻠﻰ ﺷﺎﺷﺎﺕ ﻋﺮﺽ ‪ LCD‬ﻋﺎﻟﻴﺔ ﺍﻟﺪﻗﺔ ﻣﻨﻔﺼﻠﺔ‪.‬ﺗﻢ ﺗﺼﻤﻴﻢ ﺍﻟﻮﺣﺪﺓ‬ ‫ﺍﻟﺼﻐﻴﺮﺓﻭﺍﻟﺨﻔﻴﻔﺔ ﺍﻟﻮﺯﻥ ﻭﺍﻟﻤﺤﻤﻮﻟﺔ ﻟﻼﺳﺘﺨﺪﺍﻡ ﻋﻠﻰ ﺳﻔﻦ ﺍﻻﺳﺘﻄﻼﻉ ﻭﺍﻟﻘﻮﺍﺭﺏ ﺍﻟﺼﻐﻴﺮﺓ‪.‬ﺍﺧﺘﻴﺎﺭﻳﺎً‪ ،‬ﻳﻤﻜﻦ ﻃﺒﺎﻋﺔ‬ ‫ﺍﻟﺸﺎﺷﺎﺕﺍﻟﺘﻨﺎﻇﺮﻳﺔ ﻋﻠﻰ ﻃﺎﺑﻌﺔ ﻛﻤﺒﻴﻮﺗﺮ ﺃﻭ ﺗﺨﺰﻳﻨﻬﺎ ﺩﺍﺧﻠﻴﺎً ﻟﻠﺮﺟﻮﻉ ﺇﻟﻴﻬﺎ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺒﻞ ﺃﻭ ﻃﺒﺎﻋﺔ ﻧﺴﺨﺔ ﻣﻄﺒﻮﻋﺔ‪.‬ﻳﺘﻢ‬ ‫ﺍﻟﺘﺤﻜﻢﻓﻲ ﺍﻟﻘﺎﺉﻤﺔ ﻋﺒﺮ ﺍﻷﺳﻬﻢ ﻷﻋﻠﻰ ‪ /‬ﻷﺳﻔﻞ‪ ،‬ﻭﻟﻠﻴﺴﺎﺭ ‪ /‬ﻟﻠﻴﻤﻴﻦ؛ ﻭﻻ ﻳﻠﺰﻡ ﺇﺩﺧﺎﻝ ﺃﺭﻗﺎﻡ‪.‬ﺗﻮﻓﺮ ﺷﺎﺷﺔ ‪ LCD‬ﺍﻟﺘﻨﺎﻇﺮﻳﺔ‬ ‫ﻋﺮﺿﺎًﻣﺴﺘﻤﺮﺍً ﻭﻋﺎﻟﻲ ﺍﻟﺪﻗﺔ ﻟﻠﺠﺰء ﺍﻟﺴﻔﻠﻲ ﻣﻊ ﺷﺮﺡ ﺃﺑﺠﺪﻱ ﺭﻗﻤﻲ ﻟﻠﻤﻌﻠﻮﻣﺎﺕ ﺫﺍﺕ ﺍﻟﺼﻠﺔ‪.‬ﺗﺸﻤﻞ ﺍﻟﻤﻴﺰﺍﺕ ﺍﻟﻤﻬﻤﺔ ﻣﺎ‬ ‫ﻳﻠﻲ‪:‬‬ ‫ﺟﻬﺎﺯﺭﻗﻤﻲ ﻟﻠﺘﺘﺒﻊ ﺍﻟﺘﻠﻘﺎﺉﻲ ﺑﺒﻮﺍﺑﺔ ﺍﻟﻨﻄﺎﻕ‬ ‫ ‬ ‫ﺿﺒﻂﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﺍﻟﻤﺘﻐﻴﺮﺓ )ﻗﺪﻡ ﻭﺃﻣﺘﺎﺭ(‬ ‫ ‬ ‫ﺿﺒﻂﺧﺮﺝ ﺍﻟﻄﺎﻗﺔ )ﺃﺭﺑﻌﺔ ﻣﺴﺘﻮﻳﺎﺕ(‬ ‫ ‬ ‫ﻣﺘﻮﺍﺯﻱ‪،‬ﺗﺴﻠﺴﻠﻲ )ﺛﻼﺛﺔ(‪ ،‬ﻗﺮﺹ ﻣﺮﻥ‪ ،‬ﻣﻨﺎﻓﺬ ﻟﻮﺣﺔ ﺍﻟﻤﻔﺎﺗﻴﺢ ‪VGA،‬‬ ‫ ‬ ‫ﻣﻊﺗﺼﻔﻴﺔ ﺍﻟﻔﻬﺮﺱ ﻟﻠﻌﺮﺽ ﻓﻲ ﺿﻮء ﺍﻟﻨﻬﺎﺭ ‪ TFT VGA 500NIT‬ﻣﻠﻮﻧﺔ ﺍﺧﺘﻴﺎﺭﻳﺔ ‪ LCD‬ﺃﺣﺎﺩﻳﺔ ﺍﻟﻠﻮﻥ ﻋﺎﻛﺴﺔ‬ ‫ ‬ ‫ﻣﻊﺍﻟﺘﺤﻜﻢ ﻓﻲ ﺍﻟﺘﺒﺎﻳﻦ )ﻗﺎﺑﻠﺔ ﻟﻠﻘﺮﺍءﺓ ﻓﻲ ﺿﻮء ﺍﻟﻨﻬﺎﺭ( ﺷﺎﺷﺔ ‪ LCD‬ﺷﺎﺷﺔ ‪VGA،‬‬ ‫ﺍﻟﺪﻗﺔ‪ 0.1‬ﻗﺪﻡ ﺃﻭ ‪ 0.01‬ﻣﺘﺮ‪ ،‬ﺭﻗﻤﻴﺔ ﻭﺗﻨﺎﻇﺮﻳﺔ‬ ‫ ‬ ‫ﺇﻧﺬﺍﺭﻋﻤﻖ ﺿﺤﻞ ﻣﺴﻤﻮﻉ‬ ‫ ‬ ‫‪9-8‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﺗﺨﺰﻳﻦﺍﻟﻤﺨﻄﻄﺎﺕ ﻋﻠﻰ ﺫﺍﻛﺮﺓ ﻓﻼﺵ ‪ RAM‬ﺫﺍﺕ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺼﻠﺒﺔ ﺑﺴﻌﺔ ‪ 48‬ﻣﻴﺠﺎﺑﺎﻳﺖ؛ ﻳﻮﻣﻴﻦ ﻣﻦ ﺍﻟﺘﻘﺎﻁ ﺍﻟﺸﺎﺷﺔ ﺑﺸﻜﻞ‬ ‫ ‬ ‫ﻣﺴﺘﻤﺮ‬ ‫ﻣﻠﻔﺎﺕﺍﻟﻤﺨﻄﻄﺎﺕ ﺍﻟﺘﻨﺎﻇﺮﻳﺔ ﻣﻮﺟﻮﺩﺓ ﺑﺘﻨﺴﻴﻖ ‪ PCX‬ﻟﻠﻌﺮﺽ ﺍﻟﻤﻠﻮﻥ ﻋﻠﻰ ﺃﺟﻬﺰﺓ ﺍﻟﻜﻤﺒﻴﻮﺗﺮ ﺍﻟﻘﻴﺎﺳﻴﺔ‬ ‫ ‬ ‫ﺷﺮﺡﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻟﻤﻜﻮﻥ ﻣﻦ ‪ 40‬ﺣﺮﻓﺎً ﻣﻦ ﺟﻬﺎﺯ ﻛﻤﺒﻴﻮﺗﺮ ﺧﺎﺭﺟﻲ‬ ‫ ‬ ‫ﻣﺪﺧﻼﺕ‪ GPS‬ﻟﺘﻮﺿﻴﺢ ﻣﺨﻄﻂ ﺧﻄﻮﻁ ﺍﻟﻌﺮﺽ‪/‬ﺍﻟﻄﻮﻝ‪.‬‬ ‫ ‬ ‫ﻣﺪُﻣﺞﻓﻲ ﺟﻬﺎﺯ ﺇﺭﺳﺎﻝ ﻣﺘﻌﺪﺩ‪.‬ﻳﻤﻜﻦ ﺇﺭﺳﺎﻝ ﺍﻟﻌﻤﻖ ﺍﻟﺮﻗﻤﻲ ﻭﻣﻮﺿﻊ ﻧﻈﺎﻡ ﺗﺤﺪﻳﺪ ﺍﻟﻤﻮﺍﻗﻊ ﺍﻟﻌﺎﻟﻤﻲ )‪(GPS‬‬ ‫ ‬ ‫ﺩﺍﺧﻠﻴﺎًﺛﻢ ﺇﺧﺮﺍﺟﻬﻤﺎ ﻛﺴﻠﺴﻠﺔ ﺑﻴﺎﻧﺎﺕ ‪ NMEA‬ﻭﺍﺣﺪﺓ ﺇﻟﻰ ﻣﻨﻔﺬ ﻭﺍﺣﺪ‪ ،‬ﻭﻫﻮ ﻛﻤﺒﻴﻮﺗﺮ ﺗﺴﺠﻴﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ‬ ‫ﻣﻠﺤﻘﺎﺕﻛﺎﻣﻠﺔ ﻟﺘﺮﻛﻴﺐ ﻣﺤﻮﻝ ﻭﻫﻮﺍﺉﻲ ‪ GPS‬ﻟﻠﻘﻮﺍﺭﺏ ﺍﻟﺼﻐﻴﺮﺓ‬ ‫ ‬ ‫ﻳﺴُﺘﺨﺪﻡﻣﺴﺠﻞ ﺍﻟﻌﻤﻖ ﺍﻟﺤﺮﺍﺭﻱ ‪ 448‬ﻣﻦ ﻃﺮﺍﺯ ‪) Innerspace‬ﻏﻴﺮ ﻣﻮﺿﺢ ﻓﻲ ﺍﻟﺸﻜﻞ ‪ (5-9‬ﻓﻲ ﺑﻌﺾ ﻣﻨﺎﻃﻖ ﻓﻴﻠﻖ‬ ‫‪.18‬ﻳﻮﻓﺮ ﺟﻬﺎﺯ ‪ 448‬ﺩﻗﺔ ﻣﺴﺢ ﻭﺗﺴﺠﻴﻼﺕ ﻋﻤﻖ ﻋﺎﻟﻴﺔ ﺍﻟﺪﻗﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻄﺒﺎﻋﺔ ﺍﻟﺤﺮﺍﺭﻳﺔ ﺫﺍﺕ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺼﻠﺒﺔ‪.