RBSE Class 10 Maths Question Paper 2015 PDF

Summary

This is the 2015 RBSE class 10 mathematics question paper. This paper contains questions across different topics of the maths syllabus of class 10 and is geared towards students preparing for the exam. The paper is divided into different sections targeting different topics within the maths syllabus.

Full Transcript

RBSE Class 10 Maths Question Paper 2015 ŸÊ◊Ê¢∑§ Roll No. No. of Questions — 30 S—09—Mathematics No. of Printed Pages — 7 ◊ÊäÿÁ◊∑§ ¬⁄UˡÊÊ, 2015 SECONDARY EXAMINATION, 2015...

RBSE Class 10 Maths Question Paper 2015 ŸÊ◊Ê¢∑§ Roll No. No. of Questions — 30 S—09—Mathematics No. of Printed Pages — 7 ◊ÊäÿÁ◊∑§ ¬⁄UˡÊÊ, 2015 SECONDARY EXAMINATION, 2015 ªÁáÊà MATHEMATICS ‚◊ÿ — 3 41 ÉÊá≈U ¬ÍáÊÊZ∑§ — 80 ¬⁄UˡÊÊÁÕ¸ÿÊ¥ ∑§ Á‹∞ ‚Ê◊Êãÿ ÁŸŒ¸‡Ê — GENERAL INSTRUCTIONS TO THE EXAMINEES : 1. ¬⁄UˡÊÊÕ˸ ‚fl¸¬˝Õ◊ ¬Ÿ ¬˝‡Ÿ¬òÊ ¬⁄U ŸÊ◊Ê¢∑§ ÁŸflÊÿ¸Ã— Á‹π¥ – Candidate must write first his / her Roll No. on the question paper compulsorily. 2. ‚÷Ë ¬˝‡Ÿ ∑§⁄UŸ ÁŸflÊÿ¸ „Ò¥ – All the questions are compulsory. 3. ¬˝àÿ∑§ ¬˝‡Ÿ ∑§Ê ©UûÊ⁄U ŒË ªß¸ ©UûÊ⁄U ¬ÈÁSÃ∑§Ê ◊¥ „UË Á‹π¥ – Write the answer to each question in the given answer-book only. 4. Á¡Ÿ ¬˝‡ŸÊ¥ ◊¥ ÊãÃÁ⁄U∑§ πá«U „Ò¥U, ©UŸ ‚÷Ë ∑§ ©UûÊ⁄U ∞∑§ ‚ÊÕ „UË Á‹π¥ – For questions having more than one part, the answers to those parts are to be written together in continuity. 5. ¬˝‡Ÿ ¬òÊ ∑§ Á„UãŒË fl ¢ª˝¡Ë M§¬Ê¢Ã⁄U ◊¥ Á∑§‚Ë ¬˝∑§Ê⁄U ∑§Ë òÊÈÁ≈U / ¢Ã⁄U / Áfl⁄UÊœÊ÷Ê‚ „UÊŸ ¬⁄U Á„UãŒË ÷Ê·Ê ∑§ ¬˝‡Ÿ ∑§Ê „UË ‚„UË ◊ÊŸ¥ – If there is any error / difference / contradiction in Hindi and English versions of the question paper, the question of Hindi version should be treated valid. S—09—Maths. S – 4009 [ Turn over 2 6. πá«U ¬˝‡Ÿ ‚¢ÅÿÊ ¢∑§ ¬˝àÿ∑§ ¬˝‡Ÿ A 1 – 10 1 B 11 – 15 2 C 16 – 25 3 D 26 – 30 6 Part Question Nos. Marks per question A 1 – 10 1 B 11 – 15 2 C 16 – 25 3 D 26 – 30 6 7. ¬˝‡Ÿ ∑˝§◊Ê¢∑§ 28 fl 30 ◊¥ ÊãÃÁ⁄U∑§ Áfl∑§À¬ „Ò¥U – There are internal choices in Question Nos. 28 and 30. 