Wave Diffraction And The Reciprocal Lattice PDF
Document Details
Uploaded by SpiritedViolet6326
COMSATS Institute of Information Technology
2024
Tags
Summary
These lecture notes cover wave diffraction and the reciprocal lattice, including Bragg's law and Fourier analysis. They explain how these concepts can be used to analyze crystal structures.
Full Transcript
Leclue t13 Chapteu to2 Wave Dizkaction nd the Reci prou Latie cepncliupan Csyslal sltuelue andos aifLatlian the when he...
Leclue t13 Chapteu to2 Wave Dizkaction nd the Reci prou Latie cepncliupan Csyslal sltuelue andos aifLatlian the when he waveltnoth o4 acdiaton is cômpaucable the ma ael with or Sonadte han daltice conslant we oeam in diiectias quite cipçeaent qem incidernt directin Lincideh. wwoves CUe aylecteol spelautg Çrom aaltel planea o4 afom in CAlal , with each Kacllatlo plane veuy smact-attion Aftecting en A)veeeminak a. n Spealai Teleclion elasie btan 4 peioic The diceaence foras etecel quom adjeet pla path So That mAdsin9 Bragg aw alL ptaeclrel paallel beam when ciysial untAdtt wtth a beam o4 actTatTon.CXAas thé waves aue Scalleust the cTm n the cyalal (he d is(ance b[w talice plans et oyaal, thescalleuk efthe LonstueCie 0 olestuee paleun tesuetin ebeaNediçpureaiusn wohn lonstAuclice inteeence We (an SnYeal cayslal fhe 1efteett on 4om each leltice plane. is net actien adialin aleelsok peageeton a The ünteoiiy ef aigpsactael beam cupendls bn how mat planes Lonbiute to diferaclin The untšy á cánjuencanl alom In unit cecl, whica eelDI ike the Lompasi ion 4 cfcLt the Qadlus. 4ee we horve Londruthve n ten consllutise 3t woul be aam X- AOjsproues.when eleclacm shell Ccp the it ot Feusle QAe peiodie i meanin that Theositon o aloms epeat at Tegulau inteual Thís peáocliitg- Can bc Foute Analysik cOhich cluompoiCA. Lonple bL int) ba&inlt CEaS Lanes(nt)t bincirnty has a papelly Callecl tansaticnnl hanslaliens eoim. momCnt clenstg Iemain fnvaiemt unctes thiil tanslaton. pason vcalor n(reT)= nir) Smporlanee ot Fouies Amalysis Peionliciy makes the Fouie setes Yn Dr onstde a peiodís uncon nx) a) th a peil a in Ihe -oiretion 2Foie coefitieai positire inlasye we wUann CAnol Reiprocal Lallice 1 2 P a paint le alng a line. Prove (z+)=nt) P2l hl Pe escla Leetue t 14 gauie seiesr oim of Compat Semes CAn be The Pz-0 Complex auiey toeffiscisnks. to the (an be riLen asy no a ensune nx) hst satio From e For qene hp-n= 2ib nqib So Elenston to 3-Dimenson; expanol nl) in Tem of yeeipiol laltee vec lois G 4Sptrcizags) nodnesplbate "Lt2r(e'- P) For d a Thi seaals to the fcl enhity Enpton otn in]0cotetnabj.. 9nvaaten of midenf (i6-) V dy Reciptoca laiiee Vectorsr We have o od s in eRuation Lonsha the vextor Oyis bjb ba kipsecal Latiee latscss Fach VeTor ortiagoal Ciyalal DaLic Points retprocal n(Y+7)= NexpliG.i) ep(Gi) expliG7J=i betaus e. =exp Lian] we hwcdatteo avakcnce nlYT)n) Cipla stsuclue Secipacas lailie A lallice Clal A moscepe imag is a mep et CRysial keal dpaes. when we hotalLea Cenystal both in a hoLde we otale the ceek lalTiLe cno Vectos in the diet Lative cpsocal laitce hawe Veclbrs in the cthedinensa aeeiptotal Lalice have the The linansienj ot Ihnjod eeipsotal lalice is a lautce Tn the Aauie Lectue #IS 18|n 2024 Drçfactlon Condttlonss Iheofem The set s4Acipoal alice veclas GdelemineA the postble Xudeeetiss fnvaeit Qsume Lwe hawe a piece q CAESa Wave Vector ef both inei be eant thci aleetimk olitfent the lwaweAa s4snclent because Now Lwhat oboutphase2 what is phas atpeane theu fncdert get seleclol olelenne that eithe 0WCs ase msAuchvey phase pgely2ut phase meana cohalk aaelenyta has pasc y Cet maynt tuode |K{Y cos. phase anNEenlgalng J(sta0-90) And total phase olillaeace.i Actualr the Wave he Sealtea. unpttuds Cee the Ccatlesg Scalesiny du on the ohele cysta du m)e Salein ts maxiyarm shen axplikhele Tianstalin J walume Volwm