A Level Mathematics - Radians - Year 2 - PDF

Summary

This document is a past paper from Dixons Sixth Form Academy, covering the topic of radians for A Level Mathematics, Year 2, and contains questions on arc length, area, and trigonometric functions.

Full Transcript

A Level Mathematics Year 2 - Pure RADIANS EDEXCEL A-LEVEL SPECIFICATION 5.1 Radian Measure 2๐œ‹ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  = 360ยฐ 2๐œ‹ ๐‘ = 360ยฐ ๐œ‹ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  = 180ยฐ รท 2๐œ‹ รท 2๐œ‹...

A Level Mathematics Year 2 - Pure RADIANS EDEXCEL A-LEVEL SPECIFICATION 5.1 Radian Measure 2๐œ‹ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  = 360ยฐ 2๐œ‹ ๐‘ = 360ยฐ ๐œ‹ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  = 180ยฐ รท 2๐œ‹ รท 2๐œ‹ ๐‘ 180ยฐ ๐œ‹ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  = 90ยฐ 1 = 2 ๐œ‹ ๐œ‹ 180 ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  = 60ยฐ ร— 3 ๐œ‹ ๐œ‹ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  = 45ยฐ 4 3๐œ‹ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  ๐ท๐‘’๐‘”๐‘Ÿ๐‘’๐‘’๐‘  ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  = 270ยฐ 2 180 รท ๐œ‹ EXAMPLE 1 Convert the following angles into degrees. 2๐œ‹ a) ๐‘Ÿ๐‘Ž๐‘‘ 8 4๐œ‹ b) ๐‘Ÿ๐‘Ž๐‘‘ 15 EXAMPLE 2 Convert the following angles into radians. Leave your answer in terms of ๏ฐ. a) 150ยฐ b) 110ยฐ EXAMPLE 3 Find the answers to 2 decimal places. a) sin(0. 3๐‘ ) b) tan(2๐‘ ) 5.1 Radian Measure EXAMPLE 4 Sketch the graph of y = sin ๐‘ฅ for 0 โ‰ค ๐‘ฅ โ‰ค 2๐œ‹ ๐‘ฆ 1 0.5 ๐‘ฅ ๐œ‹ ๐œ‹ 3๐œ‹ 2๐œ‹ 2 2 -0.5 -1 EXAMPLE 5 Sketch the graph of y = cos (๐‘ฅ + ๐œ‹) for 0 โ‰ค ๐‘ฅ โ‰ค 2๐œ‹ ๐‘ฆ 1 0.5 ๐‘ฅ ๐œ‹ ๐œ‹ 3๐œ‹ 2๐œ‹ 2 2 -0.5 -1 5.1 Radian Measure YOU NEED TO LEARN THESE EXACT VALUES ๐œ‹ 1 ๐œ‹ 3 ๐œ‹ 3 sin = cos = tan = 6 2 6 2 6 3 (30ยฐ) (30ยฐ) (30ยฐ) ๐œ‹ 3 ๐œ‹ 1 ๐œ‹ sin = cos = tan = 3 3 2 3 2 3 (60ยฐ) (60ยฐ) (60ยฐ) ๐œ‹ 2 ๐œ‹ 2 ๐œ‹ sin = cos = tan =1 4 2 4 2 4 (45ยฐ) (45ยฐ) (45ยฐ) EXAMPLE 6 Find the exact values of: 4๐œ‹ โˆ’7๐œ‹ (a) cos (b) sin 3 6 EXERCISE 5A page 116 and EXERCISE 5B page 118 5.1 Radian Measure PRACTICE 5.2 Arc Length ๐’ ๐’ = ๐’“๐œฝ ๐‘™ = ๐‘Ž๐‘Ÿ๐‘ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐’“ ๐’“ ๐‘Ÿ = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐œฝ ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘š๐‘’๐‘Ž๐‘ ๐‘ข๐‘Ÿ๐‘’๐‘‘ ๐‘–๐‘› ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  EXAMPLE 7 ๐‘จ The diagram shows a sector AOB. The perimeter of the sector is twice the ๐‘ถ length of the arc AB. Find the size of angle AOB. ๐‘ฉ 5.2 Arc Length EXAMPLE 8 The diagram shows a triangular garden, PQR, with PQ = 12m, PR = 7m and โˆ QPR=0.5 radians. The curve SR is a small path separating the shaded patio area and lawn and in an arc of a circle with centre at P and radius 7m. Find: a) The length of the path SR. b) The perimeter of the shaded patio, giving your answer to 3 significant figures. 5.2 Arc Length EXAMPLE 9 The border of a garden pond consists of a straight edge AB of length 2.4m and a curved part C as shown in the diagram. The curved part is an arc of a circle, centre O and radius 2m. Find the length of C. 5.2 Arc Length PRACTICE EXERCISE 5C pages 120 - 122 5.2 Arc Length PRACTICE EXERCISE 5C pages 120 - 122 5.3 Area of Sectors and Segments 1 ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘Ž ๐‘ ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘Ÿ 2 ๐œƒ 2 ๐’“ ๐’“ ๐‘Ÿ = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐œฝ ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘š๐‘’๐‘Ž๐‘ ๐‘ข๐‘Ÿ๐‘’๐‘‘ ๐‘–๐‘› ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘  1 ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘š๐‘–๐‘›๐‘œ๐‘Ÿ ๐‘ ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘Ÿ 2 ๐œƒ 2 1 = ๐‘Ÿ2๐‘ฅ 2 1 ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘—๐‘œ๐‘Ÿ ๐‘ ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘Ÿ 2 ๐œƒ 2 1 = ๐‘Ÿ 2 (2๐œ‹ โˆ’ ๐‘ฅ) 2 ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘ ๐‘’๐‘”๐‘š๐‘’๐‘›๐‘ก (shaded region) 1 1 ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘Ž ๐‘ ๐‘’๐‘”๐‘š๐‘’๐‘›๐‘ก = ๐‘Ÿ 2 ๐œƒ โˆ’ ๐‘Ÿ 2 ๐‘ ๐‘–๐‘›๐œƒ 2 2 ๐‘Ÿ 1 ๐‘Ÿ ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘Ž ๐‘ ๐‘’๐‘”๐‘š๐‘’๐‘›๐‘ก = ๐‘Ÿ 2 (๐œƒ โˆ’ ๐‘ ๐‘–๐‘›๐œƒ) 2 ๐œƒ 5.3 Area of Sectors and Segments EXAMPLE 10 A plot of land is in the shape of a sector of a circle of radius 55m. The length of fencing that is erected along the edge of the plot to enclose the land is 176m. Calculate the area of the plot of land ๐‘จ 55๐’Ž ๐œฝ ๐‘ถ 55๐’Ž ๐‘ฉ EXAMPLE 11 ๐œƒ In the diagram above, OAB is a sector of a circle, radius 4m. The chord AB is 5m long. Find the area of the shaded segment. 5.3 Area of Sectors and Segments EXAMPLE 12 In the diagram, AD and BC are arcs of circles with centre O, such that ๐‘‚๐ด = ๐‘‚๐ท = ๐‘Ÿ ๐‘๐‘š, ๐ด๐ต = ๐ท๐ถ = 8 ๐‘๐‘š and โˆ BOC = ๏ฑ radians. 