Full Transcript

PARTE DE EDAFOLOGÍA TEMA 1 PREGUNTA 1 3. Factores de formación Bien, cabe ahora preguntarse qué factores serán los que condicionen los cambios en los materiales originales hasta formar el suelo. Esta claro que la roca, con su aporte masivo de minerales, será un factor importante en la formación...

PARTE DE EDAFOLOGÍA TEMA 1 PREGUNTA 1 3. Factores de formación Bien, cabe ahora preguntarse qué factores serán los que condicionen los cambios en los materiales originales hasta formar el suelo. Esta claro que la roca, con su aporte masivo de minerales, será un factor importante en la formación del suelo. ¿Pero qué otros factores influirán? Bueno, pues, como se ha mostrado en el punto 2, el suelo se forma además de a partir de una roca también a partir de unos restos vegetales y animales, por tanto, los organismos también constituyen un factor importante Si se comparan los suelos de la regiones húmedas y los de las regiones áridas salta a la vista el importante papel que juega el clima en la formación del suelo. Por otra parte, si analizamos la distribución de los suelos en una zona montañosa, observaremos como los suelos se encuentran escalonados en el paisaje (figura 2). Por último, es evidente que los cambios que se producen en el material para pasar de roca a suelo necesitan para desarrollarse que transcurra un determinado tiempo y este tiempo representa el quinto y último factor en la formación del suelo. Figura 2 El suelo puede ser considerado como una determinada combinación de sus factores formadores. Esta concepción del suelo fue expresada por primera vez por Jenny en 1940 según la siguiente ecuación: S = f (cl, o, r, p, t). representando "S" al suelo, "f" es una función , "cl" al clima, "o" a los organismos, "r" al relieve, "p" a la roca madre y "t" al tiempo. Esta ecuación es muy importante pues representa que para una determinada combinación de los factores formadores sólo puede existir un tipo de suelo (la misma combinación de factores originará siempre el mismo tipo de suelo independientemente del lugar geográfico en que se encuentre). Igualmente importante es que la magnitud de cualquiera de las propiedades del suelo, tales como pH, contenido en arcillas, porosidad, etc, está determinada por la combinación de estos factores formadores. Para evaluar la influencia de cada factor formador en las propiedades del suelo, basta en teoría con mantener constantes todos los demás, (hecho que frecuentemente es difícil de encontrar en la práctica). Así para ver la importancia del tiempo, la ecuación fundamental quedaría así: S= f(t) cl, o, r, p; siendo cl, o, r, p, = constantes. lo que quiere decir que la variación de cualquier propiedad del suelo depende exclusivamente del tiempo. Así, en el tiempo cero, suelo y material original se funden uno en el otro. Variando el tiempo irán apareciendo una serie de tipos de suelos, cada vez mas evolucionados, cuyas propiedades serán una consecuencia directa de la edad y obtendríamos lo que se llama una CRONOSECUENCIA. Por otra parte, si aislamos el factor roca madre (y mantenemos constantes a todos los demás) tendríamos una LITOSECUENCIA. Aislando el factor relieve obtendríamos una TOPOSECUENCIA o CATENA, si es el clima el único factor variable tenemos la CLIMOSECUENCIA y finalmente la acción de los organismos vendría representada en una BIOSECUENCIA. PREGUNTA 2 4 Procesos de formación 4.2 Procesos básicos Desde un punto de vista global en el esquema anterior de la formación del suelo se pueden definir tres acciones generales (figura 1): aporte, alteración y pérdidas del material geológico. aporte, alteración y pérdidas del material biológico. reorganización de ambos materiales por mezcla, agregación, translocación y diferenciación. Es decir, que los complejos procesos de transformación de un suelo se reducen a: adiciones, transformaciones, transferencias y pérdidas de materiales. Los cuales básicamente se reducen a sólo tres procesos: meteorización física, alteración química y translocación de sustancias. Estos procesos afectan tanto a la fase mineral como a la fase orgánica del suelo y constituyen lo que tradicionalmente se denomina como los procesos básicos o generales en la formación del suelo ya que actuan siempre en la formación de todos los suelos. 