CSE 107 Midterm 2 Review Problems PDF
Document Details

Uploaded by ReasonedPedalSteelGuitar
Tags
Summary
This document contains solutions to review problems in probability and statistics, covering topics such as random variables, normal distributions, and the concepts of mean and variance.
Full Transcript
CSE 107 Midterm 2 Review Problems Solutions 1. Bob throws a dart at a circular target of radius ππ. He hits the target with certainty, but is equally likely to hit any point within the target. Let ππ be the distance from Bobβs dart to the center of the target. a. Find the CDF πΉπΉππ (π§π§) and t...
CSE 107 Midterm 2 Review Problems Solutions 1. Bob throws a dart at a circular target of radius ππ. He hits the target with certainty, but is equally likely to hit any point within the target. Let ππ be the distance from Bobβs dart to the center of the target. a. Find the CDF πΉπΉππ (π§π§) and the PDF ππππ (π§π§). Solution: Since Bob is equally likely to hit any point, the probability of the dart landing within any region of the target is proportional to the area of that region. Since the area of the target is ππππ 2 we have area(π΄π΄) ππ(dart lands in region π΄π΄) = ππππ 2 Therefore, for any π§π§ in 0 β€ π§π§ β€ ππ, we have πππ§π§ 2 π§π§ 2 ππ(ππ β€ π§π§) = = ππππ 2 ππ 2 and hence ππ if ππ < ππ ππππ πΉπΉππ (π§π§) = if ππ β€ ππ β€ ππ ππππ ππ if ππ > ππ Differentiating with respect to π§π§ gives us ππππ ππππ (π§π§) = ππππ if ππ β€ ππ β€ ππ ππ otherwise b. Find the mean πΈπΈ[ππ]. Solution: β ππ ππ 2π§π§ 2 2 π§π§ 3 2ππ 3 ππππ πΈπΈ [ππ] = π§π§ππππ (π§π§) ππππ = ππππ = 2 β = 2 = ββ 0 ππ 2 ππ 3 0 3ππ ππ c. Find the variance ππππππ(ππ). Solution: β ππ ππ 2π§π§ 3 2 π§π§ 4 ππ 2 πΈπΈ [ππ 2 ] = π§π§ 2 ππππ (π§π§) ππππ = ππππ = 2 β = ββ 0 ππ 2 ππ 4 0 2 and hence ππ 2 2ππ 2 1 4 ππππ ππππππ(ππ) = πΈπΈ [ππ 2 ] β πΈπΈ [ππ]2 = β = β ππ 2 = 2 3 2 9 ππππ 2. A cityβs temperature in degrees Celsius is modeled as a normal random variable ππ with mean 10 and standard deviation 10. Let ππ be its temperature in Fahrenheit, where ππ and ππ are related by 5(ππ β 32) ππ =. 