8. ¬ŸË ©UûÊ⁄U ¬ÈÁSÃ∑§Ê ∑§ ¬ÎcΔUÊ¥ ∑§ ŒÊŸÊ¥ Ê⁄U Á‹Áπ∞ – ÿÁŒ ∑§Ê߸ ⁄U»§ ∑§Êÿ¸ ∑§⁄UŸÊ „UÊ, ÃÊ ©UûÊ⁄U-¬ÈÁSÃ∑§Ê ∑§ ÁãÃ◊ ¬ÎcΔUÊ¥ ¬⁄U ∑§⁄¥U ÊÒ⁄U ßã„¥U ÁÃ⁄U¿UË ‹ÊߟÊ¥ ‚ ∑§Ê≈U∑§⁄U ©UŸ ¬⁄U “⁄U»§ ∑§Êÿ¸” Á‹π Œ¥ – Write on both sides of the pages of your answer-book. If any rough work is to be done, do it on last pages of the answer-book and cross with slant lines and write ‘Rough Work’ on them. 9. ¬˝‡Ÿ ∑˝§◊Ê¢∑§ 26 ∑§Ê ‹πÊÁøòÊ ª˝Ê»§ ¬¬⁄U ¬⁄U ’ŸÊß∞ – Draw the graph of Question No. 26 on graph paper. π¢«U– A PART – A 1. ‚◊ÊãÃ⁄U üÊ…∏UË 7, 5, 3, 1, – 1, – 3,..... ∑§Ê ‚Êfl¸ ãÃ⁄U ôÊÊà ∑§ËÁ¡∞ – Write the common difference of the A.P. 7, 5, 3, 1, – 1, – 3,...... 2. Á’ãŒÈ ( – 5, 4 ) ∑§Ë x– ˇÊ ‚ ŒÍ⁄UË Á‹Áπ∞ – Write the distance of the point ( – 5, 4 ) from x-axis. 3. ⁄ÒUÁπ∑§ ‚◊Ë∑§⁄UáÊ ÿÈÇ◊ 4x + 2y = 5 ÃÕÊ x – 2y = 0 ∑§Ê „U‹ Á‹Áπ∞ – Write the solution of the pair of linear equations 4x + 2y = 5 and x – 2y = 0. 4. ÷ÊÖÿ ªÈáÊŸπá«U ÁflÁœ mÊ⁄UÊ 96 ÊÒ⁄U 404 ∑§Ê HCF ôÊÊà ∑§ËÁ¡∞ – Find the HCF of 96 and 404 by the Prime Factorisation Method. 5. ë¿UË ¬˝∑§Ê⁄U ‚ »¥§≈UË ªß¸ 52 ¬ûÊÊ¥ ∑§Ë ∞∑§ ªaÔUË ◊¥ ‚ ∞∑§ ¬ûÊÊ ßÄ∑§Ê Ÿ„UË¥ „UÊŸ ∑§Ë ¬˝ÊÁÿ∑§ÃÊ ôÊÊà ∑§ËÁ¡∞ – One card is drawn from a well-shuffled deck of 52 cards. Calculate the probability that the card will not be an ace. 6. ÿÁŒ K ( 5, 4 ) ⁄UπÊπ¢«U PQ ∑§Ê ◊äÿ Á’ãŒÈ „ÒU ÃÕÊU Q ∑§ ÁŸŒ¸‡ÊÊ¢∑§ ( 2, 3 ) „ÒU, ÃÊ P ∑§ ÁŸŒ¸‡ÊÊ¢∑§ ôÊÊà ∑§ËÁ¡∞ – If K ( 5, 4 ) is the mid-point of the line segment PQ and co-ordinates of Q are ( 2, 3 ), then find the co-ordinates of point P. 7. ÿÁŒ Á’ãŒÈ R ‚ O ∑§ãº˝ flÊ‹ Á∑§‚Ë flÎûÊ ¬⁄U RA fl RB S¬‡Ê¸ ⁄UπÊ∞° ¬⁄US¬⁄U θ ∑§ ∑§ÊáÊ ¬⁄U ¤ÊÈ∑§Ë „UÊ¥ ÃÕÊ ∠ AOB = 40˚ „UÊ ÃÊ ∑§ÊáÊ θ ∑§Ê ◊ÊŸ ôÊÊà ∑§⁄¥U – If tangents RA and RB from a point R to a circle with centre O are inclined to each other at an angle of θ and ∠ AOB = 40˚ then find the value of θ. S—09—Maths. S – 4009 3 8. 