4.3 Procesos específicos En el apartado anterior acabamos de ver como la formación del suelo es la consecuencia del desarrollo de tres procesos básicos. Ahora bien, dependiendo de como se combinen en su actuación, es decir, dependiendo de la intensidad con que se desarrolle cada uno de ellos y del tipo de materiales a los que afecte preferentemente se definen determinados procesos de formación. Al actuar estos procesos específicos conducen siempre o a la formación de un tipo concreto de suelo (por ejemplo los podzoles son la consecuencia directa del proceso específico de podzolización) o bien confieren a distintos tipos de suelos una característica común a todos ellos (por ejemplo el proceso específico de iluviación de arcilla confiere a tipos muy diferentes de suelos un horizonte Bt, u horizonte árgico). A continuación revisaremos muy brevemente estos procesos edafogenéticos específicos y mostraremos las pruebas concretas que tenemos para demostrar que estos procesos se han desarrollado realmente en tipos concretos de suelos. 4.3.1 Procesos específicos de alteración Empardecimiento Representa la coloración parda que aparece en el suelo como consecuencia de la alteración de los minerales primitivos que liberan importantes cantidades de hierro. Se forman hidróxidos férricos más o menos hidratados y parcialmente cristalinos. Estos geles se unen a las arcillas (directamente o a través del humus) formando unos compuestos (a veces complejos organominerales) de color pardo. Es el proceso característico de las regiones templadas húmedas, y se pone claramente de manifiesto en el paisaje de estas regiones. Rubefacción La rubefacción es otro proceso que también queda patente en la coloración del perfil. Es un proceso ampliamente representado en las regiones de climas cálidos y templados, con un período de larga e intensa sequía. En estas condiciones los compuestos de hierro producidos como consecuencia de la alteración mineral, sufren una deshidratación total, cristalizando en forma de óxidos, tipo hematites. Como sabemos, la hematites presenta un color rojo vivo, que impregna el perfil, apareciendo la coloración típica de este proceso. Es pues, totalmente imprescindible para que se desarrolle este proceso, la existencia de una estación lo suficientemente seca como para producir la deshidratación de los compuestos de hierro. Gleyzación y Pseudogleyzación La formación de ambos procesos está condicionada a la existencia de capas de agua que de manera más o menos permanente saturan el suelo provocando una extensa hidromorfía. El agua al desplazarse lentamente por el suelo, se irá empobreciendo en oxígeno a la vez que se irá acidificando por efecto de la materia orgánica, con lo que también el ambiente se irá volviendo reductor, lo que repercutirá en el suelo, fundamentalmente en relación a los compuestos de hierro y de manganeso, ya que sus comportamientos edafoquímicos van a ser muy diferente dependiendo del potencial redox existente. El Fe, el elemento químico que mejor refleja las condiciones de hidromorfía de los suelos. En condiciones reductoras, se moviliza el Fe++, que es bastante móvil, sufriendo una redistribución por el perfil (pues las malas condiciones de drenaje impiden su total eliminación), acumulándose compuestos ferrosos, dándole al suelo su color gris-verdoso- azulado característico. Si las condiciones de saturación se mantienen constantes a lo largo del año, las condiciones reductoras predominan, el Fe se encuentra formando compuestos ferrosos, el perfil es de color gris verde azulado y se desarrolla la gleyzación. Vistos estos suelos al microscopio la masa basal aparece muy decolorada. Cuando el suelo atraviesa fases de desecación estacionales más o menos largas (por alternancia climática con fluctuación de la capa freática, por ejemplo), se origina una alternancia de condiciones oxidantes y reductoras, apareciendo abundantes manchas rojizas debidas a los compuestos férricos, junto a otras zonas verdosas y grises, apareciendo un horizonte abigarrado, y en este caso se habla de un proceso de pseudogleyzación (o sea, de gleyzación parcial). En muchas ocasiones, cuando el suelo no es tan impermeable, durante las fases reductoras, el Fe++ se moviliza y llega