Math for AI (Statics & Probability) PDF
Document Details

Uploaded by ObtainablePlanet
Tags
Summary
This document provides notes on math for AI, focusing on patterns and probability. It explains how AI uses patterns in data and includes examples of pattern recognition in numbers, images, and text. The document also touches on the ethical implications of AI use.
Full Transcript
RAHKA UnLT-3 Math fon AI Cslatia 4 Pro babitity) Hou ar Math 4A I eleatd ) Math à the study o hattenna. AAMam9emernt in...
RAHKA UnLT-3 Math fon AI Cslatia 4 Pro babitity) Hou ar Math 4A I eleatd ) Math à the study o hattenna. AAMam9emernt in the list Jhis autan glnent is called a patlem Jhis faHenn cist all anstnd e haua usi paten |42 AT comlasn to HaLoge hattesnike human being LAI Can see hatterms tm diflrd typs o data- numehs innagu and speedh and tet ANKA the passibility To Undestond Papose: of an ertnt lety happenin9 to prababi dndrodluctien ikelySnethiy Eauad sobalbi lity eveats Chanea ak each eu bot ton exone happtn wlhen Q Cain 's tossedhere are tue poikle CD The prbability Jstweer impoL ble and cetai Tailk Heads CH) The hrebability fomula cant be expressed on PCA) Mumben af fauaKab outooaas to Tatad na o ssible stomey uetiom LOnd e What is the hcbabilty am Cuent2 tha obability cainanda Tis.whe oty lionheible 2.What dou prcbability mean? nin euanb An euemt will haen aithouta daubt what the probability a gebing Ce w eent wh a die t is thhown the aebid Goncthn eusit than ansthes busnt Cost atnesatve o Daelapmext AImodals ; The deuelopmend tTaining a co be ebemelay epslva he creah. oncen ERical udleos ake onaniulate heople leading to elhitat quide bneachas Robust megulahs ethi cal Censid enatons ofig Gnenehatia P2 Gias and Gainns GenexahleAZ modala ca Ounshup- het ane qLssh m absd uhe ouns Hhe dataesulhny duciniabng putcomes Qnd henhstuahing biàse eleda Luabeeld such as aatieteratne that oten the linc betueEN bumn& machiae autaokhe Human Agency - Genen ahiue A1haseu qusttans sbaut llueáa.Oat uden cy hu nadel agencLy and coatalA tehaalag becass mme cephiahiated Meauise Vest anaui tomag heionk inca Soaingly dicuth to distin quish hehwsas intes ha belaaz in niache domaind angg asumgthan aining lanqe qunnaive AL RAKA stenavely DALLE2 hat magl suk as stahle Benefits o henonakve Az dillain CHeati vity: Genenahio Hhe Ghenatve AT cam ast uahvea e 3 boundaxies Audie tshng hoceseAOmaL m makina Je ative Cenhos ehieut ard pdonalized This Can AIthat Mutie Crên Crahim Jukedeck inda be pahi ca alq valua bla in elda ush a at Ogon AIs Muue Nd and deaign ad muaiz qQegle Waue Nett ttmgen pxeces AL whichCam @Hahive Cam otomakee Cantent heacklg include opa A baue fin and Hadue at compand to tyadhanalmarualhsaces Peranali'zahii henerakve AI Can deaed Decp Fikui Ar ginated uideas that Can setainp reat ftt hnalzed contet to tor incuiduat (nenenahiue Video Model: AI at caat 5 3) Dkiect Crensati Bre esi bilety Genesahive AT cam demai keiaed acea ade eahon Jsuo duce high qualiky locted Boalabilit Gaenanahue AI cam be usid to ginead Long A ANKA Hence c hatern AL uiso Maths fsY the study pattesny ia rder Math A1s a lway ecognze Stakcs he Ldoing Data data Which : Eg- ihat is the misdle value f take dics is the mcst conmtnson vale in the data? to Ahudy nes Math patte AT in oydea tk docutie CalculusLtaining impoing AI MadelJEg- hch lineis more slanted? Lwh htig coesc haten in. the maxe aHea imaget given bele Lineas Aea Lfinding outunknausn yalue Eg -Ho manu plants are Hau many Caxs ate there in total? thein a cit LX412 Proba bilih LPredicing diff events Eq- what will be Hoe 123 X9 43(LI 12345X9t6 ILLL Defiaiton of staies stas+isHesStastiah ca a wed k collecing explaxing A analyzing the dat:gt asahel In dauwing con clusion fron data Data is colleted trom arious SouYLA Data is exploved 2deaneà to be used Analysis of datasdone to undexstand better Condusions and decisi bns Can be made from the data. Eueanbal Math emah4 foy AI. Apphiahons c ttisbiesi leb' thiak and ans wen he tollo Ujng quagh 'sd *, 12,32, 4y,cs, Predict the pexfomance ofs port team: you fiad ut the middle tt canbe sed te iad aut speuis hings suchal the seadiy level ef studants robabiliy Ihe ohinions of Voiers. RANKA Unit-4 elu|24 Genesutve AI Qutpat heneative AI t put is Jrustinns vahve and of ten nexpectecl tive AT2 Corentigntl AI podasA naYe predickable to Gaepsa pthut bosed om enishing data Jatroducdion nefets to tha Tntelycnce alqai Ahplicatin Genthatine AI beehits ad,mbu, Lexahusa Cosenabve Aattiual hat xas ambles bum at aeneNatu mos data desgm Convontismal A1 j used inn banRung content such as uclu'o cade,inaaga, aennat ed tect and vdeos Ar Typas of Grenerah ve ia thaimed uth eiating data This technalagy ond cantent agatlog cLating Such potenfhial se NLP,Computer Vislan. he e Geneatiye At ith comas iqe im a vaiety adwamtag 2 onseack 24snns a speech sy athesis the most ypical vaHi eies au lated belo metaxst. Cnenexatve AL vs Con jentonal A 1Text Geneahon A.cad.sak to athex bons a AT, GneneNative AI ia speuiall Langing on feompt,. E- Indde open' AL'S GPT 3GeT4 Lmady t hue duee n niqus. coatent afher th omettet kiacuimg Grenaati oe en categaxizing aseady AI Gxeate new contes he ta- include Opsn L Chet alr oooglek Mecae hoal consen timal anay zesproceuea AT Smaqe Genenation: clau fau data NehiorRA ): he gemenate GANg CGuno ate Advedonid amd em meisEq indude Siyle Jne ative Al mede ue vant iabs healiate imges tes ibHakka o kample to train nuunal ingnkwnnhs athn cemplicalae struch 2:Jhee qlntnate amgas hodueonee &uniq VAE,C Vaiahgcal AHa emcadex he dituibuhin s input iata hy Jeaning