9 What is the probability that the temperature is above 77 degrees Fahrenheit? Solution: 5(77 β 32) ππ(ππ > 77) = ππ ππ > 9 = ππ (ππ > 25) ππ β 10 25 β 10 = ππ > 10 10 ππ β 10 = ππ > 1.5 10 ππ β 10 = 1 β ππ β€ 1.5 10 = 1 β Ξ¦(1.5) = 1 β 0.9332 = ππ. ππππππππ Alternate Solution: We have ππ = (9ππ + 160)/5, and therefore ππ is normal with mean (9 β 10 + 160)/5 = 50, and standard deviation (9/5) β 10 = 18. Thus ππ β 50 77 β 50 ππ(ππ > 77) = ππ > 18 18 ππ β 50 = ππ > 1.5 18 ππ β 50 = 1 β ππ β€ 1.5 18 = 1 β Ξ¦(1.5) = ππ. ππππππππ 3. Let ππ and ππ be jointly continuous random variables, and suppose 1 if 0 < π¦π¦ β€ 1 and 1 β π¦π¦ β€ π₯π₯ β€ 1 ππππ |ππ (π₯π₯|π¦π¦) = π¦π¦ 0 otherwise and 2π¦π¦ if 0 < π¦π¦ β€ 1 ππππ (π¦π¦) =. 0 otherwise Hint: Before you do the following problems, draw a picture of the region defined by the inequalities 0 < π¦π¦ β€ 1 and 1 β π¦π¦ β€ π₯π₯ β€ 1. a. Determine the joint PDF ππππ ,ππ (π₯π₯, π¦π¦). Solution: The region defined by the inequalities 0 < π¦π¦ β€ 1 and 1 β π¦π¦ β€ π₯π₯ β€ 1 is the triangle with vertices (0, 1), (1, 0) and (1, 1), which has area 1/2. Therefore ππ if ππ < ππ β€ ππ and ππ β ππ β€ ππ β€ ππ ππππ ,ππ (π₯π₯, π¦π¦) = ππ otherwise b. Determine the marginal PDF ππππ (π₯π₯). Solution: For any π₯π₯ in the range 0 β€ π₯π₯ β€ 1 we have β 1 ππππ (π₯π₯ ) = ππππ,ππ (π₯π₯, π¦π¦) ππππ = 2 ππππ = 2π¦π¦|11βπ₯π₯ = 2 1 β (1 β π₯π₯ ) = 2π₯π₯ ββ 1βπ₯π₯ so ππππ if ππ β€ ππ β€ ππ ππππ (π₯π₯ ) = ππ otherwise c. Determine the expected value πΈπΈ[ππ]. Solution: β 1 2 3 1 ππ πΈπΈ [ππ] = π₯π₯ππππ (π₯π₯ ) ππππ = 2π₯π₯ 2 ππππ = π₯π₯ = ββ 0 3 0 ππ d. Determine the conditional expectation πΈπΈ[ππ|ππ = π¦π¦]. Solution: β 1 1 π₯π₯ 1 π₯π₯ 2 πΈπΈ [ππ|ππ = π¦π¦] = π₯π₯ππππ |ππ (π₯π₯|π¦π¦) ππππ = ππππ = β ββ 1βπ¦π¦ π¦π¦ π¦π¦ 2 1βπ¦π¦ ππ β (ππ β ππ)ππ ππππ β ππππ ππ β ππ ππ = = = = ππ β ππππ ππππ ππ ππ 4. Let ππ be an exponential random variable with parameter ππ, and let ππ = ππ +1. Determine the PDF ππππ (π¦π¦). Solution: Using the formula for the PDF of ππ = ππππ + ππ derived in class 1 π¦π¦ β ππ ππππ (π¦π¦) = ππππ |ππ| ππ with ππ = ππ = 1, we have ππππ (π¦π¦) = ππππ (π¦π¦ β 1) ππππβππ(ππβππ) if ππ β ππ β₯ ππ = ππ ππ β ππ < ππ ππππππ β ππβππππ if ππ β₯ ππ = ππ ππ < ππ Alternate Solution: Using the two-step process, we have πΉπΉππ (π¦π¦) = ππ(ππ β€ π¦π¦) = ππ(ππ + 1 β€ π¦π¦) = ππ (ππ β€ π¦π¦ β 1) = πΉπΉππ (π¦π¦ β 1) Differentiating with respect to π¦π¦ gives ππππ (π¦π¦) = ππππ (π¦π¦ β 1) ππππβππ(ππβππ) if ππ β ππ β₯ ππ = ππ ππ β ππ < ππ ππππππ β ππβππππ if ππ β₯ ππ = ππ ππ < ππ 5. Alice is at the casino again, with a choice of two games. The first returns winnings (positive or negative) that are normally distributed with parameters ππ = 1 and ππ = 2. The second is uniformly distributed with winnings in the range β1 to 2. (All amounts are in dollars.) She flips a coin with ππ(head) = ππ to decide which game to play. If heads, she plays the first game, and if tails, she plays the second. Determine her expected winnings, in terms of ππ. Solution: Let ππ be the amount of money Alice wins, and let π΄π΄ be the event that the coin flip is heads. We are given that ππ(π΄π΄) = ππ and ππ(π΄π΄ππ ) = 1 β ππ. We also know that πΈπΈ [ππ|π΄π΄] = 1 and πΈπΈ [ππ|π΄π΄ππ ] = 1/2. The total expectation theorem now gives πΈπΈ [ππ] = ππππ [ππ|π΄π΄] + (1 β ππ)πΈπΈ[ππ|π΄π΄ππ ] 1 = ππ β 1 + (1 β ππ) β 2 ππ + ππ = ππ 6. Let ππ be a normal random variable with variance 1, and with mean another random variable ππ. Suppose ππ is continuous uniform on the interval [1, 3]. a. Find the PDF ππππ (π¦π¦). Solution: We are given that 1/2 if 1 β€ π₯π₯ β€ 3 ππππ (π₯π₯ ) = 0 otherwise and 1 2/2 ππ β(π¦π¦βπ₯π₯) if 1 β€ π₯π₯ β€ 3 and π¦π¦ β β ππππ|ππ (π¦π¦|π₯π₯ ) = β2ππ 0 otherwise Therefore β β ππππ (π¦π¦) = ππππ,ππ (π₯π₯, π¦π¦) ππππ = ππππ|ππ (π¦π¦|π₯π₯) β ππππ (π₯π₯ ) ππππ ββ ββ 3 1 ππ β(π₯π₯βπ¦π¦) 2/2 π’π’ = π₯π₯ β π¦π¦, ππππ = ππππ = ππππ substitute: π₯π₯ = 3 β π’π’ = 3 β π¦π¦ 2 β2ππ 1 π₯π₯ = 1 β π’π’ = 1 β π¦π¦ 3βπ¦π¦ 2 1 ππ βπ’π’ /2 = ππππ 2 β2ππ 1βπ¦π¦ ππ = π½π½(ππ β ππ) β π½π½(ππ β ππ) ππ b. Find the conditional PDF ππππ|ππ (π₯π₯|π¦π¦). Solution: Bayeβs rule gives us ππππ|ππ (π¦π¦|π₯π₯) β ππππ (π₯π₯ ) ππππ |ππ (π₯π₯|π¦π¦) = ππππ (π¦π¦) 1 β(π¦π¦βπ₯π₯)2/2 β§ ππ βͺ β2ππ if 1 β€ π₯π₯ β€ 3 and π¦π¦ β β = Ξ¦(3 β π¦π¦) β Ξ¦(1 β π¦π¦) β¨ βͺ β©0 otherwise c. Suppose we sample ππ and get ππ = 3. What is the probability that ππ β€ 2 ? Solution: 2 ππ(ππ β€ 2 | ππ = 3) = ππππ|ππ (π₯π₯|3) ππππ ββ 2 π’π’ = π₯π₯ β 3 2 1/β2ππ ππ β(π₯π₯β3) /2 ππππ = ππππ = ππππ substitute: 1 Ξ¦(0) β Ξ¦(β2) π₯π₯ = 2 β π’π’ = β1 π₯π₯ = 1 β π’π’ = β2 β1 2 β«β2 1/β2ππ ππ βπ’π’ /2 ππππ = Ξ¦ (0) β Ξ¦(β2) Ξ¦(β1) β Ξ¦(β2) = = ππ. ππππππππ Ξ¦(0) β Ξ¦(β2) d. Find πΈπΈ[ππ]. Solution: β πΈπΈ [ππ] = π¦π¦ β ππππ (π¦π¦) ππππ ββ 3 2/2 β 1 ππ β(π₯π₯βπ¦π¦) = π¦π¦ β ππππ ππππ by part (ππ) ββ 2 β2ππ 1 3 β 2/2 1 ππ β(π¦π¦βπ₯π₯) = π¦π¦ β ππππ ππππ the inner integral is π₯π₯ by inspection 2 β2ππ 1 ββ 3 3 1 1 π₯π₯ 2 1 = π₯π₯ ππππ = β = (9 β 1) = ππ 2 2 2 1 4 1 7. Let ππ and ππ be independent, jointly continuous random variables, where ππ is uniform on [ππ, ππ] and