4 ‚◊Ë ÁòÊÖÿÊ flÊ‹ flÎûÊ ¬⁄U ÁSÕà Á∑§‚Ë Á’ãŒÈ ¬⁄U Á∑§ÃŸË S¬‡Ê¸ ⁄UπÊ Ê¥ ∑§Ë ⁄UøŸÊ ∑§Ë ¡Ê ‚∑§ÃË „ÒU ? How many tangents can be constructed to any point on the circle of radius 4 cm ? 9. 14 ‚◊Ë √ÿÊ‚ flÊ‹ flÎûÊ ∑§Ë ¬Á⁄UÁœ ôÊÊà ∑§ËÁ¡∞ – Find the circumference of a circle whose diameter is 14 cm. 10. ÁòÊÖÿÊ r flÊ‹ flÎûÊ ∑§ ∞∑§ ÁòÊÖÿπ¢«U, Á¡‚∑§Ê ∑§ÊáÊ ¢‡ÊÊ¥ ◊¥ θ „ÒU, øʬ ∑§Ë ‹ê’Ê߸ ôÊÊà ∑§ËÁ¡∞ – Write the length of an arc of a sector of circle with radius r and angle with degree measure θ. π¢«U – B PART – B 11. ÁŒπÊß∞ Á∑§sin 28˚ cos 62˚ + cos 28˚ sin 62˚ = 1. Show that sin 28˚ cos 62˚ + cos 28˚ sin 62˚ = 1. tan 67˚ 12. cot 23˚ ∑§Ê ◊ÊŸ ôÊÊà ∑§ËÁ¡∞ – tan 67˚ Find the value of. cot 23˚ 1 – tan 2 A 13. ÿÁŒ 3 cot A = 4, ÃÊ ∑§Ê ◊ÊŸ ôÊÊà ∑§ËÁ¡∞ – 1 + tan2 A 1 – tan 2 A If 3 cot A = 4, then evaluate. 1 + tan2 A 14. ∑§Ê߸ ’øŸ ∞∑§ πÊπ‹ œ¸ ªÊ‹ ∑§ Ê∑§Ê⁄U ∑§Ê „ÒU Á¡‚∑§ ™§¬⁄U ∞∑§ πÊπ‹Ê ’‹Ÿ äÿÊ⁄UÊÁ¬Ã „Ò –U œ¸ ªÊ‹ ∑§Ë ÁòÊÖÿÊ 7 ‚ ◊ Ë „ÒU ÊÒ⁄U ß‚ ’øŸ ( ¬ÊòÊ ) ∑§Ë ∑ȧ‹ ™°§øÊ߸ 13 ‚◊Ë „ÒU – ß‚ ’øŸ ∑§Ê ÊãÃÁ⁄U∑§ ¬ÎcΔUËÿ ˇÊòÊ»§‹ ôÊÊà ∑§ËÁ¡∞ – A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The radius of the hemisphere is 7 cm and the total height of the vessel is 13 cm. Find the inner surface area of the vessel. 15. Ê∑ΧÁà ◊¥ ∑§ÊáÊÊ¥ ∠OKS fl ∠ROP ∑§Ê ◊ÊŸ ôÊÊà ∑§ËÁ¡∞, ÿÁŒ ÁòÊ÷È¡ Δ OPR ~ Δ OSK ÃÕÊ ∠ POS = 125˚ ÊÒ⁄U ∠ PRO = 70˚ „ÒU – R P 70˚ O 125˚ K S S—09—Maths. S – 4009 [ Turn over 4 In the figure, Δ OPR ~ Δ OSK , ∠ POS = 125˚ and ∠ PRO = 70˚. Find the values of ∠ OKS and ∠ ROP. R P 70˚ O 125˚ K S π¢«U – C PART – C ⎡⎢ 1 – tan A ⎤⎥ 2 16. Á‚h ∑§ËÁ¡∞ Á∑§ ⎢⎣ 1 + cot A ⎥⎦ = tan 2 A. ⎡⎢ 1 – tan A ⎤⎥ 2 Prove that ⎢⎣ 1 + cot A ⎥⎦ = tan 2 A. 17. 3x 3 + x 2 + 2x + 5 ∑§Ê 1 + 2x + x 2 ‚ ÷ʪ ŒËÁ¡∞ – Divide 3x 3 + x 2 + 2x + 5 by 1 + 2x + x 2. 18. Á‚h ∑§ËÁ¡∞ Á∑§ ⎯√⎯2 ∞∑§ ¬Á⁄U◊ÿ ‚¢ÅÿÊ „ÒU – Prove that ⎯ √⎯2 is an irrational number. 19. A.P. 17, 15, 13,...... ∑§ Á∑§ÃŸ ¬Œ Á‹∞ ¡Ê∞° ÃÊÁ∑§ ©UŸ∑§Ê ÿÊª 81 „UÊ ? How many terms of the A.P. 17, 15, 13,...... must be taken, so that their sum is 81 ? 