Quadratic Functions 1 - Vertex Form PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document provides an overview of quadratic functions, focusing on vertex form, graphing. It includes different quadratic equation examples and tasks.
Full Transcript
# Degree: 2 Quadratic Functions ## Standard Form: $y = ax^2 + bx + c$ - Graph: Parabola - Opens **upward** if $a > 0$ - Opens **downward** if $a < 0$ - **a** determines the opening ## Is $y = (x - 4)(x + 3)$ a quadratic function? Yes! - $y = x^2 + 3x - 4x -12$ - $y = x^2 - x - 12$ - If **a** is...
# Degree: 2 Quadratic Functions ## Standard Form: $y = ax^2 + bx + c$ - Graph: Parabola - Opens **upward** if $a > 0$ - Opens **downward** if $a < 0$ - **a** determines the opening ## Is $y = (x - 4)(x + 3)$ a quadratic function? Yes! - $y = x^2 + 3x - 4x -12$ - $y = x^2 - x - 12$ - If **a** is positive, the parabola opens up ## Parts of a Parabola - **Vertex (p, q):** the lowest point (minimum) or highest point (maximum) - **y-intercept** - **x-intercept** - **Line of symmetry** ## Vertex Form: $y = ±(x - p)^2 + q$ - **±** determines the opening - **(p, q)** is the vertex ## $y = (x - 4)^2 + 3$ (Example 1) - Opening: **upward** - Vertex: **(4, 3)** - No **x-intercept** - **y-intercept**: let $x = 0$ * $y = (0 - 4)^2 + 3$ * $y = 19$ * Therefore, the **y-intercept** is 19. - Line of symmetry: $x = 4$ | # | Equation | P | q | Vertex (p,q) | Line of Symmetry (x=p) | Number of x-intercepts | | :---: | :---------------: | :---: | :---: | :---------------- : | :-------------------------: | :------------------------: | | 1 | $ y = -(x + 1)^2 + 3$ | -1 | 3 | (-1, 3), max | x = -1 | 2 | | 2 | $ y = -(x-2)^2 - 5$ | 2 | -5 | (2, -5), max | x = 2 | 0 | | 3 | $ y = (x + 4)^2$ | -4 | 0 | (-4, 0), min | x = -4 | 1 | | 4 | $ y = (x - 5)^2 - 1$ | 5 | -1 | (5, -1), min | x = 5 | 2 | | 5 | $ y = -x^2 + 3$ | 0 | 3 | (0, 3), max | x = 0 | 2 | | 6 | $ y = -(x - \frac{3}{4})^2 + \frac{7}{16}$ | $\frac{3}{4}$ | $\frac{7}{16}$ | ($\frac{3}{4}$, $\frac{7}{16}$), max | $x = \frac{3}{4}$ | 2 | ## Sketch the graph of $y = (x-1)^2 - 4$ a) Opening: **up** b) Vertex: **V(1, -4)** c) y-intercept: let $x = 0$ * $y = (0 - 1)^2 - 4$ * $y = -3$ * Therefore, the **y-intercept** is (-3). d) Let $y = 0$ * $0 = (x - 1)^2 -4$ * $±√4 = (x - 1)^2$ * $±2 = x - 1$ * $1 ± 2 = x$ * $x = 3, x = -1$ * Therefore, the **x-intercepts** are 3 and -1. e) Line of symmetry: $x = 1$ ## Sketch $y = -(x + 5)^2 + 1$ a) Opening: **downward** b) Vertex: **(-5, 1)** c) y-intercept: let $x = 0$ * $y = -(0 + 5)^2 + 1$ * $y = - 25 + 1$ * $y = -24$ * Therefore, the **y-intercept** is -24. d) x-intercept: let $y = 0$ * $0 = -(x + 5)^2 + 1$ * $(x + 5)^2 = 1$ * $x + 5 = ±1$ * $x = -5 ±1$ * $x = -4, x = -6$ * Therefore, the **x-intercepts** are -4 and -6.