Semester Exam Review Answer Key PDF

Summary

This document provides solutions to semester exam review questions, covering topics like limits, derivatives, and other calculus concepts. The content focuses on mathematical problems and calculations.

Full Transcript

S e m e s t e r | Exam R e v i e w 1. The table gives selected values for a continuous function. Based on the data, w h a t is the best approximation for lim_ f(x)? j i m , £@) D i n £ix) = 4...

S e m e s t e r | Exam R e v i e w 1. The table gives selected values for a continuous function. Based on the data, w h a t is the best approximation for lim_ f(x)? j i m , £@) D i n £ix) = 4 KX to ? _ je) | 3018[2007 | 9000 [ase| 7902_| 7907 | 2. T h e t a b l e gives s e l e c t e d v a l u e s f o r a c o n t i n u o u s f u n c t i o n. Based on t h e data, w h a t is t h e b e s t a p p r o x i m a t i o n f o r BmT@? Lim B Y DNE XA Lo se [ 9 8 [958 [9899 [ao000[soa | 100 [0a 3. T h e t a b l e g i v e s selected v a l u e s f o r a c o n t i n u o u s f u n c t i o n. Based o n t h e d a t a , w h a t is t h e b e s t a p p r o x i m a t i o n f o r HMO? Liem tex) = 0 X10 [ 3 389 5 [9999 ?_ ] 4. Find the derivative: y = 2xV3x + 5 5. Find the derivative: 3x + 3 = Scoty 1 Y= a x ( 3 x r s ) 3 3 a S e e c y aylay ' -7/3 Y = RCax+s)"F4 a x ( S l s x + 5 ) 3 ) 3 ?Sescy 7 = 2° x e 4 | OX ( 3 x + s y 7% J dx ~_. 2 a = qe pBE AIO Extn work = siey = ae Vexes_ * 1 Keely o. y vu 6. Given the grapho f f?, sketch a possible f? and f. Based ev araph of ( M 5 0 @-a, a tom - 5 4 @-2> - a + £ min O £' has m i n @2a7x4°- t' Was max a x ny 22 3 x 4 5 * = , 7 Bxts * 2 (3ure N e x t _2% y 3x4 * (3x +s 2 (3x45) + 2x Bx +10 aG s x e s = ) a l z = 2.328 x = THe + 47 8. The graph of f?, the first derivative of the function f is shown. Evaluate the following: a) ( f a c e Je t2w+ Se = /is+2n) b) Given f ( 0 ) = 10, Find f ( 5 ) tee (d+> tle = [Fe+m) O u a r d e v civelse 32am e m 3 9. A s p h e r i c a l b a l l o o n is d e f l a t i n g s u c h t h a t i t s v o l u m e is d e c r e a s i n g a t a r a t e o f J sec? A t w h a t r a t e i s t h e r a d i u s o f the balloon changing when the radius is 9cm? ( v = 0. Find the intervals where the particle is speeding up and slowing down. ° Velocity = vie) 2 - 3 t * 4 2t + 5 6 Accel =a (+) = ~ G t + n © = -3t240t + S BD = - & t +2 3t7-ak - S ? 2 0 wtea t= is (Ot-14)(4e4)=0 vay Speeding vp? tM/3, -4 act) Co, Ya) C i «s0 ) Slow: dewn' ( l z , M/s) 11. Evaluate: i 2x? li Inx _ 100 r e r ?1?x fi 200 n F. ¥.. 200 ? ?oe Lien 2x? =O L a m 4 - \ - ¥ =O h i m LnX = eo Z i m , x = eo J i m X s oo S o E=00 X o x20 X e y A 4, 100: a CHSpital fom te ot tin ; X00 a00,"7 HLM Doge I Sim BL 2 4 x e Svertvally f o n t ant = aim OU < Rme e - | X90 2? = o ) =[0) 12. Differentiate the following, then find the x-coordinate(s) where the curve has a horizontal tangent. x3 - 6 x 4 + 3 y 3 = 3 2 2 J a toria t o 2a 2 '* 2 Toy =0 ~ 3x74 =O x a 13. Given f ° f(x)dx =5, f ° g(x)dx = ?8 Find f ° 3f(x) + 2g(x)dx. 3ls)+ 2(-8) = IS?Ie =[-1) 14. Given f ° f ( x ) d x = 2, f2° f ( x ) d x = 7 Find 7 ° Sf(x)dx and J f ( x ) d x 19 a) S s f e d d x = s ( 2 m ) = 4 5 f t u d d e = O ' 4 i, Pa [oofos Poo as P20) Pedro 07hos oa for Let y = f ( x ) be the solution to the differential equation d y = f ' ( x ) with initial condition f (1) = 5. Selected dx values of f?