20. ∞∑§ ŸŒË ∑§ ¬È‹ ∑§ ∞∑§ Á’ãŒÈ ‚ ŸŒË ∑§ ‚ê◊Èπ Á∑§ŸÊ⁄UÊ¥ ∑§ flŸ◊Ÿ ∑§ÊáÊ ∑˝§◊‡Ê— 30˚ ÊÒ⁄U 45˚ „ÒU – ÿÁŒ ¬È‹ Á∑§ŸÊ⁄UÊ¥ ‚ 4 ◊Ë≈U⁄U ∑§Ë ™°§øÊ߸ ¬⁄U „UÊ, ÃÊ ŸŒË ∑§Ë øÊÒ«∏UÊ߸ ôÊÊà ∑§ËÁ¡∞ – From a point on a bridge across a river the angles of depression of the banks on opposite sides of the river are 30˚ and 45˚ respectively. If the bridge is at a height of 4 m from the banks, find the width of the river. 21. ŒË ªß¸ Ê∑ΧÁà ◊¥ O ∞∑§ flÎûÊ ∑§Ê ∑§ãº˝ „ÒU Á¡‚∑§ ’ÊsÔ Á’ãŒÈ K ‚ flÎûÊ ¬⁄U ŒÊ S¬‡Ê¸ ⁄UπÊ∞° KR, KS πË¥øË ªß¸ „Ò¥U, ÃÊ Á‚h ∑§ËÁ¡∞ Á∑§ KR = KS. S O K R S—09—Maths. S – 4009 5 In the given figure, O is the centre of a circle and two tangents KR, KS are drawn on the circle from a point K lying outside the circle. Prove that KR = KS. S O K R 22. 4 ‚◊Ë, 5 ‚◊Ë ÊÒ⁄U 6 ‚◊Ë ÷È¡Ê Ê¥ flÊ‹ ∞∑§ ÁòÊ÷È¡ ∑§Ë ⁄UøŸÊ ∑§⁄U ß‚∑§ ‚◊M§¬ ∞∑§ ãÿ ÁòÊ÷È¡ ∑§Ë ⁄UøŸÊ ∑§ËÁ¡∞ Á¡‚∑§Ë ÷È¡Ê∞° ÁŒÿ ªÿ ÁòÊ÷È¡ ∑§Ë ‚¢ªÃ ÷È¡Ê ∑§Ë 35 ªÈŸË „UÊ¥ – Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle 3 similar to it whose sides are time of the corresponding sides of the 5 given triangle. 23. 7 ‚◊Ë ÁòÊÖÿÊ flÊ‹ flÎûÊ ◊¥ ∑§ÊáÊ 120˚ ∑§ ‚¢ªÃ ŒËÉʸ ÁòÊÖÿπá«U ∑§Ê ˇÊòÊ»§‹ ôÊÊà ∑§ËÁ¡∞ – Find the area of corresponding major sector of a circle with radius 7 cm and angle 120˚. 24. 1 ‚◊Ë ÁòÊÖÿÊ ÊÒ⁄U 2 ‚◊Ë ‹ê’Ë ÃÊê’ ∑§Ë ∞∑§ ¿U«∏U ∑§Ê ∞∑§ ‚◊ÊŸ øÊÒ«∏UÊ߸ flÊ‹ 18 ◊Ë≈U⁄U ‹ê’ ∞∑§ ÃÊ⁄U ∑§ M§¬ ◊¥ ’Œ‹Ê ¡ÊÃÊ „ÒU – ÃÊ⁄U ∑§Ë ◊Ê≈UÊ߸ ôÊÊà ∑§ËÁ¡∞ – A copper rod of radius 1 cm and length 2 cm is drawn into a wire of length 18 m of uniform thickness. Find the thickness of the wire. 25. ŸË⁄U¡ ÊÒ⁄U œË⁄U¡ Á◊òÊ „Ò¥U – ©UŸ∑§ ¡ã◊ ÁŒfl‚ ∑§Ë ¬˝ÊÁÿ∑§ÃÊ∞° ôÊÊà ∑§ËÁ¡∞ — (i) ¡’ ¡ã◊ ÁŒfl‚ Á÷ÛÊ-Á÷ÛÊ „UÊ¥ (ii) ¡’ ¡ã◊ ÁŒfl‚ ‚◊ÊŸ „UÊ – Neeraj and Dheeraj are friends. Find the probability of their birthdays when (i) birthdays are different. (ii) birthdays are same. π¢«U – D PART – D 26. 