‬ﺗﻢ ﺗﺼﻤﻴﻢ‬ ‫ﺍﻟﻮﺣﺪﺓﺧﻔﻴﻔﺔ ﺍﻟﻮﺯﻥ ﻭﺍﻟﻤﺤﻤﻮﻟﺔ ﻟﻼﺳﺘﺨﺪﺍﻡ ﻓﻲ ﻣﺴﺢ ﺍﻟﻘﻮﺍﺭﺏ ﺍﻟﺼﻐﻴﺮﺓ ﻛﻤﺎ ﻫﻮ ﻣﻄﻠﻮﺏ ﻟﻠﻤﺴﻮﺣﺎﺕ ﺍﻟﻬﻨﺪﺳﻴﺔ ﻭﺻﻴﺎﻧﺔ‬ ‫ﺍﻟﻤﻮﺍﻧﺊﻭﺍﻟﻘﻨﻮﺍﺕ ﻭﺍﻟﻤﺴﻮﺣﺎﺕ ﻗﺒﻞ ﻭﺑﻌﺪ ﺍﻟﺘﺠﺮﻳﻒ‪ ،‬ﻭﻣﺎ ﺇﻟﻰ ﺫﻟﻚ‪.‬ﺗﺘﻀﻤﻦ ﺑﻌﺾ ﻣﻴﺰﺍﺕ ﺟﻬﺎﺯ ‪ 448‬ﺍﻟﺬﻱ ﺗﻌﻠﻦ ﻋﻨﻪ‬ ‫ﺷﺮﻛﺔ‪ Innerspace Technology‬ﻣﺎ ﻳﻠﻲ‪:‬‬ ‫ﺭﺃﺱﺛﺎﺑﺖ ﻟﻠﻄﺒﺎﻋﺔ ﺍﻟﺤﺮﺍﺭﻳﺔ ‪ -‬ﻻ ﻳﻮﺟﺪ ﻗﻠﻢ ﻻﺳﺘﺒﺪﺍﻟﻪ ‪ -‬ﻻ ﺑﻘﺎﻳﺎ ﻛﺮﺑﻮﻥ ‪ -‬ﻻ ﻳﻮﺟﺪ ﻗﻠﻢ ﺩﻭﺍﺭ ‪ -‬ﻻ ﻗﻮﺱ ﻛﻬﺮﺑﺎﺉﻲ‬ ‫ ‬ ‫‪-‬ﺗﺸﻐﻴﻞ ﺑﺪﻭﻥ ﺭﺍﺉﺤﺔ ‪ -‬ﻻ ﻳﻮﺟﺪ ﻭﺭﻕ ﻣﺤﺘﺮﻕ‬ ‫ﻣﻨﻄﻘﺔﻋﺮﺽ ﻛﺒﻴﺮﺓ ﻣﻊ ﻧﺎﻓﺬﺓ ﻣﻨﺰﻟﻘﺔ‬ ‫ ‬ ‫ﻣﺨﻄﻂﻛﺒﻴﺮ ‪ -‬ﺩﻗﺔ ﻋﺎﻟﻴﺔ‬ ‫ ‬ ‫ﺍﻟﻮﺭﻗﺔﺍﻟﻔﺎﺭﻏﺔ ﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻦ ﻟﻮﻥ ﺃﺳﻮﺩ ﻋﺎﻟﻲ ﺍﻟﺘﺒﺎﻳﻦ ﻋﻠﻰ ﺍﻷﺑﻴﺾ‬ ‫ ‬ ‫ﻣﺤﻤﻮﻝﻭﺧﻔﻴﻒ ﺍﻟﻮﺯﻥ ﻟﺘﺸﻐﻴﻞ ﺍﻟﻘﻮﺍﺭﺏ ﺍﻟﺼﻐﻴﺮﺓ‬ ‫ ‬ ‫ﻳﺘﻢﺍﻟﺘﺤﻜﻢ ﺑﻪ ﺑﻮﺍﺳﻄﺔ ﺍﻟﻤﻌﺎﻟﺞ ﺍﻟﺪﻗﻴﻖ‬ ‫ ‬ ‫ﺍﻟﻤﻘﻴﺎﺱﺍﻟﻤﺤﺪﺩ ﻫﻮ ﺍﻟﻤﻘﻴﺎﺱ ﺍﻟﻮﺣﻴﺪ ﺍﻟﻤﻄﺒﻮﻉ‬ ‫ ‬ ‫ﺗﺸﻐﻴﻞﺑﺎﻷﻗﺪﺍﻡ ﺃﻭ ﺍﻷﻣﺘﺎﺭ ‪ -‬ﻣﻔﺘﺎﺡ ﻗﺎﺑﻞ ﻟﻠﺘﺤﺪﻳﺪ‬ ‫ ‬ ‫ﺇﻋﺪﺍﺩﺍﺕﻋﺠﻠﺔ ﺍﻹﺑﻬﺎﻡ ﻟﺴﺮﻋﺔ ﺍﻟﺼﻮﺕ ﻭﺍﻟﻤﺪ ﻭﺍﻟﺠﺰﺭ‬ ‫ ‬ ‫ﻳﻈﻬﺮﺷﺮﺡ ﺟﻤﻴﻊ ﺍﻟﻤﻌﻠﻤﺎﺕ ﻓﻲ ﺍﻟﺘﺴﺠﻴﻼﺕ ﻓﻲ ﻫﺎﻣﺶ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﻭﺍﻟﻤﺪ ﻭﺍﻟﺠﺰﺭ‬ ‫ ‬ ‫ﻭﺍﻟﺤﺪﺙﻭﺍﻟﻮﻗﺖ ﻭﻃﺮﻳﻘﺔ ﺍﻟﺘﺸﻐﻴﻞ‬ ‫ﻳﻘﻠﻞ‪) TVG‬ﻣﻜﺴﺐ ﻣﺘﻐﻴﺮ ﺍﻟﻮﻗﺖ( ﻣﻦ ﺗﻌﺪﻳﻼﺕ ﺍﻟﻤﻜﺴﺐ‬ ‫ ‬ ‫ﻣﺤﻮﻝﺭﻗﻤﻲ ﺩﺍﺧﻠﻲ ﻟﻠﺘﺤﻜﻢ ﻓﻲ ﺍﻟﻌﻤﻖ‬ ‫ ‬ ‫ﻻﻳﻠﺰﻡ ﺇﺟﺮﺍء ﺃﻱ ﺗﻌﺪﻳﻼﺕ ﻋﻠﻰ ﺧﻂ ﺍﻟﺼﻔﺮ ﺃﻭ ﺧﻂ ﺍﻟﻘﻴﺎﺱ‬ ‫ ‬ ‫ﻭﺍﺟﻬﺔﺗﻌﻮﻳﺾ ﺍﻟﺤﺮﻛﺔ‬ ‫ ‬ ‫)‪ (2‬ﺟﻬﺎﺯ ﻗﻴﺎﺱ ﺍﻟﺼﺪﻯ ﻃﺮﺍﺯ ‪ 320M‬ﺃﻭ ‪ 320M/P‬ﻣﻦ ﺷﺮﻛﺔ ‪.Knudsen Engineering Limited‬ﺍﻟﻄﺮﺍﺯﺍﻥ ‪ 320M‬ﺃﻭ ‪320‬‬ ‫ﺗﻌُﺪﺃﺟﻬﺰﺓ ﺍﻟﺘﺴﺠﻴﻞ ‪ M/P‬ﺃﺟﻬﺰﺓ ﺗﺴﺠﻴﻞ ﺫﺍﺕ ﺗﺮﺩﺩ ﻭﺍﺣﺪ ﺃﻭ ﺗﺮﺩﺩﻳﻦ‪.‬ﻭﺑﺎﺳﺘﺨﺪﺍﻡ ﻗﻨﺎﺓ ﺍﻟﺘﺮﺩﺩ ﺍﻟﻌﺎﻟﻲ ﺃﻭ ﺍﻟﻤﻨﺨﻔﺾ ﺃﻭ‬ ‫ﻛﻠﻴﻬﻤﺎﻓﻲ ﻧﻔﺲ ﺍﻟﻮﻗﺖ‪ ،‬ﺗﻨﺘﺞ ﺃﺟﻬﺰﺓ ‪ 320M‬ﻭ‪ M/P‬ﺗﺴﺠﻴﻼ ًﻋﺎﻟﻲ ﺍﻟﺪﻗﺔ ﻳﺼﻮﺭ ﺑﺪﻗﺔ ﻣﻘﺎﻃﻊ ﺍﻟﻘﺎﻉ ﻭﻃﺒﻘﺎﺕ ﺍﻟﺮﻭﺍﺳﺐ‬ ‫ﺑﺪﺭﺟﺎﺕ‪ 32‬ﻣﻦ ﺍﻟﻠﻮﻥ ﺍﻟﺮﻣﺎﺩﻱ‪.‬ﺗﺴﺘﺨﺪﻡ ﺍﻟﻄﺎﺑﻌﺔ ﺍﻟﺤﺮﺍﺭﻳﺔ ﻓﻴﻠﻤﺎً ﺑﻼﺳﺘﻴﻜﻴﺎً ﻣﻘﺎﺱ ‪ 8.5‬ﺑﻮﺻﺔ ﻟﺘﺴﺠﻴﻼﺕ ﺃﺭﺷﻴﻔﻴﺔ‬ ‫ﺩﺍﺉﻤﺔﻭﻋﺎﻟﻴﺔ ﺍﻟﺠﻮﺩﺓ‪.‬ﺗﺘﻢ ﻃﺒﺎﻋﺔ ﺷﺒﻜﺔ ﺍﻟﻌﻤﻖ ﺍﻟﻤﻮﺿﺤﺔ ﺑﺘﻈﻠﻴﻞ ﻋﻜﺴﻲ ﻣﻦ ﺃﺟﻞ ﺍﻟﻮﺿﻮﺡ‪.‬‬ ‫ﻳﺘﻢﻋﺮﺽ ﺃﻋﻤﺎﻕ ﺍﻟﻤﻴﺎﻩ ﺍﻟﺮﻗﻤﻴﺔ ﻋﻠﻰ ﺷﺎﺷﺘﻴﻦ ‪ LCD‬ﻛﺒﻴﺮﺗﻴﻦ ﻣﻜﻮﻧﺘﻴﻦ ﻣﻦ ‪ 4‬ﺃﺭﻗﺎﻡ‪ ،‬ﻭﻳﻤﻜﻦ ﺭﺅﻳﺘﻬﺎ ﻓﻲ ﺿﻮء ﺍﻟﺸﻤﺲ‬ ‫ ‬ ‫ﺍﻟﻤﺒﺎﺷﺮﻭﺇﺿﺎءﺓ ﺧﻠﻔﻴﺔ ﻟﻠﻌﻤﻞ ﻟﻴﻼ‪ ً.