a ser eliminado del perfil quedando amplias zonas decoloradas, de colores grises más o menos claros, entre otras manchas rojizas. Estas coloraciones grises son debidas a la migración local del Fe++ y en las áreas rojizas el hierro se oxida y se acumula como Fe+++, representando a zonas localmente más oxidantes. El manganeso también se ve afectado por los cambios de humedad. Se reduce (pasando a la solución del suelo) mucho mas fácilmente que el hierro y para oxidarse (inmovilizandose) requiere unas condiciones oxidantes más fuertes que las que necesita el Fe. Es por tanto mucho más móvil. Tiende a eliminarse del suelo y cuando se acumula lo hace formando nódulos y películas (llamadas cutanes o revestimientos) de color negro. En definitiva, como acabamos de ver, parece existir una clara relación entre las condiciones hídricas de un perfil y sus rasgos morfológicos. Este hecho es muy importante ya que para reconocer la presencia de un exceso de agua en un suelo tendríamos que desarrollar complicadas y laboriosas medidas en el campo acerca de la profundidad y oscilaciones del nivel freático, del agua retenida, de su contenido en oxígeno disuelto, del potencial redox y de la temperatura edáfica, a lo largo del año y durante muchos años. Pero afortunadamente gran parte de todas estas condiciones las podemos deducir de un modo directo e instantáneo por la simple observación de los rasgos morfológicos y micromorfológicos del suelo. Por ello, el moteado de los horizontes se ha utilizado universalmente como signo de hidromorfía, si bien hemos de aclarar que a veces no se cumple totalmente la relación causa a efecto (es decir, exceso de agua a rasgos hidromorfos) por la existencia de determinadas condiciones, unas que impiden la reducción, como es el exceso de oxígeno disuelto en el agua o la ausencia de materia orgánica, y otras que dificultan la necesaria actividad microbiana, como sería una temperatura muy baja, o un pH excesivamente ácido. 4.3.2 Procesos específicos de translocación Lavado Se trata de un arrastre y eliminación de los iones disueltos en la solución del suelo. Constituye un proceso que se desarrolla con mayor o menor intensidad en todos los suelos, especialmente importante en los suelos de climas húmedos. Desbasificación Representa una consecuencia de la intensificación del proceso anterior, produciéndose el arrastre y eliminación de los iones adsorbidos en el complejo de cambio del suelo. Es decir que el complejo adsorbente se desatura (en las posiciones de cambio las bases de cambio, como el Ca, Mg, Na y K son sustituidos por hidrogeniones de cambio. Proceso igualmente especialmente representativo de los suelos de climas húmedos Salinización Es el resultado de la acumulación de sales solubles en el suelo (más solubles que el yeso; por ejemplo el NaCl o sal común). Se desarrolla típicamente en las regiones áridas y semiáridas, con regímenes de humedad del suelo deficitarios de agua, ya que dada la movilidad de estas sales en regímenes más húmedos tienden a lavarse y ser eliminadas del perfil. En estas regiones, con intensas evaporaciones, se produce un movimiento ascensional de las soluciones del suelo que ascienden capilarmente por la acción de esta evaporación o por la succión de las raíces, alcanzando, frecuentemente, estas soluciones la superficie del suelo y al evaporarse el agua se depositan las sales recubriendo la superficie con unas eflorescencias blanquecinas muy características. La alta concentración en sales de la solución del suelo es un factor fuertemente limitante para el desarrollo normal de la vegetación, siendo esta escasa y especializada (plantas halofíticas). Gypsificación Es el proceso responsable de la acumulación de yeso (CaSO4.2H2O). Forma acumulaciones blancas, parecidas a las de los carbonatos pero fácilmente distinguibles en el microscopio. Los cristales de yeso presentan formas rombales, con colores de interferencia grises (en la microfotorafía adjunta los cristales de yeso se encuentran incluídos en una matriz de carbonatos microcristalinos y de color amarillo/marrón). El yeso es más soluble que los carbonatos por lo que es muy móvil en el suelo. Es típico de las regiones más o menos áridas. Decarbonatación / carbonatación En los suelos