ππ is uniform on [ππ, ππ]. a. Write the PDFs ππππ (π₯π₯) and ππππ (π¦π¦). Solution: 1 ππππ (π₯π₯ ) = ππ β ππ if ππ β€ π₯π₯ β€ ππ 0 otherwise and 1 ππππ (π¦π¦) = ππ β ππ if ππ β€ π¦π¦ β€ ππ 0 otherwise b. Write the CDFs πΉπΉππ (π₯π₯) and πΉπΉππ (π¦π¦). Solution: 0 if π₯π₯ < ππ π₯π₯ β ππ πΉπΉππ (π₯π₯) = if ππ β€ π₯π₯ β€ ππ ππ β ππ 1 if π₯π₯ > ππ and 0 if π¦π¦ < ππ π¦π¦ β ππ πΉπΉππ (π¦π¦) = if ππ β€ π¦π¦ β€ ππ ππ β ππ 1 if π¦π¦ > ππ c. Let ππ = max(ππ, ππ). Determine the PDF ππππ (π§π§). (Assume ππ β€ ππ and ππ β€ ππ, so that the two intervals overlap.) Solution: Using the independence of ππ and ππ, πΉπΉππ (π§π§) = ππ(ππ β€ π§π§) = ππ(max(ππ, ππ) β€ π§π§) = ππ(ππ β€ π§π§, ππ β€ π§π§) = ππ(ππ β€ π§π§) β ππ(ππ β€ π§π§) = πΉπΉππ (π§π§) β πΉπΉππ (π§π§). From part (b) we have the following two cases. Case 1: ππ < ππ 0 π§π§ < max(ππ, ππ ) β§ βͺ (π§π§ β ππ)(π§π§ β ππ) max(ππ, ππ ) β€ π§π§ < ππ πΉπΉππ (π§π§) = (ππ β ππ)(ππ β ππ) β¨ π§π§ β ππ βͺ ππ β ππ ππ β€ π§π§ β€ ππ β©1 π§π§ > ππ Case 2: ππ β€ ππ 0 π§π§ < max(ππ, ππ ) β§ βͺ (π§π§ β ππ)(π§π§ β ππ) max(ππ, ππ ) β€ π§π§ < ππ πΉπΉππ (π§π§) = (ππ β ππ)(ππ β ππ) β¨ π§π§ β ππ βͺ ππ β ππ ππ β€ π§π§ β€ ππ β©1 π§π§ > ππ Differentiate with respect to π§π§ to obtain Case 1: ππ < ππ ππππ β (ππ + ππ) β§ π¦π¦π¦π¦π¦π¦(ππ, ππ) β€ ππ < ππ βͺ (ππ β ππ)(π π β ππ) ππππ (ππ) = ππ β¨ ππ β€ ππ β€ π π βͺ π π β ππ β© ππ otherwise Case 2: ππ β€ ππ ππππ β (ππ + ππ) β§ π¦π¦π¦π¦π¦π¦(ππ, ππ) β€ ππ < π π βͺ (ππ β ππ)(π π β ππ) ππππ (ππ) = ππ β¨ π π β€ ππ β€ ππ βͺ ππ β ππ β© ππ otherwise d. Let ππ = ππ + ππ. Determe the PDF ππππ (π§π§). Solution: By a formula derived in class, we have β ππππ (π§π§) = (ππππ β ππππ )(π§π§) = ππππ (π₯π₯ ) β ππππ (π§π§ β π₯π₯ ) ππππ ββ The integrand is 1/(ππ β ππ)(ππ β ππ ) and is non-zero if and only if both ππ β€ π₯π₯ β€ ππ and ππ β€ π§π§ β π₯π₯ β€ ππ i.e. ππ β€ π₯π₯ β€ ππ and π§π§ β ππ β€ π₯π₯ β€ π§π§ β ππ Hence min(ππ,π§π§βππ) 1 min(ππ, π§π§ β ππ ) β max(ππ, π§π§ β ππ ) ππππ (π§π§) = ππππ = (ππ β ππ)(ππ β ππ ) (ππ β ππ)(ππ β ππ ) max(ππ,π§π§βππ) The interval of integration is empty if and only if ππ < π§π§ β ππ or π§π§ β ππ < ππ. Therefore, it is non- empty if and only if both ππ β€ π§π§ β ππ and π§π§ β ππ β€ ππ, which is equivalent to ππ + ππ β€ π§π§ β€ ππ + ππ. Thus π¦π¦π¦π¦π¦π¦(ππ, ππ β ππ) β π¦π¦π¦π¦π¦π¦(ππ, ππ β π π ) ππππ (ππ) = if ππ + ππ β€ ππ β€ ππ + π π (ππ β ππ)(π π β ππ) ππ otherwise