‬ﺗﺘﻮﻓﺮ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻤﻖ ﺍﻟﺘﺴﻠﺴﻠﻴﺔ ‪ RS232‬ﺑﺎﺳﺘﻤﺮﺍﺭ ﺑﺘﻨﺴﻴﻖ ‪ NMEA‬ﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ‬ ‫ﺗﻨﺴﻴﻘﺎﺕﺳﻠﺴﻠﺔ ﻣﺤﺪﺩﺓ ﻣﻦ ﻗﺒﻞ ﺍﻟﻤﺴﺘﺨﺪﻡ‪ ،‬ﻭﻓﻲ ﺗﻨﺴﻴﻘﺎﺕ ﻣﺤﺪﺩﺓ ﺑﺎﻟﻮﻗﺖ ﻭﺍﻟﻤﻮﻗﻊ ﻳﻤﻜﻦ ﻟﻠﻤﺸﻐﻞ ﺗﺤﺪﻳﺪﻫﺎ‪.‬‬ ‫ﺗﻮﻓﺮﺷﺎﺷﺔ ﻗﺎﺉﻤﺔ ‪ LCD‬ﻣﻊ ﺍﻟﺘﺤﻜﻢ ﺑﺰﺭﻳﻦ ﺇﻣﻜﺎﻧﻴﺔ ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﻣﻌﻠﻤﺎﺕ ﻣﺜﻞ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ‪،‬‬ ‫ ‬ ‫ﻭﺍﻟﻤﺴﻮﺩﺓ‪،‬ﻭﻣﺴﺢ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﻭﺗﻌﻴﻴﻦ ﺍﻟﻤﻨﻔﺬ ﺍﻟﺘﺴﻠﺴﻠﻲ‪ ،‬ﻭﺇﻋﺪﺍﺩ ﺍﻟﻮﻗﺖ ﻭﺍﻟﺘﺎﺭﻳﺦ‪ ،‬ﻭﻣﻴﺰﺍﺕ ﺍﻻﺧﺘﺒﺎﺭ‪.‬‬ ‫ﻳﺘﻢﺍﻻﺣﺘﻔﺎﻅ ﺑﺠﻤﻴﻊ ﺍﻹﻋﺪﺍﺩﺍﺕ ﻓﻲ ﺫﺍﻛﺮﺓ ﻏﻴﺮ ﻣﺘﻄﺎﻳﺮﺓ ﻭﻳﺘﻢ ﺍﺳﺘﺮﺟﺎﻋﻬﺎ ﻋﻨﺪ ﺗﺸﻐﻴﻞ ﺍﻟﺠﻬﺎﺯ‪.‬‬ ‫ﺗﺪﻋﻢﺛﻼﺛﺔ ﻣﻨﺎﻓﺬ ‪ RS 232‬ﺍﻻﺗﺼﺎﻝ ﺑﺄﺟﻬﺰﺓ ﺍﻟﻜﻤﺒﻴﻮﺗﺮ ﺍﻟﺸﺨﺼﻴﺔ ﻭﺃﺟﻬﺰﺓ ﺍﻹﺩﺧﺎﻝ ﻭﺍﻹﺧﺮﺍﺝ ‪NMEA‬‬ ‫ ‬ ‫ﻭﺃﺟﻬﺰﺓﺍﺳﺘﻘﺒﺎﻝ ‪ GPS‬ﻭﺃﺟﻬﺰﺓ ﺍﺳﺘﺸﻌﺎﺭ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ ﻭﺃﺟﻬﺰﺓ ﺍﺳﺘﺸﻌﺎﺭ ﺍﻻﺭﺗﻔﺎﻉ ﻭﺷﺎﺷﺔ ﺍﻟﻌﻤﻖ ﻋﻦ ﺑﻌﺪ‬ ‫ﻭﻣﺴﺠﻼﺕﺑﻴﺎﻧﺎﺕ ﺍﻟﻤﺴﺢ‪.‬ﻳﺴﻤﺢ ﺍﻟﺘﺮﻗﻴﺔ ﺍﻻﺧﺘﻴﺎﺭﻳﺔ ﺑﺘﺸﻐﻴﻞ ‪ 320M‬ﺃﻭ ‪M/P 320‬‬ ‫‪9-9‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﻋﻦﺑﻌﺪ ﻣﻦ ﺧﻼﻝ ﻭﺍﺟﻬﺔ ‪ SCSI‬ﺍﻟﻤﺪﻣﺠﺔ ﻭﺑﺮﻧﺎﻣﺞ ﺗﻄﺒﻴﻘﺎﺕ ‪.Windows‬ﺗﻮﻓﺮ ﻭﺍﺟﻬﺔ ‪ SCSI‬ﻫﺬﻩ ﺍﻟﻘﺪﺭﺓ‬ ‫ﻋﻠﻰﻧﻘﻞ ﺑﻴﺎﻧﺎﺕ ﺍﻟﺼﻮﺭﺓ ﺑﺪﺭﺟﺎﺕ ﺍﻟﺮﻣﺎﺩﻱ ﺑﺎﻟﻜﺎﻣﻞ )‪ 32‬ﺩﺭﺟﺔ ﺭﻣﺎﺩﻳﺔ( ﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ ﺍﻟﻤﻠﻔﺎﺕ ﺍﻟﺜﻨﺎﺉﻴﺔ‬ ‫ﺇﻟﻰﺍﻟﻘﺮﺹ ﻟﻸﺭﺷﻔﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺒﻞ‪.‬‬ ‫ﺍﻟﻤﻮﺍﺻﻔﺎﺕﺍﻟﻔﻨﻴﺔ )ﻣﺤﺪﺩﺓ(‪.‬ﺍﻟﺘﺮﺩﺩﺍﺕ‪ :‬ﻣﻦ ‪ 3.5‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﺇﻟﻰ ‪ 250‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ )‪،33 ،30 ،28 ،26 ،24 ،12‬‬ ‫ ‬ ‫‪ ،208 ،200 ،150 ،120 ،100 ،50 ،41 ،40،38‬ﻭ‪ 210‬ﻛﻴﻠﻮﻫﺮﺗﺰ(‪.‬ﺍﻟﻮﺣﺪﺍﺕ‪ :‬ﻣﺘﺮ‪ ،‬ﻗﺪﻡ‪ ،‬ﺃﻭ ﻗﺎﻣﺔ‪.‬ﺍﻟﻮﺯﻥ‪:‬‬ ‫‪40‬ﺭﻃﻼ‪ ً.‬ﺍﻟﻄﺎﻗﺔ‪ 12 :‬ﺃﻭ ‪ 24‬ﻓﻮﻟﺖ ﺗﻴﺎﺭ ﻣﺴﺘﻤﺮ ﺍﺳﻤﻴﺎً‪.‬ﺍﻟﺪﻗﺔ‪ 1 :‬ﺳﻢ ﻋﻠﻰ ﻣﺪﻯ ‪ 100-0‬ﻣﺘﺮ‪.‬‬ ‫ﺗﻮﻓﺮﺳﻠﺴﻠﺔ ‪ 320M‬ﺇﻣﻜﺎﻧﻴﺔ ﻧﻄﺎﻕ ﺍﻟﻌﻤﻖ ﻣﻦ ﻋﻤﻖ ﺿﺤﻞ ﻟﻠﻐﺎﻳﺔ )‪ 12‬ﺑﻮﺻﺔ ﺃﻭ ﺃﻗﻞ( ﺇﻟﻰ ﻋﻤﻖ ﺍﻟﻤﺤﻴﻂ‬ ‫ ‬ ‫ﺍﻟﻜﺎﻣﻞ‪،‬ﺍﻋﺘﻤﺎﺩﺍً ﻋﻠﻰ ﺧﻴﺎﺭﺍﺕ ﺍﻟﺘﺮﺩﺩ‪/‬ﺍﻟﻤﺤﻮﻝ‪.‬‬ ‫)‪ (3‬ﺷﺮﻛﺔ ‪.Odom Hydrographic Systems, Inc‬ﻃﺮﺍﺯ ‪.Echotrac DF3200 MKII‬ﻃﺮﺍﺯ ‪Echotrac MKII‬‬ ‫ﻳﺴﺘﺨﺪﻡﺟﻬﺎﺯ ﺍﻟﺘﺴﺠﻴﻞ‪/‬ﺍﻟﻤﺤﻮﻝ ﺍﻟﺮﻗﻤﻲ‪/‬ﺟﻬﺎﺯ ﺍﻹﺭﺳﺎﻝ ﻭﺍﻻﺳﺘﻘﺒﺎﻝ ﺩﻭﺍﺉﺮ ﺭﻗﻤﻴﺔ ﻭﺗﻨﺎﻇﺮﻳﺔ ﻣﺘﻜﺎﻣﻠﺔ ﻟﻠﻐﺎﻳﺔ‪ ،‬ﻭﺗﻜﻨﻮﻟﻮﺟﻴﺎ‬ ‫ﺍﻟﻌﺮﺽ‪،‬ﻭﺗﻘﻨﻴﺎﺕ ﺍﻟﻄﺒﺎﻋﺔ ﺍﻟﺤﺮﺍﺭﻳﺔ‪.