(x) are given in the table above. What is the approximation for f ( 2 ) if Euler's method is used with } a step size of 0.5, starting at x = 1? ? t f u s ) = S+-Slo-s) = 525 os o-4 £ 2 ) = 5. 2 6 4. s(o-+4) 2 / 6 4 5 ) o h Tannents om yoa x i s Ax-axis ~y 40 x / y C a n t 16. be on bette \. \ ay ? a 8 So e r t € oD : dy oy @( 3 , 3) - \ (B) w i s @ (-3,3)+ ~ dy ¥ co a. de = XY 17. W h a t is t h e f o r m u l a f o r a l o g i s t i c differential equation? (6.4) H o w can y o u tell t h e c a r r y i n g c a p a c i t y ? ay ? Get The d i f f e r e n t i a l i n Hee v i g h t f o r m at = 4 (L-y) and i d e n h t y Le t h e t fs H t ma, 18. A t t h e s t a r t o f an e x p e r i m e n t , there are 100 bacteria. On day 3, t h e r e a r e 250. I f t h e n u m b e r o f b a c t e r i a is i n c r e a s i n g a t a p r o p o r t i o n a l rate a n d f o l l o w i n g an exponential g r o w t h pattern, h o w m a n y b a c t e r i a w i l l t h e r e b e on day 8 s o n e | «sos €o,100) €3,asv) y tes OR ys love 3k y = l o o * * 2 9 1 = loose y= woo S o t y = Yup. 4 3 4 2 s : 2 wactcria > 4 4 0 bacterin ANAT = BK Rowmd : 4 e o ?Ke In2. 19. A p o n d contains 30 gallons o f w a t e r at time t = 3. The w a t e r level changes at a rate o f P(t) gallons p e r h o u r. Use the table b e l o w and a r i g h t Riemann sum w i t h 3 subintervals to a p p r o x i m a t e the n u m b e ro f g a l l o n s a t t = 8. W h a t w o u l d the a p p r o x i m a t i o n be w i t h a l e f t Riemann sum? 2 1 2 |c g a t |o 88 n |s 82 m | m49| o u43n| Rpt? ZO+ 2(6-2) +1l4.a)*Al42) =/53.4 gallons Left: BO+ 2(5-8) + 1(e-2) + 24.9) =(?Seie aetleas S 20. f 2 e=r + 7 dx UE Q E ? du = R e dx a k ( 2R e3 +2> ? dx * a s a n = P F a l a e ' s | + c } a 21. Evaluate: lim h>0 sin(Z+h)-sin? h jim 1G)? l i m in(oen)-tn2 Elx)= sinx £0x) = t a n x t 4 x ) = 2nx T's ensx l = s e c t x© G a the. t -° ( 4 ) - & t C%/3) = T i o =[4\ £Us) » Ve 22. Use the table of values to evaluate the following: 1 3 41 1 a) Given h (x) = f ( x ) g(x), find h?(3) = b) Given h (x) = o find h'(2) = c) Given h (x) = f ( g ( x ) ) , find h?(1) = f-£.° a. 4) Wed'g+ git bv) he v o Ps) h ~ # % ). 5 wiade 9 2 ) #U2)- £l2)e (e) Wa) = £'(2) 92) * 4 (2)402). ha) = Plgen) 911) = - 1 ( 2 ) + (-1)1 (ge = ¢' z= -a-| = 3¢1)-acie) ( ) - a a2 = l e a = ] - 2 @ ) =[E3) s e 23. Given 5x2 + 2y2 = 4, find 43y - stay 2y (-5) - (-54) (2 d2) 10x +4y dif =0 i t : (Zy)' t y : - 5X 3-104 -2934 - = - 10y 2-25x z ay ty' dy's 24. Given f(x) = 5x3 + 5x - 3, evaluate (F-1)' (7) f= (1, 2) 5x3+5-3=7 (49% 1) = FrienD = F5 : I 5x3+5x-10=0 f'+ (2,1) (Calculator) {'(x) =1547+5 × = f'61) =20 25. Find the total distance a particle travels from t = O to t = 4 given the velocity of the particle is 0(1) = -3 Distances SI vet) st D: 51 5354 at = 12.192 (calculator) 26. At time t=0, there are 100 reindeer. If the rate of growth of a population of reindeer is modeled by the equation P(t) = 30000.19t reindeer per year, approximate the number of reindeer after 5 years. 5 Population @5yrs= 100+S PLA)dt=|25137 reindeer 27. Evaluate: 9x2 4=x3 45x2 ? =3x3-1 157+128+40dx du = 3231x - dx 125-502x 1 V3x3-1 du=9x"ax 1=4 a = 5 5=36 * +12X4 36+4 d x :5 S dx (*+6)2+4 ?