5 ‚flÊ¥ ÊÒ⁄U 3 ‚ãÃ⁄UÊ¥ ∑§Ê ∑ȧ‹ ◊ÍÀÿ 35 L§¬ÿ „ÒU ¡’Á∑§ 2 ‚flÊ¥ ÊÒ⁄U 4 ‚ãÃ⁄UÊ¥ ∑§Ê ∑ȧ‹ ◊ÍÀÿ 28 L§¬ÿ „ÒU – ß‚ ‚◊SÿÊ ∑§Ê ’Ë¡ªÁáÊÃËÿ M§¬ ◊¥ √ÿQ§ ∑§⁄U ª˝Ê»§ ÁflÁœ ‚ „U‹ ∑§ËÁ¡∞ – The cost of 5 apples and 3 oranges is Rs. 35 and the cost of 2 apples and 4 oranges is Rs. 28. Formulate the problem algebraically and solve it graphically. S—09—Maths. S – 4009 [ Turn over 6 27. ∞∑§ ◊Ê≈U⁄U ’Ê≈U Á¡‚∑§Ë ÁSÕ⁄U ¡‹ ◊¥ øÊ‹ 18 Á∑§◊Ë / ÉÊá≈UÊ „ÒU – ©U‚ ’Ê≈U Ÿ 12 Á∑§◊Ë œÊ⁄UÊ ∑§ ¬˝ÁÃ∑ͧ‹ ¡ÊŸ ◊¥, fl„UË ŒÍ⁄UË œÊ⁄UÊ ∑§ ŸÈ∑ͧ‹ ¡ÊŸ ∑§Ë ¬ˇÊÊ 12 ÉÊá≈UÊ Áœ∑§ ‹ÃË „ÒU – œÊ⁄UÊ ∑§Ë øÊ‹ ôÊÊà ∑§ËÁ¡∞ – 1 The speed of a boat in still water is 18 km/h. It takes an hour extra 2 in going 12 km upstream instead of going the same distance downstream. Find the speed of the stream. 28. Êÿà ABCD ∑§ ãŒ⁄U ÁSÕà O ∑§Ê߸ Á’ãŒÈ „ÒU, Á‚h ∑§ËÁ¡∞ — OB 2 + OD 2 = OA 2 + OC 2 A D P R O B C O is any point inside rectangle ABCD. Prove that OB 2 + OD 2 = OA 2 + OC 2 A D P R O B C ÕflÊ PK PT ÁŸêŸ ◊¥ ŒË ªß¸ Ê∑ΧÁà ◊¥KS = TR „Ò¥U ÃÕÊ ∠ PKT = ∠ PRS „ÒU – Á‚h ∑§ËÁ¡∞ Á∑§ Δ PSR ∞∑§ ‚◊Ám’Ê„ÈU ÁòÊ÷È¡ „ÒU – P K T S R S—09—Maths. S – 4009 7 PK PT In the given figure, = and ∠ PKT = ∠ PRS. Prove that Δ PSR KS TR is an isosceles triangle. P K T S R 29. K ∑§Ê ◊ÊŸ ôÊÊà ∑§ËÁ¡∞, ÿÁŒ Á’ãŒÈ A ( 2, 3 ), B ( 4, k ) ÊÒ⁄U C ( 6, – 3 ) ‚¢⁄UπË „ÒU – Find the value of k if the points A ( 2, 3), B ( 4, k ) and C ( 6, – 3 ) are collinear. 30. ÁŸêŸ ’¢≈UŸ ∑§Ê ∑§ÁÀ¬Ã ◊Êäÿ ◊ÊŸ∑§⁄U ◊Êäÿ x– ôÊÊà ∑§ËÁ¡∞ — flª¸ ¢Ã⁄UÊ‹ 10 – 25 25 – 40 40 – 55 55 – 70 70 – 85 85 – 100 ’Ê⁄¢U’Ê⁄UÃÊ 2 3 7 5 6 7 ÕflÊ ÁŸêŸ ’¢≈UŸ ∑§Ê ’„ÈU‹∑§ ôÊÊà ∑§ËÁ¡∞ — flª¸ ¢Ã⁄UÊ‹ 0 – 20 20 – 40 40 – 60 60 – 80 80 – 100 100 – 120 ’Ê⁄¢U’Ê⁄UÃÊ 10 35 52 61 38 20 – In the following distribution calculate mean x from assumed mean : Class- 10 – 25 25 – 40 40 – 55 55 – 70 70 – 85 85 – 100 interval Frequency 2 3 7 5 6 7 OR Find the mode of the following distribution : Class- 0 – 20 20 – 40 40 – 60 60 – 80 80 – 100 100 – 120 interval Frequency 10 35 52 61 38 20 S—09—Maths. S – 4009 [ Turn over

Use Quizgecko on...
Browser
Browser