‬ﻳﺘﻢ ﺗﺤﻘﻴﻖ ﺍﺳﺘﺠﺎﺑﺔ ﺍﻟﻨﻈﺎﻡ ﻣﻦ ﺧﻼﻝ ﺍﺳﺘﺨﺪﺍﻡ ﺗﻘﻨﻴﺎﺕ ﻣﺜﻞ ﻣﻌﺎﻟﺠﺔ ﺍﻹﺷﺎﺭﺍﺕ‬ ‫ﺍﻟﺮﻗﻤﻴﺔ‪،‬ﻭﻣﺸﺎﺭﻛﺔ ﺍﻟﻤﻬﺎﻡ‪ ،‬ﻭﻣﻌﺎﻟﺠﺔ ﺍﻷﺣﺪﺍﺙ ﻏﻴﺮ ﺍﻟﻤﺘﺰﺍﻣﻨﺔ‪ ،‬ﻭﺗﺨﺰﻳﻦ ﺍﻟﻤﺴﺢ ﺍﻟﻤﺘﻌﺪﺩ‪.‬‬ ‫ﺗﺸﻐﻴﻞﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﺰﺩﻭﺝ‪ :‬ﻳﻤﻜﻦ ﺍﺧﺘﻴﺎﺭ ﺗﺮﺩﺩﻳﻦ ﻣﻦ ﺑﻴﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ‪ :‬ﺍﻟﻤﻨﺨﻔﺾ )‪ 12‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﺇﻟﻰ ‪ 50‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ(‪،‬‬ ‫ ‬ ‫ﺍﻟﻌﺎﻟﻲ)‪ 100‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﺇﻟﻰ ‪ 1‬ﻣﻴﺠﺎ ﻫﺮﺗﺰ(‪ ،‬ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﻘﻴﺎﺳﻴﺔ ﻫﻲ ‪ 24‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﻭ‪ 200‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ‪.‬‬ ‫ﺁﻟﻴﺔﺍﻟﻄﺎﺑﻌﺔ‪ :‬ﺗﻘﻮﻡ ﺭﺃﺱ ﺍﻟﻄﺒﺎﻋﺔ ﺍﻟﺤﺮﺍﺭﻳﺔ ﺫﺍﺕ ﺍﻷﻏﺸﻴﺔ ﺍﻟﺮﻗﻴﻘﺔ ﻋﺎﻟﻴﺔ ﺍﻟﺪﻗﺔ )ﻋﺮﺽ ‪ 216‬ﻣﻢ )‪ 8.5‬ﺑﻮﺻﺔ(‪ 8 ،‬ﻧﻘﺎﻁ ﻟﻜﻞ ﻣﻢ )‬ ‫ ‬ ‫‪/203‬ﺑﻮﺻﺔ(( ﺑﻄﺒﺎﻋﺔ ﻣﺎ ﻳﺼﻞ ﺇﻟﻰ ‪ 16‬ﻇﻼً ﻣﻦ ﺍﻟﻠﻮﻥ ﺍﻟﺮﻣﺎﺩﻱ‪.‬‬ ‫ﺍﻟﺸﺎﺷﺔ‪:‬ﻭﺣﺪﺓ ‪ LCD‬ﺫﺍﺕ ﻣﺼﻔﻮﻓﺔ ﻧﻘﻄﻴﺔ ﻣﻠﺘﻮﻳﺔ ﻓﺎﺉﻘﺔ ﺍﻟﺪﻗﺔ )‪ 320 × 200) (FSTN‬ﺑﻜﺴﻞ‪ ،‬ﻣﺴﺎﻓﺔ‬ ‫ ‬ ‫ﺍﻟﻨﻘﻄﺔ‪ 0.38‬ﻣﻢ × ‪ 0.52‬ﻣﻢ(‪ ،‬ﻗﻴﺎﺱ ﻗﻄﺮﻱ ‪ 6‬ﺑﻮﺻﺎﺕ )‪ 156.4‬ﻣﻢ(‪ ،‬ﻭﺣﺪﺓ ﺗﺤﻜﻢ ﻣﺪﻣﺠﺔ ﻭﺇﺿﺎءﺓ ﺧﻠﻔﻴﺔ‬ ‫ﻓﻠﻮﺭﻳﺔ)‪.(CFL‬ﺗﺘﻤﺘﻊ ﺍﻟﺸﺎﺷﺔ ﺍﻟﺒﻴﻀﺎء ﺍﻟﻮﺭﻗﻴﺔ ﺑﺎﻟﻘﺪﺭﺓ ﻋﻠﻰ ﺍﻟﺮﺅﻳﺔ ﻓﻲ ﺟﻤﻴﻊ ﻇﺮﻭﻑ ﺍﻹﺿﺎءﺓ ‪ -‬ﻣﻦ‬ ‫ﺍﻟﺸﻤﺲﺍﻟﺴﺎﻃﻌﺔ ﺇﻟﻰ ﻏﺮﻓﺔ ﺍﻟﻘﻴﺎﺩﺓ ﺍﻟﻤﻈﻠﻤﺔ‪.‬‬ ‫ﺍﻟﺘﺸﻐﻴﻞﻋﻦ ﺑﻌﺪ‪ :‬ﻳﻤﻜﻦ ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﻛﺎﻓﺔ ﻋﻨﺎﺻﺮ ﺍﻟﺘﺤﻜﻢ ﻓﻲ ﺍﻟﻨﻈﺎﻡ ﻣﻦ ﺧﻼﻝ ﺟﻬﺎﺯ ﻛﻤﺒﻴﻮﺗﺮ ﻋﻦ ﺑﻌﺪ ﻋﺒﺮ ﺃﺣﺪ‬ ‫ ‬ ‫ﺍﻟﻤﻨﺎﻓﺬﺍﻟﺘﺴﻠﺴﻠﻴﺔ ﺍﻟﺜﻼﺛﺔ‪.‬ﻳﺘﻔﺎﻋﻞ ﺟﻬﺎﺯ ﻗﻴﺎﺱ ﺍﻟﺼﻮﺕ ﺑﺸﻜﻞ ﻛﺎﻣﻞ ﻣﻊ ﺃﻧﻈﻤﺔ ﺍﻟﺤﺮﻛﺔ ﻭﺍﻟﺘﺤﺪﻳﺪ ﻭﻳﻮﻓﺮ ﺇﻣﻜﺎﻧﻴﺔ‬ ‫ﺇﺩﺧﺎﻝﻏﻴﺮ ﻣﺤﺪﻭﺩﺓ ﻟﻠﺘﻌﻠﻴﻘﺎﺕ ﺍﻟﺘﻮﺿﻴﺤﻴﺔ ﻋﻠﻰ ﺍﻷﺣﺪﺍﺙ ﻭﺍﻟﺮﺅﻭﺱ‪ ،‬ﻭﺍﻟﺘﻲ ﻳﺘﻢ ﺇﻧﺸﺎﺅﻫﺎ ﺇﻣﺎ ﺩﺍﺧﻠﻴﺎً ﺃﻭ ﺑﻮﺍﺳﻄﺔ‬ ‫ﺍﻟﻜﻤﺒﻴﻮﺗﺮ‪.‬‬ ‫ﻟﻮﺣﺔﺍﻟﻤﻔﺎﺗﻴﺢ‪ :‬ﺗﺘﻤﻴﺰ ﺍﻟﻮﺣﺪﺓ ﺍﻟﻤﻐﻠﻘﺔ ‪ Nema 12‬ﺫﺍﺕ ﺍﻟـ ‪ 16‬ﻣﻔﺘﺎﺣﺎً ﺑﺤﺮﻛﺔ ﻛﺎﻣﻠﺔ ﻭﺷﻌﻮﺭ ﺑﺎﻟﻠﻤﺲ‪.‬ﻳﺴﺘﺨﺪﻡ‬ ‫ ‬ ‫ﺍﻟﻤﺸﻐﻞﻟﻮﺣﺔ ﺍﻟﻤﻔﺎﺗﻴﺢ ﻹﺩﺧﺎﻝ ﺍﻟﻤﻌﻠﻤﺎﺕ ﺑﺸﻜﻞ ﻣﺒﺎﺷﺮ ﻭﺍﻟﺘﺤﻜﻢ ﺍﻟﻮﻇﻴﻔﻲ ﻓﻲ ﺍﻟﻮﺣﺪﺓ ﻣﻦ ﺍﻟﻠﻮﺣﺔ ﺍﻷﻣﺎﻣﻴﺔ‪.‬‬ ‫ﺍﻻﺳﺘﻘﺒﺎﻝ‪:‬ﻳﺸﺘﻤﻞ ﺍﻟﻨﻈﺎﻡ ﻋﻠﻰ ﻛﻞ ﻣﻦ ‪ TVG‬ﻭ‪.AGC‬ﺍﻟﺤﺴﺎﺳﻴﺔ ﻭ‪ AGC‬ﻣﺘﻐﻴﺮﺓ ﺑﺎﺳﺘﻤﺮﺍﺭ ﺑﻮﺍﺳﻄﺔ‬ ‫ ‬ ‫ﻣﻘﺎﻳﻴﺲﺍﻟﺠﻬﺪ ﺍﻟﻤﺜﺒﺘﺔ ﻋﻠﻰ ﺍﻟﻠﻮﺣﺔ ﺍﻷﻣﺎﻣﻴﺔ‪.