carbonatados se produce una lixiviación particular que se llama decarbonatación. El proceso de decarbonatación representa la movilización de los carbonatos, que se disuelven bajo la forma de bicarbonatos solubles y migran con las aguas de percolación. La carbonatación se produce cuando los bicarbonatos pasan nuevamente a carbonatos insolubles y se acumulan. La disolución de los carbonatos se realiza por la acción de CO2 disuelto en el agua, según la siguiente ecuación: ------------------DECARBONATACION---------------> Ca CO3 + CO2 + H2O Ca++ + 2HCO3- 20-30%), saturados en agua por largos períodos. Es el horizonte de las turbas. O. Capa de hojarasca sobre la superficie del suelo (sin saturar agua; >35%), frecuente en los bosques. A. Formado en la superficie, con mayor % materia orgánica (transformada) que los horizontes situados debajo. Típicamente de color gris oscuro, más o menos negro, pero cuando contiene poca materia orgánica (suelos cultivados) puede ser claro. Estructura migajosa y granular. De mayor a menor grado de desarrollo E. Horizonte de fuerte lavado. Típicamente situado entre un A y un B. Con menos arcilla y óxidos de Fe y Al que el hor. A y el hor. B. Con menos materia orgánica que el A. Muy arenosos y de colores muy claros (altos values). Estructura de muy bajo grado de desarrollo (la laminar es típica de este horizonte). De mayor a menor grado de desarrollo B. Horizonte de enriquecimiento en: arcilla (iluvial o in situ), oxidos de Fe y Al (iluviales o in situ) o de materia orgánica (sólo si es de origen iluvial; no in situ), o también por enriquecimiento residual por lavado de los carbonatos (si estaban presentes en la roca). De colores pardos y rojos, de cromas (cantidad de color) más intensos o hue (tonalidad del color) más rojo que el material original = hor. C). Con desarrollo de estructura edáfica (típicamente en bloques angulares, subangulares, prismática). C. Material original. Sin desarrollo de estructura edáfica, ni rasgos edáficos. Blando, suelto, se puede cavar con una azada. Puede estar meteorizado pero nunca edafizado. R. Material original. Roca dura, coherente. No se puede cavar. 5.1.4 Letras sufijo más usuales Las letras minúsculas se usan como sufijos, para calificar a los horizontes principales especificando el carácter dominante de este horizonte. Las letras minúsculas van inmediatamente después de las letras mayúsculas. p horizonte arado, (de plow = arar). Prácticamente siempre referida al hor. A, (Ap). h acumulación de materia orgánica (h de humus). Normalmente por mezcla, en el horizonte A de suelos vírgenes (Ap y Ah son excluyentes) y sólo en los podzoles, por iluviación, en el horizonte B (Ah Bh). w horizonte B de alteración, (de weathering = meteorización) reflejada, con respecto al horizonte inferior, por: la arcilla (alto contenido, formada in situ), y/o el color (más rojo o más pardo), y/o la estructura (edáfica, no la de las rocas originales). Si en el material original había carbonatos el B se puede formar simplemente por lavado de estos carbonatos (hor. de enriquecimiento residual). Bw. t acumulación de arcilla iluvial, (de textura, o sea granulometría). Bt. k acumulación de carbonatos secundarios (k de kalcium). Llamado "ca" en otras terminologías). En B (frecuente), en C (muy frecuentemente) y a veces en A (Ak Bk Ck). y acumulación de yeso. Ay By Cy z acumulación de sales más solubles que el yeso (y + z = sa, en otras terminologías). Az Bz Cz. s acumulación de sesquióxidos, típico de los podzoles. Bs, también en los ferralsoles. g moteado (abigarrado) por reducción del Fe. Manchas de colores pardos/rojos y gris/verde. Hidromorfía parcial. Bg Cg y más raramente Ag. r reducción fuerte, como resultado de la influencia de la capa freática, colores gris verdoso / azulados (hidromorfía permanente, o casi). Cr Br. m fuertemente cementado. Frecuentemente por carbonatos (Bmk), pero en otras condiciones puede ser por materia orgánica (Bmh), por sesquióxidos de Fe (Bms) o por sílice (Bmq) b horizonte de suelo enterrado (paleosuelo) o bicíclico (p.e. Btb), (de buried = enterrado). TEMA 2 PREGUNTA 4 1.2 Composición y constitución de los minerales del suelo. El grupo más importante de los minerales del suelo es el de los silicatos. Todos los silicatos están