Series 1 Arithmetic Progressions Exercise PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document contains a series of arithmetic progression exercises. The exercises cover topics such as finding next terms in sequences, identifying first terms and common differences of arithmetic progressions, finding the number of terms, and finding specific terms and sums within arithmetic progressions.
Full Transcript
33. Write down the next two terms in each of the following sequences. 1. a) \ [ − 8, − 5, − 2, 1, 4, 7, ...]{.math.display}\ 2. b) \ [1, 4, 9, 16, 25, 36, ...]{.math.display}\ 3. c) \ [0.1, 0.01, 0.001, 0.0001, ...]{.math.display}\ 4. d) \ [\$\$\\frac{3}{4},\\ 1\\frac{1}{2},\...
33. Write down the next two terms in each of the following sequences. 1. a) \ [ − 8, − 5, − 2, 1, 4, 7, ...]{.math.display}\ 2. b) \ [1, 4, 9, 16, 25, 36, ...]{.math.display}\ 3. c) \ [0.1, 0.01, 0.001, 0.0001, ...]{.math.display}\ 4. d) \ [\$\$\\frac{3}{4},\\ 1\\frac{1}{2},\\ 2\\frac{1}{4},\\ 3,\\ 3\\frac{3}{4},\\ 4\\frac{1}{2},\\ \\ldots\$\$]{.math.display}\ 5. Write down the first term and common difference for each of the following A.P.s 6. a) \ [8 + 11 + 14 + 17 + ...]{.math.display}\ 7. b) \ [23 + 25 + 27 + 29 + ...]{.math.display}\ 8. c) \ [19 + 16 + 13 + 10 + ...]{.math.display}\ 9. d) \ [\$\$13\\frac{1}{2} + 15 + 16\\frac{1}{2} + 18 + \\ldots\$\$]{.math.display}\ 10. e) \ [ − 11.5 − 9 − 6.5 − 4 − ...]{.math.display}\ 11. f) \ [\$\$6\\frac{1}{4} + 6\\frac{3}{4} + 7\\frac{1}{4} + 7\\frac{3}{4} + \\ldots\$\$]{.math.display}\ 12. g) \ [ − 8 − 7 − 6 − 5 − ...]{.math.display}\ 13. h) \ [6 + 3 + 0 − 3 − ...]{.math.display}\ 14. Find the number of terms in each of the following A.P.s 15. a) \ [5 + 8 + 11 + 14 + ... + 59 + 62]{.math.display}\ 16. b) \ [1 + 6 + 11 + 16 + ... + 501 + 506]{.math.display}\ 17. c) \ [ − 193 − 189 − 185 − ... − 21 − 17]{.math.display}\ 18. d) \ [\$\$2\\frac{1}{4} + 2\\frac{17}{20} + 3\\frac{9}{20} + \\ldots + 20\\frac{1}{4} + 20\\frac{17}{20}\$\$]{.math.display}\ 19. Find the 18^th^ term of a series that has n^th^ term given by [2 + 3*n*]{.math.inline} 20. Find the 31^st^ term of a series that has n^th^ term given by [\$\\frac{1}{3}\\left( 10 + 2n \\right)\$]{.math.inline} 21. Find the 50^th^ term of a series that has n^th^ term given by [\$\\frac{1}{2}\\left( 32 - n \\right)\$]{.math.inline} 22. Find the 6^th^ and 7^th^ terms of a series that has n^th^ term given by [(−1)^*n*^(2*n*+1)]{.math.inline} 23. Find an expression for the n^th^ term for each of the following A.P.s and use your answer to write down the 100^th^ term of each series. 24. a) \ [5 + 8 + 11 + 14 + ...]{.math.display}\ 25. b) \ [5 + 2 − 1 − 4 − ...]{.math.display}\ 26. c) \ [\$\$12\\frac{1}{2} + 16 + 19\\frac{1}{2} + 23 + \\ldots\$\$]{.math.display}\ 27. For each of the following A.P.s, state which is the first term to exceed 1000. 28. a) \ [7 + 12 + 17 + 22 + 27 + ...]{.math.display}\ 29. b) \ [ − 24 − 21.5 − 19 − 16.5 − 14 − ...]{.math.display}\ 30. For each of the following A.P.s, state which is the first term to be negative. 31. a) \ [843 + 836 + 829 + 822 + ...]{.math.display}\ 32. b) \ [56.3 + 55.4 + 54.5 + 53.6 + ...]