‬ﻳﻤﻜﻦ ﺗﻌﻄﻴﻞ ﺍﻟﺘﺤﻜﻢ ﺍﻟﺘﻠﻘﺎﺉﻲ ﻓﻲ ﺍﻟﻤﻜﺴﺐ ﻋﻦ ﻃﺮﻳﻖ‬ ‫ﺿﺒﻂﻣﻘﻴﺎﺱ ﺍﻟﺠﻬﺪ ﺍﻟﻤﺜﺒﺖ ﻋﻠﻰ ﺍﻟﻠﻮﺣﺔ ﺍﻷﻣﺎﻣﻴﺔ ﻋﻠﻰ ﻣﻮﺿﻊ ﺍﻟﻜﺸﻒ ﺍﻷﺩﻧﻰ‪.‬ﻳﻤﻜﻦ ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﻣﻨﺤﻨﻰ‬ ‫‪ TVG‬ﺩﺍﺧﻠﻴﺎً‪.‬‬ ‫ﺍﻹﺭﺳﺎﻝ‪:‬ﻳﺘﻢ ﺗﺼﻨﻴﻊ ﺗﺮﺩﺩﺍﺕ ﺍﻹﺭﺳﺎﻝ ﺭﻗﻤﻴﺎً ﻭﺗﺴﺘﻨﺪ ﺇﻟﻰ ﺧﺼﺎﺉﺺ ﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﺴﺘﻘﺮﺓ ﻟﻤﺬﺑﺬﺏ ﺍﻟﺴﺎﻋﺔ‬ ‫ ‬ ‫ﺍﻟﺬﻱﻳﺘﻢ ﺍﻟﺘﺤﻜﻢ ﻓﻴﻪ ﺑﺎﻟﺒﻠﻮﺭﺓ‪.‬ﻳﻤﻜﻦ ﺗﻌﺪﻳﻞ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻤﻨﻘﻮﻟﺔ ﻟﻜﻞ ﻣﻦ ﺍﻟﻘﻨﻮﺍﺕ ﺍﻟﻌﺎﻟﻴﺔ ﻭﺍﻟﻤﻨﺨﻔﻀﺔ ﺑﺸﻜﻞ‬ ‫ﻓﺮﺩﻱﻣﻦ ﺧﻼﻝ ﻋﻨﺎﺻﺮ ﺍﻟﺘﺤﻜﻢ ﺍﻟﻤﺜﺒﺘﺔ ﻓﻲ ﺍﻟﻠﻮﺣﺔ ﺍﻷﻣﺎﻣﻴﺔ‪.‬ﻳﻤﻜﻦ ﺗﻌﺪﻳﻞ ﺍﻟﻄﺎﻗﺔ ﻣﻦ ﺍﻟﺤﺪ ﺍﻷﺩﻧﻰ ﺍﻟﺬﻱ ﻳﻘﻞ‬ ‫ﻋﻦ‪ 20‬ﻭﺍﺕ ﻓﻲ ﺗﻄﺒﻴﻘﺎﺕ ﺍﻟﻤﻴﺎﻩ ﺍﻟﻀﺤﻠﺔ ﻋﺎﻟﻴﺔ ﺍﻟﺘﺮﺩﺩ ﺇﻟﻰ ﺃﻛﺜﺮ ﻣﻦ ‪ 1600‬ﻭﺍﺕ ﻓﻲ ﺇﺻﺪﺍﺭﺍﺕ ﺍﻟﻤﻴﺎﻩ‬ ‫ﺍﻟﻌﻤﻴﻘﺔﺫﺍﺕ ﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﻨﺨﻔﺾ‪.‬ﻋﺮﺽ ﻧﺒﻀﺔ ﺍﻹﺭﺳﺎﻝ ﻣﺘﻐﻴﺮ ﺇﻣﺎ ﺗﻠﻘﺎﺉﻴﺎً )ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﻠﻴﺔ ﺗﻌﺘﻤﺪ ﻋﻠﻰ‬ ‫ﺍﻟﺘﺮﺩﺩﻭﺍﻟﻌﻤﻖ( ﺃﻭ ﻳﺪﻭﻳﺎً ﻋﻦ ﻃﺮﻳﻖ ﺇﺩﺧﺎﻝ ﻟﻮﺣﺔ ﺍﻟﻤﻔﺎﺗﻴﺢ‪.‬‬ ‫)‪ (4‬ﺷﺮﻛﺔ ‪.Odom Hydrographic Systems, Inc. HYDROTRAC‬ﺟﻬﺎﺯ ‪ Hydrotrac‬ﻋﺒﺎﺭﺓ ﻋﻦ ﺟﻬﺎﺯ ﺗﺮﺩﺩ ﻭﺍﺣﺪ‪،‬‬ ‫ﻣﺴﺠﻞ‪/‬ﻣﺤﻮﻝ ﺭﻗﻤﻲ‪/‬ﺟﻬﺎﺯ ﺇﺭﺳﺎﻝ ﻭﺍﺳﺘﻘﺒﺎﻝ ﻭﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺟﻬﺎﺯ ﺳﺒﺮ ﺭﻗﻤﻲ ﻭﺗﻨﺎﻇﺮﻱ ﻣﺘﻜﺎﻣﻞ ﻟﻠﻐﺎﻳﺔ ﻣﻌﺒﺄ ﻓﻲ‬ ‫ﻏﻼﻑﺻﻐﻴﺮ ﻣﻘﺎﻭﻡ ﻟﻠﻤﺎء‪.‬ﺍﻟﻄﺎﺑﻌﺔ ﺍﻟﺤﺮﺍﺭﻳﺔ ﻣﻄﺎﺑﻘﺔ ﻟﺘﻠﻚ ﺍﻟﻤﺴﺘﺨﺪﻣﺔ ﻓﻲ ﺟﻬﺎﺯ ﺍﻟﺴﺒﺮ ‪.Echotrac MKII‬‬ ‫‪9-10‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﻳﺘﻢﻧﻘﻞ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﻟﻤﻴﺰﺍﺕ ﺍﻟﻤﻮﺟﻮﺩﺓ ﻓﻲ ‪ Echotrac‬ﺇﻟﻰ ‪ Hydrotrac‬ﺑﻤﺎ ﻓﻲ ﺫﻟﻚ؛ ﻣﻌﺎﻟﺠﺔ ﺍﻹﺷﺎﺭﺍﺕ ﺍﻟﺮﻗﻤﻴﺔ‪،‬‬ ‫ﻭﻣﺸﺎﺭﻛﺔﺍﻟﻤﻬﺎﻡ‪ ،‬ﻭﻣﻌﺎﻟﺠﺔ ﺍﻷﺣﺪﺍﺙ ﻏﻴﺮ ﺍﻟﻤﺘﺰﺍﻣﻨﺔ‪ ،‬ﻭﺗﺨﺰﻳﻦ ﺍﻟﻤﺴﺢ ﺍﻟﻤﺘﻌﺪﺩ‪.‬‬ ‫ﻋﻤﻠﻴﺔﺗﺮﺩﺩ ﻭﺍﺣﺪ‪ :‬ﻳﺴﻤﺢ ﺟﻬﺎﺯ ‪ Hydrotrac‬ﺫﻭ ﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﺮﻥ ﺑﺎﻻﺗﺼﺎﻝ ﺑﻤﺠﻤﻮﻋﺔ ﻣﺘﻨﻮﻋﺔ ﻣﻦ ﺍﻟﻤﺤﻮﻻﺕ‬ ‫ ‬ ‫ﺍﻟﺘﻲﺗﺘﺮﺍﻭﺡ ﺑﻴﻦ ‪ 33‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ ﻭ‪ 200‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ‪.‬‬ ‫ﺁﻟﻴﺔﺍﻟﻄﺎﺑﻌﺔ‪ :‬ﺗﻄﺒﻊ ﺭﺃﺱ ﺍﻟﻄﺒﺎﻋﺔ ﺍﻟﺤﺮﺍﺭﻳﺔ ﺫﺍﺕ ﺍﻟﻄﺒﻘﺔ ﺍﻟﺮﻗﻴﻘﺔ ﻋﺎﻟﻴﺔ ﺍﻟﺪﻗﺔ )ﻋﺮﺽ ‪ 216‬ﻣﻢ )‪ 8.5‬ﺑﻮﺻﺔ(‪ 8 ،‬ﻧﻘﺎﻁ ﻟﻜﻞ‬ ‫ ‬ ‫ﻣﻢ)‪/203‬ﺑﻮﺻﺔ( ﻣﺎ ﻳﺼﻞ ﺇﻟﻰ ‪ 16‬ﻇﻼً ﺭﻣﺎﺩﻳﺎً‪.