= x*6 du =dx =35 Jame = 5 S 4-13 du a= 2 35 473 to t a -i ( x + 6 ) + 6 2 : 15 (3x31)3/3 2 + C 28. For the function f ( x ) = ?x3 ? 2x? - x + 4, determine the following: a) Intervals of increasing/decreasing + i ) = ? Bx 4 x -| £ ° G ) =?lox - 4 b) Relative minimum/maximum points 2 c) Intervals of concavity O = ? B x " - 4 y -1 z?bx-4. ® X-coordinates of pointsofinflection B x F a x al 2 0 b x 2 - 4 ¢' 7 $ 7 0 8 f l - ) = 4 C3x41)lx+1) # 0 % 2-2/3 - £ l s ) > 4.148 x 2 - Y 3 - 1 -\ V3 | g o t o e a) Ineveasiny: - \ , - l g ) D e e : C-20,-1) ( - ' , 0 ) ~2)3 v) B y s r Deviv d e s t = m i n ( - 1 , 4 ) m e x ( Y s , 4.148) ¢ ) concave u p : ( - 6 0 , ~ 2 / 3 ) concave d o u n hs, ey) A) R o t of intlction x =-2/3 5 29, E v a l u a t e : o R In(t? + 3 ) d t ant Ere = 5x4. tn()*+3) = x t tate 3 ) 30. T h e a c c e l e r a t i o no f a p a r t i c l e f o r ¢ > 0 is g i v e n by a ( t ) = 1 8 t. A t t i m e t = 0, t h e v e l o c i t y o f t h e p a r t i c l e is 5 a n d t h e p o s i t i o no f t h e p a r t i c l e is 7. F i n d a f u n c t i o n t h a t r e p r e s e n t s t h e v e l o c i t yo f t h e p a r t i c l e , a n d a f u n c t i o n t h a t represents the position of the particle. v i t ) = velo c y pts) - Po h o vlo)=S plo) 7 S a a t= f i a t a t Svanat = Satta sat vG)= 4474 elad= aheste a c V Co) = 5S = Ao) +e plo)= 7 = B l o ) + Slo)ee ers er? ax. + !. Lin 31. Evaluate the following limits: X u e 7% t s +¥z lim 2% = l i 5x2 i 9x+1 xo 2sinx \ a m 7x 2 O zim, 5x*+6 * Covld vse Uteyital D e a r e t oF danom e f i A x ! 3 Xa-00 4 S x 4 y + t Sut wig e s t ee vraaer t a n + e a | 1s H e B a n e * [ I B i s - 9 - r s = {|}.019 33. Find the average value of the function f ( x ) = 3x? + 4 on the interval [10, 20] Z2o 20-10 wo 3 10 atte = Te C a t e ] seh (eone -tow)] o = Fro) 34. Solve the differential equation given by 2 = 2xy w i t h initial condition y ( 0 ) = 3. 23 a n d f o a l e O83 y JAK AX y r t e ~ | 2 Anlul =x 7 +c = e " ? ly| * | 35. Determine the values of x that would make the function have a removable discontinuity x? + 8 x - 9 C 9 ) Cx-1) f@)= 2 I +v2 7 3x? + 3 0+ 2 x7 3 (ufaXxer) Removable @ X=-% N o n - vemovelbe @ X = |- 36, Find the tgtal area of the region enclosed by the curves y = 4 - 3 and y = 2x + 3 from x = -4 to x =1. ? - 3 = 2x +3 From -4-7-2 Parabola on top -241 lime on top *-2x-6=0 ×7-4x-12=0 Areas: (45-3) -(28#3) 44+5 (2943)-555-34 (X-6) (x+2) -4 X = 6 - 2 2 2. 8 3 3 37. The region R is in the first quadrant bound by the x-axis, the y-axis, y = ex, and x = 1. Find the volume given the following cross sections: lry=x a) Squares perpendicular to the x-axis A = S (e*) 'de = 3.195 * ones o b) Equilateral Triangles perpendicular to the x-axis to y-axis: from y=0-7 yal c) Squares perpendicular to the y-axis Equation/Base is I From y =1 7y =e d) Semi-Circles perpendicular to the x-axis Equation Base = 1-lny A = S= (+*) Lx = 1.254 e) Equilateral Triangles perpendicular to the y-axis 38. Find an expression for the length of the curve f(x) = 5x3-2*-1 from the point (0, -0.143) to the point (2, 5). Use vour calculator to evaluate. f'(x) = 15x%- 2 § =ST + (158355) ax 7 = 6.062

Use Quizgecko on...
Browser
Browser