6 a) Given that the area of the shaded region is 48๐‘๐‘š2 , show that ๐‘Ÿ = โˆ’ 4 ๐œƒ b) Given also that ๐‘Ÿ = 10ฮธ, calculate the perimeter of the shaded region. B 8 ๐‘๐‘š A ๐‘Ÿ ๐‘๐‘š O ๐œƒ ๐‘Ÿ ๐‘๐‘š D 8 ๐‘๐‘š C 5.3 Area of Sectors and Segments PRACTICE EXERCISE 5D pages 125-128 5.4 Solving Trigonometric Equations In Year 1, you learned how to solve trigonometric equations. You can solve trigonometric equations in radians the same way. EXAMPLE 13 Find the solutions of these equations in the interval 0 โ‰ค ฮธ โ‰ค 2ฯ€: a) sin ฮธ = 0.3 b) 4 cos ฮธ = 2 c) 5 tan ฮธ + 3 = 1 (90ยฐ) ๐œ‹ a) 2 S A y 1 ๐œ‹ 0 (180ยฐ) 2๐œ‹ (360ยฐ) 0 ฯ€ ฯ€ 3ฯ€ 2ฯ€ ฮธ T 3๐œ‹ C 2 2 2 (270ยฐ) โˆ’1 b) (90ยฐ) ๐œ‹ 2 S A ๐œ‹ 0 (180ยฐ) 2๐œ‹ (360ยฐ) T 3๐œ‹ C 2 (270ยฐ) 5.4 Solving Trigonometric Equations c) ๐‘ฆ ๐‘ฆ = tan ๐œƒ ฯ€ ฯ€ 3ฯ€ โˆ’2 2 ฯ€ 2 2ฯ€ ฮธ (90ยฐ) ๐œ‹ 2 S A ๐œ‹ 0 (180ยฐ) 2๐œ‹ (360ยฐ) T 3๐œ‹ C 2 (270ยฐ) 5.4 Solving Trigonometric Equations EXAMPLE 14 Solve the equation 17 cos ๐œƒ + 3 sin2 ๐œƒ = 13 in the interval 0 โ‰ค ๐œƒ โ‰ค 2๐œ‹. (90ยฐ) ๐œ‹ 2 S A ๐œ‹ 0 (180ยฐ) 2๐œ‹ (360ยฐ) T 3๐œ‹ C 2 (270ยฐ) y ๐‘ฆ = cos ๐œƒ 1 0 ฯ€ ฯ€ 3ฯ€ 2ฯ€ ฮธ 2 2 โˆ’1 5.4 Solving Trigonometric Equations EXAMPLE 15 3 Solve the equation sin 3๐œƒ = , in the interval 0 โ‰ค ๐œƒ โ‰ค 2๐œ‹ 2 y 0 ฯ€ 2ฯ€ 3ฯ€ 4ฯ€ 5ฯ€ 6ฯ€ X y = sin X (90ยฐ) ๐œ‹ 2 S A ๐œ‹ 0 (180ยฐ) 2๐œ‹ (360ยฐ) T 3๐œ‹ C 2 (270ยฐ) 5.4 Solving Trigonometric Equations PRACTICE EXERCISE 5E page 131-132 5.4 Solving Trigonometric Equations PRACTICE 5.5 Small Angle Approximation If ๏ฑ is small (is close to zero) and is measured in radians, then: sin ฮธ โ‰ˆ ฮธ sin3ฮธ โ‰ˆ 3ฮธ (5ฮธ)2 cos5ฮธ โ‰ˆ 1 โˆ’ 2 ฮธ2 sin10ฮธ โ‰ˆ 10ฮธ cos ฮธ โ‰ˆ 1 โˆ’ 2 (9ฮธ)2 tan2ฮธ โ‰ˆ 2ฮธ cos9ฮธ โ‰ˆ 1 โˆ’ 2 tan ฮธ โ‰ˆ ฮธ tan10ฮธ โ‰ˆ 10ฮธ etc. etc. EXAMPLE 16 If ๏ฑ is small, find the approximation of: ๐‘๐‘œ๐‘ ฮธโˆ’1 2 1โˆ’cosฮธ โˆ’1 a) b) ฮธ tan 2ฮธ tan ฮธโˆ’1 5.5 Small Angle Approximation EXAMPLE 17 7 + 2 cos 2๐œƒ a) If ๏ฑ is small, show that the expression can be written as 3 โˆ’ 2๐œƒ. tan 2๐œƒ+3 7 + 2 cos 2๐œƒ b) Hence write down the value of when ๏ฑ is small. tan 2๐œƒ+3 5.5 Small Angle Approximation EXAMPLE 18 a) Write ฮธ is small, show that the equation 32 cos 5ฮธ + 203 tan 10ฮธ = 182 can be written as 40ฮธ2 โˆ’ 203ฮธ + 15 = 0 b) Hence, find the solutions of the equation 32 cos 5ฮธ + 203 tan 10ฮธ = 182 c) Comment on the validity of your solutions. EXAMPLE 19 Given that ฮธ is small, use the small angle approximations to show that: ฮธ 4sin + 3๐‘๐‘œ๐‘  2 ฮธ โ‰ˆ ๐‘Ž + ๐‘ฮธ + ๐‘ฮธ2 2 where a, b and c are integers to be found. 5.5 Small Angle Approximation EXAM QUESTION The figure show a sector OABCO of a circle centre O. ๐ต Given that: OA = OC = 12cm Angle AOC = ๏ฑ radians ๐ด ๐ถ Area triangle OAC : Area segment ABC = 3:1 Show that: 12 ๐‘๐‘š 12 ๐‘๐‘š ๐œƒ 3๏ฑ - 4sin๏ฑ = 0 ๐‘‚ 5.5 Small Angle Approximation PRACTICE EXERCISE 5F page 134 EXAM QUESTIONS MIXED EXERCISE 5 pages 135-140

Use Quizgecko on...
Browser
Browser