‬ﺗﺘﻢ ﻃﺒﺎﻋﺔ ﺗﻌﻠﻴﻤﺎﺕ ﺍﻟﻤﺴﺎﻋﺪﺓ ﻋﻠﻰ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﻭﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ‬ ‫ﻭﺭﻕﺍﻟﻔﺎﻛﺲ ﺍﻟﻘﻴﺎﺳﻲ ﻓﻲ ﺣﺎﻻﺕ ﺍﻟﻄﻮﺍﺭﺉ‪.‬‬ ‫ﺍﻟﻌﺮﺽ‪:‬ﻭﺣﺪﺓ ‪ LCD‬ﺫﺍﺕ ﻣﺼﻔﻮﻓﺔ ﻧﻘﻄﻴﺔ ﺑﺈﺿﺎءﺓ ﺧﻠﻔﻴﺔ ﻣﻊ ﻗﺎﺉﻤﺔ ﺗﻤﺮﻳﺮ ﻟﻀﺒﻂ ﺍﻟﻤﻌﻠﻤﺎﺕ ﻭﻗﺮﺍءﺓ "ﻋﻤﻖ‬ ‫ ‬ ‫" ﺍﻷﺣﺮﻑ ﺍﻟﻜﺒﻴﺮﺓ‪.‬ﻳﺘﻢ ﺗﺨﺰﻳﻦ ﺟﻤﻴﻊ ﺍﻹﻋﺪﺍﺩﺍﺕ ﻓﻲ ﺫﺍﻛﺮﺓ ﺩﺍﺧﻠﻴﺔ ﻏﻴﺮ ﻗﺎﺑﻠﺔ ﻟﻠﺘﻐﻴﻴﺮ‪.‬‬ ‫ﻟﻮﺣﺔﺍﻟﻤﻔﺎﺗﻴﺢ‪ :‬ﻟﻮﺣﺔ ﺍﻟﻤﻔﺎﺗﻴﺢ ﺍﻟﻤﺨﺘﻮﻣﺔ ﺫﺍﺕ ﺍﻟﻠﻤﺲ ﻭﺍﻟﺘﻲ ﺗﺤﺘﻮﻱ ﻋﻠﻰ ‪ 10‬ﻣﻔﺎﺗﻴﺢ ﻣﻘﺎﻭﻣﺔ ﻟﻠﻤﺎء ﻭﻳﺴﺘﺨﺪﻣﻬﺎ‬ ‫ ‬ ‫ﺍﻟﻤﺸﻐﻞﻹﺩﺧﺎﻝ ﺍﻟﻤﻌﻠﻤﺎﺕ ﺑﺸﻜﻞ ﻣﺒﺎﺷﺮ ﻭﺍﻟﺘﺤﻜﻢ ﺍﻟﻮﻇﻴﻔﻲ ﻟﻠﻮﺣﺪﺓ ﻣﻦ ﺍﻟﻠﻮﺣﺔ ﺍﻷﻣﺎﻣﻴﺔ‪.‬‬ ‫ﺍﻟﺘﺸﻐﻴﻞﻋﻦ ﺑﻌﺪ‪ :‬ﻳﻤﻜﻦ ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﻛﺎﻓﺔ ﻋﻨﺎﺻﺮ ﺍﻟﺘﺤﻜﻢ ﻓﻲ ﺍﻟﻨﻈﺎﻡ ﻋﻦ ﻃﺮﻳﻖ ﺟﻬﺎﺯ ﻛﻤﺒﻴﻮﺗﺮ ﻋﻦ ﺑﻌﺪ ﻋﺒﺮ ﺃﺣﺪ‬ ‫ ‬ ‫ﺍﻟﻤﻨﻔﺬﻳﻦﺍﻟﺘﺴﻠﺴﻠﻴﻴﻦ‪.‬ﻳﺘﻔﺎﻋﻞ ﺟﻬﺎﺯ ﻗﻴﺎﺱ ﺍﻟﺼﻮﺕ ﺑﺸﻜﻞ ﻛﺎﻣﻞ ﻣﻊ ﺃﻧﻈﻤﺔ ﺍﻟﺤﺮﻛﺔ ﻭﺗﺤﺪﻳﺪ ﺍﻟﻤﻮﺍﻗﻊ ﻛﻤﺎ ﻫﻮ‬ ‫ﻣﻮﺿﺢﻓﻲ ‪.Echotrac MKII‬‬ ‫ﺍﻻﺳﺘﻘﺒﺎﻝ‪:‬ﻳﺸﺘﻤﻞ ﺍﻟﻨﻈﺎﻡ ﻋﻠﻰ ﻋﻨﺎﺻﺮ ﺍﻟﺘﺤﻜﻢ ﻓﻲ ﺍﻟﺤﺴﺎﺳﻴﺔ ﻭﻗﻮﺓ ﺍﻹﺭﺳﺎﻝ ﻋﻠﻰ ﺍﻟﻠﻮﺣﺔ ﺍﻷﻣﺎﻣﻴﺔ‪.‬‬ ‫ ‬ ‫ﺍﻹﺭﺳﺎﻝ‪:‬ﻳﺘﻢ ﺗﺼﻨﻴﻊ ﺗﺮﺩﺩﺍﺕ ﺍﻹﺭﺳﺎﻝ ﺭﻗﻤﻴﺎً ﻭﺗﻌﺘﻤﺪ ﻋﻠﻰ ﺧﺼﺎﺉﺺ ﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﺴﺘﻘﺮﺓ ﻟﻤﺬﺑﺬﺏ ﺍﻟﺴﺎﻋﺔ‬ ‫ ‬ ‫ﺍﻟﺬﻱﻳﺘﻢ ﺍﻟﺘﺤﻜﻢ ﻓﻴﻪ ﺑﻮﺍﺳﻄﺔ ﺍﻟﺒﻠﻮﺭﺓ‪.‬‬ ‫ﺗﺮﻗﻴﺎﺕﺍﻟﻨﻈﺎﻡ‪ :‬ﻳﺘﻢ ﺍﻟﺘﺜﺒﻴﺖ ﻋﻦ ﺑﻌﺪ ﻓﻲ ﺫﺍﻛﺮﺓ ﺍﻟﻔﻼﺵ ﻋﺒﺮ ﺍﻹﻧﺘﺮﻧﺖ‪.‬‬ ‫ ‬ ‫ﻣﺴﺘﻘﺒﻞ‪) :DGPS‬ﺍﺧﺘﻴﺎﺭﻱ( ﻣﺪﻣﺞ ﺩﺍﺧﻞ ﺍﻟﻐﻼﻑ ﺍﻟﻤﻘﺎﻭﻡ ﻟﻠﻤﺎء ﻟﺠﻬﺎﺯ ‪ ،Hydrotrac‬ﻭﻳﻮﻓﺮ ﺷﺮﺣﺎً‬ ‫ ‬ ‫ﻟﻤﺨﻄﻂ‪ XYZ‬ﻭﺳﻠﺴﻠﺔ ﺇﺧﺮﺍﺝ ‪ NMEA‬ﻣﺠﻤﻌﺔ‪.‬‬ ‫)‪ (5‬ﺷﺮﻛﺔ ‪.Odom Hydrographic Systems, Inc‬ﻃﺮﺍﺯ ‪.Echotrac DF3200 MKIII‬ﻃﺮﺍﺯ ‪Echotrac MKIII‬‬ ‫ﻳﺴﺘﺨﺪﻡﺟﻬﺎﺯ ﺍﻟﺘﺴﺠﻴﻞ‪/‬ﺍﻟﻤﺤﻮﻝ ﺍﻟﺮﻗﻤﻲ‪/‬ﺟﻬﺎﺯ ﺍﻹﺭﺳﺎﻝ ﻭﺍﻻﺳﺘﻘﺒﺎﻝ ﺗﻘﻨﻴﺔ ﻣﻌﺎﻟﺠﺔ ﺍﻹﺷﺎﺭﺍﺕ ﺍﻟﺮﻗﻤﻴﺔ ﺍﻟﻤﺘﻌﺪﺩﺓ ﻭ‪ RISC‬ﻟﺘﻮﻓﻴﺮ ﺟﻬﺎﺯ‬ ‫ﻗﻴﺎﺱﺗﺮﺩﺩ ﻣﺰﺩﻭﺝ ﻣﺤﻤﻮﻝ ﻳﻤﻜﻦ ﺗﻜﻮﻳﻨﻪ ﻭﻓﻘﺎً ﻟﻠﻤﻬﻤﺔ‪.‬ﻭﺑﺎﺳﺘﺨﺪﺍﻡ ﻟﻮﺣﺔ ﻣﺨﻄﻄﺎﺕ ﻗﺎﺑﻠﺔ ﻟﻠﺘﺒﺪﻳﻞ‪ ،‬ﻳﻤﻜﻦ ﻟﻠﻤﺴﺎﺡ ﺍﺧﺘﻴﺎﺭ ﺟﻬﺎﺯ‬ ‫ﺗﺴﺠﻴﻞﻣﺨﻄﻄﺎﺕ ﻭﺭﻗﻲ ﻗﻴﺎﺳﻲ ﺃﻭ ﺷﺎﺷﺔ ‪ LCD‬ﻣﻠﻮﻧﺔ ﺑﺎﻟﻜﺎﻣﻞ ﺑﺪﻭﻥ ﻭﺭﻕ‪.‬ﻭﻓﻲ ﻛﻠﺘﺎ ﺍﻟﺤﺎﻟﺘﻴﻦ‪ ،‬ﻳﺘﻢ ﺗﺨﺰﻳﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻭﺇﻋﺪﺍﺩﺍﺕ‬ ‫ﺍﻟﻤﻌﻠﻤﺎﺕﻭﺇﺩﺧﺎﻝ ﺍﻟﻤﺴﺘﺸﻌﺮ ﻭﻣﺎ ﺇﻟﻰ ﺫﻟﻚ ﻋﻠﻰ ﺑﻄﺎﻗﺔ ‪ PCMCIA‬ﻗﺎﺑﻠﺔ ﻟﻺﺯﺍﻟﺔ ﻟﺘﺸﻐﻴﻠﻬﺎ ﻻﺣﻘﺎً ﺃﻭ ﻃﺒﺎﻋﺔ ﺍﻟﻤﺨﻄﻄﺎﺕ ﻋﻠﻰ ﺟﻬﺎﺯ‬ ‫ﺍﻟﺘﺴﺠﻴﻞﺃﻭ ﻣﺒﺎﺷﺮﺓ ﻋﻠﻰ ﺟﻬﺎﺯ ﺍﻟﻜﻤﺒﻴﻮﺗﺮ‪.