{.math.display}\ +-----------------------+-----------------------+-----------------------+ | 67. | State the values of | | | | [*a*]{.math.inline} | | | | and [*d*]{.math | | | |.inline} in each of | | | | the following A.P.s | | | | and find | | | | [*S*~*n*~]{.math | | | |.inline} as | | | | indicated. | | +=======================+=======================+=======================+ | 34. | a) | \ | | | | [2 + 6 + 10 + 14 + .. | | | |., *S*~12~]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 35. | b) | \ | | | | [10 + 8 + 6 + 4 + ... | | | | , *S*~15~]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 36. | c) | \ | | | | [4.5 + 6 + 7.5 + 9 + | | | |..., *S*~19~]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 37. | d) | \ | | | | [15 + 13 + 11 + 9 + . | | | |.., *S*~16~]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 38. | e) | \ | | | | [7 + 3 − 1 − 5 − ..., | | | | *S*~20~]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 39. | f) | \ | | | | [\$\$- 6\\frac{1}{2} | | | | - 5 - 3\\frac{1}{2} - | | | | 2 - | | | | \\ldots,S\_{12}\$\$]{ | | | |.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 40. | g) | \ | | | | [ − 9 − 7 − 5 − 3 − . | | | |.., *S*~16~]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 41. | Find the sum of each | | | | of the following | | | | A.P.s | | +-----------------------+-----------------------+-----------------------+ | 42. | a) | \ | | | | [2 + 4 + 6 + 8 + ... | | | | + 146]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 43. | b) | \ | | | | [100 + 95 + 90 + 85 + | | | | 80 + ... − 20]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 44. | c) | \ | | | | [4 + 10 + 16 + 22 + 2 | | | | 8 + ... + 334]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 45. | d) | \ | | | | [\$\$5\\frac{1}{4} + | | | | 4\\frac{1}{2} + | | | | 3\\frac{3}{4} + | | | | \\ldots - | | | | 3\$\$]{.math | | | |.display}\ | +-----------------------+-----------------------+-----------------------+ | 46. | In an A.P., | | | | [*u*~5~ = 8]{.math | | | |.inline} and | | | | [*u*~9~ = 14]{.math | | | |.inline}; find | | | | [*a*, *d*]{.math | | | |.inline} and | | | | [*S*~10~]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 47. | In an A.P., | | | | [*u*~3~ = 7.5]{.math | | | |.inline} and | | | | [*u*~10~ = 11]{.math | | | |.inline}; find | | | | [*a*, *d*]{.math | | | |.inline} and | | | | [*S*~8~]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 48. | In an A.P., | | | | [*u*~4~ = 15]{.math | | | |.inline} and | | | | [*u*~8~ = 7]{.math | | | |.inline}; find | | | | [*a*, *d*]{.math | | | |.inline} and | | | | [*S*~22~]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 49. | In an A.P., | | | | [*u*~3~ = − 4]{.math | | | |.inline} and | | | | [*u*~7~ = 8]{.math | | | |.inline}; find | | | | [*a*, *d*]{.math | | | |.inline} and | | | | [*S*~9~]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 50. | In an A.P., | | | | [*u*~2~ = − 12]{.mat | | | | h | | | |.inline} and | | | | [*S*~12~ = 18]{.math | | | |.inline}; find | | | | [*a*, *d*]{.math | | | |.inline} and | | | | [*u*~6~]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 51. | In an A.P., | | | | [*u*~5~ = − 0.5]{.ma | | | | th | | | |.inline} and | | | | [*S*~7~ = 21]{.math | | | |.inline}; find | | | | [*a*, *d*]{.math | | | |.inline} and | | | | [*u*~9~]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 52. | In an A.P., | | | | [*u*~15~ = 7]{.math | | | |.inline} and | | | | [*S*~9~ = 18]{.math | | | |.inline}; find | | | | [*a*, *d*]{.math | | | |.inline} and | | | | [*u*~20~]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 53. | The sum of the first | | | | 10 terms of an A.P. | | | | is 120 and the sum of | | | | the first 20 terms is | | | | 840. Find the sum of | | | | the first 30 terms. | | +-----------------------+-----------------------+-----------------------+ | 54. | An A.P. has a common | | | | difference | | | | [*d*]{.math.inline}. | | | | If the sum to 20 | | | | terms is 25 times the | | | | first term, find, in | | | | terms of [*d*]{.math | | | |.inline}, the sum to | | | | 30 terms. | | +-----------------------+-----------------------+-----------------------+ | 55. | In an A.P., | | | | [*a* = − 23]{.math | | | |.inline} and | | | | [*d* = 2.5]{.math | | | |.inline}; find the | | | | least value of | | | | [*n*]{.math.inline} | | | | such that | | | | [*S*~*n*~ \> 0]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 56. | In an A.P., | | | | [*a* = − 61]{.math | | | |.inline} and | | | | [*d* = 4]{.math | | | |.inline}; find the | | | | least value of | | | | [*n*]{.math.inline} | | | | such that | | | | [*S*~*n*~ \> 0]{.math | | | |.inline} | | +-----------------------+-----------------------+-----------------------+ | 57. | An A.P. has first | | | | term 10 and common | | | | difference 0.25. Find | | | | the least number of | | | | terms the A.P. can | | | | have , given that the | | | | number of terms | | | | exceeds 300. | | +-----------------------+-----------------------+-----------------------+ | 58. | An A.P. has first | | | | term [ − 5]{.math | | | |.inline} and common | | | | difference 1.5. Find | | | | the greatest number | | | | of terms the A.P. can | | | | have, given that the | | | | sum of the terms does | | | | not exceed 450. | | +-----------------------+-----------------------+-----------------------+ | 59. | The sum to | | | | [*n*]{.math.inline} | | | | terms of a particular | | | | series is given by | | | | [*S*~*n*~ = 17*n* − 3 | | | | *n*^2^]{.math | | | |.inline}. | | +-----------------------+-----------------------+-----------------------+ | 60. | a) | Find an expression | | | | for the sum to | | | | [(*n*−1)]{.math | | | |.inline} terms. | +-----------------------+-----------------------+-----------------------+ | 61. | b) | Find an expression | | | | for the | | | | [*n*^th^]{.math | | | |.inline} term of the | | | | series. | +-----------------------+-----------------------+-----------------------+ | 62. | c) | Show that the series | | | | is an A.P. and find | | | | the first term and | | | | the common | | | | difference. | +-----------------------+-----------------------+-----------------------+ | 63. | Three consecutive | | | | terms of an A.P. have | | | | a sum of 36 and a | | | | product of 1428. Find | | | | the three terms. | | +-----------------------+-----------------------+-----------------------+ | 64. | A particular A.P. has | | | | a positive common | | | | difference and is | | | | such that for any | | | | three adjacent terms, | | | | three times the sum | | | | of their squares | | | | exceeds the square of | | | | their sum by 37.5. | | | | Find the common | | | | difference. | | +-----------------------+-----------------------+-----------------------+ | 65. | Find the common | | | | difference, the n^th^ | | | | term and the sum to | | | | [*n*]{.math.inline} | | | | terms of the | | | | following A.P. | | | | | | | | \ | | | | [ln 3 + ln 3^2^ + ln | | | | 3^3^ + ln 3^4^ + ...] | | | | {.math | | | |.display}\ | | +-----------------------+-----------------------+-----------------------+ | 66. | Find expressions for | | | | the n^th^ term and | | | | the sum to | | | | [*n*]{.math.inline} | | | | terms of the A.P. | | | | | | | | \ | | | | [ln (*ab*) + ln (*ab* | | | | ^2^) + ln (*ab*^3^) + | | | | ln (*ab*^4^) + ...]{ | | | |.math | | | |.display}\ | | +-----------------------+-----------------------+-----------------------+