‬‬ ‫ﺗﺸﻐﻴﻞﺍﻟﺘﺮﺩﺩ ﺍﻟﻤﺰﺩﻭﺝ‪ :‬ﺍﻟﺘﺮﺩﺩ ﻭﺍﻟﻤﻌﺎﻭﻗﺔ ﻣﺮﻧﺎﻥ ﻟﻤﻄﺎﺑﻘﺔ ﻣﺠﻤﻮﻋﺔ ﻣﺘﻨﻮﻋﺔ ﻣﻦ ﺍﻟﻤﺤﻮﻻﺕ ﺍﻟﺘﻲ ﺗﺘﺮﺍﻭﺡ‬ ‫ ‬ ‫ﺗﺮﺩﺩﺍﺗﻬﺎﻣﻦ ‪ 24‬ﺇﻟﻰ ‪ 210‬ﻛﻴﻠﻮ ﻫﺮﺗﺰ‪.‬‬ ‫ﺁﻟﻴﺔﺍﻟﻄﺎﺑﻌﺔ‪ :‬ﺭﺃﺱ ﻃﺒﺎﻋﺔ ﺣﺮﺍﺭﻱ ﻋﺎﻟﻲ ﺍﻟﺪﻗﺔ ﻭﻗﺎﺑﻞ ﻟﻠﺘﺒﺪﻳﻞ )ﻋﺮﺽ ‪ 216‬ﻣﻢ )‪ 8.5‬ﺑﻮﺻﺔ(‪ 1600 ،‬ﻧﻘﻄﺔ‬ ‫ ‬ ‫ﻟﻜﻞﻣﺴﺢ ﺿﻮﺉﻲ‪ ،‬ﻃﺒﺎﻋﺔ ﻣﺎ ﻳﺼﻞ ﺇﻟﻰ ‪ 32‬ﻇﻼً ﺭﻣﺎﺩﻳﺎً‪.‬ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﻭﺭﻕ ﺍﻟﻔﺎﻛﺲ ﺍﻟﻘﻴﺎﺳﻲ ﻓﻲ‬ ‫ﺣﺎﻻﺕﺍﻟﻄﻮﺍﺭﺉ‪.‬‬ ‫ﺍﻟﻌﺮﺽ‪:‬ﻣﺼﻔﻮﻓﺔ ﻧﺸﻄﺔ‪ ،‬ﺷﺎﺷﺔ ‪ LCD‬ﻣﻠﻮﻧﺔ ﻋﺎﻟﻴﺔ ﺍﻟﻜﺜﺎﻓﺔ )‪ (NITS 1500‬ﻟﻠﺒﻴﺎﻧﺎﺕ ﻭﺍﻹﻋﺪﺍﺩ ﻭﻭﺍﺟﻬﺔ‬ ‫ ‬ ‫ﺍﻟﻤﺴﺘﺨﺪﻡﺍﻟﺮﺳﻮﻣﻴﺔ‪.‬‬ ‫ﺍﻟﺘﺸﻐﻴﻞﻋﻦ ﺑﻌﺪ‪ :‬ﻳﻤﻜﻦ ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﺟﻤﻴﻊ ﻋﻨﺎﺻﺮ ﺍﻟﺘﺤﻜﻢ ﻓﻲ ﺍﻟﻨﻈﺎﻡ ﻣﻦ ﺧﻼﻝ ﺟﻬﺎﺯ ﻛﻤﺒﻴﻮﺗﺮ ﻋﻦ ﺑﻌﺪ ﻋﺒﺮ ﺃﺣﺪ ﺍﻟﻤﻨﺎﻓﺬ‬ ‫ ‬ ‫ﺍﻟﺘﺴﻠﺴﻠﻴﺔﺍﻟﺜﻼﺛﺔ‪.‬ﻳﺘﻔﺎﻋﻞ ﺟﻬﺎﺯ ﻗﻴﺎﺱ ﺍﻟﺼﻮﺕ ﺑﺸﻜﻞ ﻛﺎﻣﻞ ﻣﻊ ﺃﻧﻈﻤﺔ ﺍﻟﺤﺮﻛﺔ ﻭﺗﺤﺪﻳﺪ ﺍﻟﻤﻮﺍﻗﻊ‬ ‫‪9-11‬‬ ‫ﺭﻗﻢ‪1003-2-1110‬‬ ‫‪1‬ﻳﻨﺎﻳﺮ ‪02‬‬ ‫ﻭﻳﻮﻓﺮﺇﻣﻜﺎﻧﻴﺔ ﺇﺩﺧﺎﻝ ﻋﺪﺩ ﻏﻴﺮ ﻣﺤﺪﻭﺩ ﻣﻦ ﺍﻟﻌﻨﺎﻭﻳﻦ ﻭﺗﻌﻠﻴﻘﺎﺕ ﺍﻷﺣﺪﺍﺙ ﺍﻟﺘﻲ ﻳﺘﻢ ﺇﻧﺸﺎﺅﻫﺎ ﺩﺍﺧﻠﻴﺎً‬ ‫ﺃﻭﺑﻮﺍﺳﻄﺔ ﺍﻟﻜﻤﺒﻴﻮﺗﺮ‪.‬‬ ‫ﻟﻮﺣﺔﺍﻟﻤﻔﺎﺗﻴﺢ‪ :‬ﺗﺘﻤﻴﺰ ﺍﻟﻮﺣﺪﺓ ﺍﻟﻤﺨﺘﻮﻣﺔ ‪ Nema 12‬ﺫﺍﺕ ﺍﻟـ ‪ 16‬ﻣﻔﺘﺎﺣﺎً ﺑﺤﺮﻛﺔ ﻛﺎﻣﻠﺔ ﻭﺷﻌﻮﺭ ﺑﺎﻟﻠﻤﺲ‪.‬‬ ‫ ‬ ‫ﻳﺴﺘﺨﺪﻡﺍﻟﻤﺸﻐﻞ ﻟﻮﺣﺔ ﺍﻟﻤﻔﺎﺗﻴﺢ ﻹﺩﺧﺎﻝ ﺍﻟﻤﻌﻠﻤﺎﺕ ﻣﺒﺎﺷﺮﺓ ﻭﺍﻟﺘﺤﻜﻢ ﺍﻟﻮﻇﻴﻔﻲ ﻓﻲ ﺍﻟﻮﺣﺪﺓ ﻣﻦ ﺍﻟﻠﻮﺣﺔ‬ ‫ﺍﻷﻣﺎﻣﻴﺔ‪.‬ﻳﺘﻢ ﺗﺨﺰﻳﻦ ﺟﻤﻴﻊ ﺇﻋﺪﺍﺩﺍﺕ ﺍﻟﻤﺸﻐﻞ ﻓﻲ ﺫﺍﻛﺮﺓ ﺩﺍﺧﻠﻴﺔ ﻏﻴﺮ ﻣﺘﻄﺎﻳﺮﺓ‪.‬‬ ‫ﻭﺳﺎﺉﻂﺍﻟﺘﺨﺰﻳﻦ‪ :‬ﺑﻄﺎﻗﺔ ﺫﺍﻛﺮﺓ ‪ PCMCIA‬ﻗﺎﺑﻠﺔ ﻟﻺﺯﺍﻟﺔ ‪ -‬ﻣﺘﻮﺍﻓﻘﺔ ﻣﻊ ﻗﺎﺭﺉﺎﺕ ‪ PCMCIA‬ﻟﻠﺘﻨﺰﻳﻞ ﺍﻟﻤﺒﺎﺷﺮ‬ ‫ ‬ ‫ﻋﻠﻰﺍﻟﻜﻤﺒﻴﻮﺗﺮ ﺃﻭ ﻭﺣﺪﺍﺕ ‪ Echotrac‬ﺍﻷﺧﺮﻯ ‪ -‬ﻣﻊ ﻧﻄﺎﻕ ﺗﺴﺠﻴﻞ ﻳﺼﻞ ﺇﻟﻰ ‪ 10‬ﺳﺎﻋﺎﺕ‪.‬‬ ‫ﻗﺴﻢﺍﻻﺳﺘﻘﺒﺎﻝ‪ :‬ﻳﺸﺘﻤﻞ ﻋﻠﻰ ﻋﻨﺎﺻﺮ ﺍﻟﺘﺤﻜﻢ ﻓﻲ ﺍﻟﺤﺴﺎﺳﻴﺔ ﻭﺍﻟﺘﺤﻜﻢ ﺍﻟﺘﻠﻘﺎﺉﻲ ﻓﻲ ﺍﻻﺳﺘﻘﺒﺎﻝ )‪ (AGC‬ﻋﺒﺮ ﺍﻟﻠﻮﺣﺔ ﺍﻷﻣﺎﻣﻴﺔ‪.‬‬ ‫ ‬ ‫ﻗﺴﻢﺍﻹﺭﺳﺎﻝ‪ :‬ﻳﺘﻢ ﺗﺼﻨﻴﻊ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺭﻗﻤﻴﺎً ﻭﺗﻌﺘﻤﺪ ﻋﻠﻰ ﻣﺬﺑﺬﺏ ﺳﺎﻋﺔ ﻳﺘﻢ ﺍﻟﺘﺤﻜﻢ ﻓﻴﻪ ﺑﻮﺍﺳﻄﺔ‬ ‫ ‬ ‫ﺍﻟﺒﻠﻮﺭﺓ‪.‬ﻳﻤﻜﻦ ﺗﻌﺪﻳﻞ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻤﻨﻘﻮﻟﺔ ﻭﻋﺮﺽ ﺍﻟﻨﺒﻀﺔ ﻟﻜﻞ ﻣﻦ ﺍﻟﻘﻨﻮﺍﺕ ﺍﻟﻌﺎﻟﻴﺔ ﻭﺍﻟﻤﻨﺨﻔﻀﺔ ﺑﺸﻜﻞ‬ ‫ﻓﺮﺩﻱﻣﻦ ﺧﻼﻝ ﻋﻨﺎﺻﺮ ﺍﻟﺘﺤﻜﻢ ﺍﻟﻤﺜﺒﺘﺔ ﻓﻲ ﺍﻟﻠﻮﺣﺔ ﺍﻷﻣﺎﻣﻴﺔ‪.‬‬ ‫ﺍﻻﺗﺼﺎﻻﺕ‪:‬ﺃﺭﺑﻌﺔ ﻣﻨﺎﻓﺬ ‪ RS232‬ﺗﺴﻠﺴﻠﻴﺔ ﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ ﻣﻨﻔﺬ ‪ USB‬ﻟﻠﺘﻐﺬﻳﺔ ﺍﻟﺘﻨﺎﻇﺮﻳﺔ ﺇﻟﻰ ﺍﻟﻜﻤﺒﻴﻮﺗﺮ ﻟﻌﺮﺽ ﺍﻟﺮﺳﻢ‬ ‫ ‬ ‫ﺍﻟﺒﻴﺎﻧﻲﻓﻲ ﺍﻟﻮﻗﺖ ﺍﻟﺤﻘﻴﻘﻲ ﻋﻠﻰ ﺍﻟﺸﺎﺷﺔ‪.‬‬ ‫‪.‬ﻣﺼﺪﺭﻃﺎﻗﺔ ﺗﻴﺎﺭ ﻣﺘﺮﺩﺩ ﺃﻭ ﻣﺴﺘﻤﺮ ‪Power Agile:‬‬ ‫ ‬ ‫)‪ (6‬ﺟﻬﺎﺯ ‪.Ross Laboratories Series 850 Smart Sounder‬ﺇﻧﻪ ﺟﻬﺎﺯ ﺗﺴﺠﻴﻞ ﺑﺪﻭﻥ ﻭﺭﻕ )ﺇﻟﻜﺘﺮﻭﻧﻲ ﺑﺎﻟﻜﺎﻣﻞ(‬ ‫ﻳﻘﻮﻡﺍﻟﺒﺮﻧﺎﻣﺞ ﺑﺘﺨﺰﻳﻦ ﺍﻟﻤﻮﺟﺎﺕ ﻓﻮﻕ ﺍﻟﺼﻮﺗﻴﺔ ﺗﻠﻘﺎﺉﻴﺎً ﻋﻠﻰ ﻭﺳﺎﺉﻂ ﻳﺨﺘﺎﺭﻫﺎ ﺍﻟﻤﺸﻐﻞ ﻋﻠﻰ ﻛﻤﺒﻴﻮﺗﺮ ﺟﻤﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ‪.‬ﻭﻳﺴﺘﺨﺪﻡ‬ ‫ﻫﺬﺍﺍﻟﺒﺮﻧﺎﻣﺞ ﻷﻏﺮﺍﺽ ﺍﻟﺘﺸﻐﻴﻞ ﻭﺍﻟﺘﺤﺮﻳﺮ‪.‬ﻛﻤﺎ ﻳﺘﻢ ﺃﺭﺷﻔﺔ ﺍﻟﻤﻮﺟﺎﺕ ﻓﻮﻕ ﺍﻟﺼﻮﺗﻴﺔ ﻋﻠﻰ ﻣﺤﺮﻙ ﺃﻗﺮﺍﺹ ﻣﻀﻐﻮﻃﺔ ﺃﻭ ﻗﺮﺹ‬ ‫ﻣﻀﻐﻮﻁ‪.‬ﻭﻳﻤﻜﻦ ﺃﻳﻀﺎً ﻃﺒﺎﻋﺔ ﻧﺴﺦ ﻣﻄﺒﻮﻋﺔ ﻋﻠﻰ ﻃﺎﺑﻌﺔ ﻣﻠﻮﻧﺔ‪.‬ﻭﺍﻟﺸﺎﺷﺔ ﻋﺒﺎﺭﺓ ﻋﻦ ﺷﺎﺷﺔ ‪ TFT‬ﻧﺸﻄﺔ ﻋﺎﻟﻴﺔ ﺍﻟﻮﺿﻮﺡ )‪900‬‬ ‫‪.(NIT‬‬ ‫ﻧﺴﺨﺔﻣﻄﺒﻮﻋﺔ‪.‬ﻳﻤﻜﻦ ﻟﻠﻄﺎﺑﻌﺔ ‪ 850‬ﻃﺒﺎﻋﺔ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻹﺷﺎﺭﺓ ﺍﻟﺘﻨﺎﻇﺮﻳﺔ ﺑﻴﺎﻧﻴﺎ ًﺑﺎﻷﻟﻮﺍﻥ ﺃﻭ ﺑﺘﺪﺭﺝ ﺍﻟﺮﻣﺎﺩﻱ‪،‬‬ ‫ ‬ ‫ﻓﻲﺍﻟﻮﻗﺖ ﺍﻟﻔﻌﻠﻲ ﺃﻭ ﺑﻌﺪ ﺍﻟﻤﺴﺢ‪.‬ﺗﺘﻢ ﺍﻟﻄﺒﺎﻋﺔ ﺑﻌﺪ ﺍﻟﻤﺴﺢ ﻋﻦ ﻃﺮﻳﻖ ﺗﻮﺻﻴﻞ ﺍﻟﻄﺎﺑﻌﺔ ﺑﺎﻟﻄﺎﺑﻌﺔ ‪ 850‬ﺃﻭ‬ ‫ﻧﻘﻞﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﻨﺎﻇﺮﻳﺔ ﺇﻟﻰ ﺍﻟﻜﻤﺒﻴﻮﺗﺮ ﻟﻠﻄﺒﺎﻋﺔ‪.‬‬ ‫ﺗﺼﺤﻴﺢﺍﻟﺮﻓﻊ‪.‬ﻳﻌﺪ ﺍﻻﺗﺼﺎﻝ ﺍﻟﺘﺴﻠﺴﻠﻲ ﺍﻟﻤﺒﺎﺷﺮ ﻣﻊ ﻣﻌُﻮﺽ ﺍﻟﺮﻓﻊ ‪ TSS‬ﺃﻣﺮﺍً ﻗﻴﺎﺳﻴﺎً‪.‬ﻳﺘﻢ ﻭﺿﻊ ﺍﻟﺮﻓﻊ‬ ‫ ‬ ‫ﻓﻲﺃﻱ ﻣﻜﺎﻥ ﻋﻠﻰ ﺍﻟﺸﺎﺷﺔ ﺍﻟﺘﻨﺎﻇﺮﻳﺔ‪.‬ﻳﻤﻜﻦ ﻭﺿﻊ ﺑﻴﺎﻧﺎﺕ ﺍﻟﻌﻤﻖ ﺍﻟﻤﺼﺤﺤﺔ ﻟﻠﺮﻓﻊ ﻛﺨﻂ ﻋﻠﻰ ﺍﻟﺸﺎﺷﺔ‬ ‫ﺍﻟﻤﻠﻮﻧﺔ‪.‬‬ ‫ﺍﻹﺧﺮﺍﺝﺍﻟﺘﺴﻠﺴﻠﻲ‪.‬ﻳﺘﻀﻤﻦ ﺳﻠﺴﻠﺔ ﺍﻹﺧﺮﺍﺝ ﺍﻟﻤﺨﺼﺼﺔ ‪ NMEA-0183‬ﺍﻷﻗﺪﺍﻡ ﻭﺍﻷﻣﺘﺎﺭ‪ ،‬ﻭﺇﺫﺍ ﺗﻢ ﺗﻮﺻﻴﻠﻬﺎ‪،‬‬ ‫ ‬ ‫ﻳﺘﻢﺗﺼﺤﻴﺢ ﻋﻤﻖ ﺍﻻﺭﺗﻔﺎﻉ ﺑﺎﻷﻗﺪﺍﻡ ﻭﺍﻷﻣﺘﺎﺭ‪.‬‬ ‫ﺗﺴﺠﻴﻞﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺮﻗﻤﻴﺔ‪.‬ﻳﻤﻜﻦ ﺗﺴﺠﻴﻞ ﺍﻟﻌﻤﻖ ﺍﻟﺮﻗﻤﻲ ﻓﻲ ﻣﻠﻒ ﻋﻠﻰ ﺃﻱ ﻣﻦ ﻣﺤﺮﻛﺎﺕ ﺍﻷﻗﺮﺍﺹ ﻓﻲ‬ ‫ ‬ ‫ﻃﺮﺍﺯ‪.850‬ﻭﻳﻤﻜﻦ ﺗﺼﺪﻳﺮ ﻣﻠﻒ ﺍﻟﻨﺺ ﻫﺬﺍ ﺇﻟﻰ ﺟﺪﻭﻝ ﺑﻴﺎﻧﺎﺕ ﺃﻭ ﺃﻱ ﺗﻄﺒﻴﻖ ﺁﺧﺮ ﻳﻘﺮﺃ ﻣﻠﻔﺎﺕ ﻧﺼﻴﺔ‬ ‫ﻣﻔﺼﻮﻟﺔﺑﻔﻮﺍﺻﻞ‪.‬‬ ‫ﺷﺎﺷﺔﻣﻠﻮﻧﺔ‪.‬ﺗﻌﺮﺽ ﺍﻟﺸﺎﺷﺔ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻹﺷﺎﺭﺓ ﺍﻟﺮﻗﻤﻴﺔ ﺑﺄﻟﻮﺍﻥ ﻣﺨﺘﻠﻔﺔ‪.‬ﺗﻮﻓﺮ ﺍﻟﺸﺎﺷﺔ ﺍﻟﻤﻠﻮﻧﺔ ﺗﻔﺎﺻﻴﻞ‬ ‫ ‬ ‫ﻣﺤﺴﻨﺔﻟﻠﺠﺰء ﺍﻟﺴﻔﻠﻲ ﻭﺍﻟﺠﺰء ﺍﻟﺴﻔﻠﻲ ﺍﻟﺴﻔﻠﻲ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺷﺎﺷﺔ ‪ TFT‬ﻣﻠﻮﻧﺔ ﻧﺸﻄﺔ‪ ،‬ﻭﻫﻲ ﻓﻌﺎﻟﺔ ﻓﻲ‬ ‫ﺍﻟﺘﻄﺒﻴﻘﺎﺕﺍﻟﺘﻲ ﺗﺘﻌﺮﺽ ﻷﺷﻌﺔ ﺍﻟﺸﻤﺲ ﺍﻟﺴﺎﻃﻌﺔ‪.‬ﻳﺘﻢ ﺗﺨﺰﻳﻦ ﺍﻟﺴﻮﻧﺎﺭ ﺑﺎﻟﻜﺎﻣﻞ )ﺍﻟﺼﺪﻯ ﺍﻟﻤﺴﺘﻠﻢ( ﻋﻠﻰ‬ ‫ﻭﺳﺎﺉﻂﻣﻐﻨﺎﻃﻴﺴﻴﺔ ﺃﻭ ﺑﺼﺮﻳﺔ ﻟﺘﺸﻐﻴﻠﻪ ﻭﻃﺒﺎﻋﺘﻪ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺒﻞ‪.‬ﻳﻤﻜﻦ ﺗﺸﻐﻴﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻋﻠﻰ ‪ 850‬?

Use Quizgecko on...
Browser
Browser