constituidos por una unidad estructural común, un tetraedro de coordinación Si-O. El silicio situado en el centro del tetraedro de coordinación y rodeado de 4 oxígenos situados en los vértices. Este grupo tetraédrico se encuentra descompensado eléctricamente (SiO4)4-, por lo que los oxígenos se coordinan a otros cationes para compensar sus cargas (figura 2).Dependiendo del número de oxígenos que se coordinen a otros silicios se originan los grandes grupos de silicatos (es decir, según el número de vértices compartidos por tetraedros, que pueden ser 0, 1, 2, 3, y 4): Nº de oxígenos Tipo de Nombre del gran compartidos por agrupamiento grupo de silicato cada tetraedro de los tetraedros 0 aislados NESOSILICATOS 1 parejas SOROSILICATOS 2 anillos CICLOSILICATOS 2y3 cadenas INOSILICATOS 3 planos FILOSILICATOS 4 tridimensional TECTOSILICATOS Según sea la coordinación de los otros oxígenos que se unen a otros cationes distintos del silicio se forman los diferentes minerales dentro de cada gran grupo de silicatos. La estructura de estos minerales se origina por repetición de una celdilla unidad constituida por la asociación de tetraedros (aislados, o parejas , etc) y por los cationes que se sitúan entre los grupos tetraédricos (figura 4). Desde el punto de vista edáfico el gran grupo de los filosilicatos es la clase más importante, ya que a este grupo pertenecen la mayoría de los minerales de la fracción arcilla. Los filosilicatos están constituidos por el agrupamiento de los tetraedros compartiendo entre sí tres vértices (los tres del plano basal) formando planos. El cuarto vértice (el vértice superior) se une a un catión de coordinación octaédrica. Generalmente el catión octaédrico es Mg (capa llamada trioctédrica) o Al (capa dioctaédrica). De esta manera la estructura de estos minerales está formada por un apilamiento de capas de tetraedros y octaedros, formando estructuras laminares. Figura 5 Según el modelo de repetición se forman dos tipos de láminas con diferentes estructuras. La 1:1 con una capa de tetraedros y otra de octaedros y la 2:1 con dos capas de tetraedros que engloban a una de octaedros. Las capas de tetraedros y octaedros no están aisladas sino que comparten planos comunes en los que los oxígenos están unidos simultáneamente a un Si tetraédrico y a un Mg o Al octaédricos. En las capas tetraédricas y octaédricas se producen sustituciones entre cationes que cuando son de distinta valencia crean déficit de carga y para compensarlos son atraídos otros cationes que se introducen entre las láminas, son los llamados cationes interlaminares (figura 6). Dependiendo del déficit que se origine, de donde se produzca (capa tetraedrica u octaédrica) y de los cationes interlaminares atraídos, aparecen las distintas especies minerales: caolinitas, serpentinas, micas (moscovita, biotita, ilita), esmectitas (montmorillonita), vermiculita, clorita, sepiolita y vermiculita, principalmente. PREGUNTA 5 1.4 Mecanismos de procedencia Los minerales del suelo proceden directa o indirectamente de la roca madre. En función de su estabilidad los minerales pueden proceder de tres orígenes. 1.4.1 Herencia Minerales muy estables que pasan de la roca al suelo sin transformarse. Se les conoce como minerales primarios. Típicamente el cuarzo. 1.4.2 Alteración Minerales que se transforman durante la edafización. Es una alteración química en la cual el mineral primitivo pasa a otro secundario de una manera gradual y progresiva. Son minerales secundarios. Generalmente es posible establecer una secuencia de granos cada vez más alterados. Típicamente la transformación comienza en la superficie del grano y se va formando una recubierta de alteración que progresivamente va desplazandose hacia el interior del grano, llegando a invadirlo completamente. Muy frecuentemente el borde entre el mineral primitivo y el secundario está constituido por una zona de transición gradual entre ambos materiales. 1.4.3 Neoformación Cuando no exista (o si ha existido, no ha quedado ninguna prueba) relación genética entre un mineral edáfico y los minerales que existían en la roca. Como los del apartado anterior se les llama minerales secundarios, o edáficos. PREGUNTA 6 2 Materia orgánica. Relación C/N. Es un parámetro que evalúa la calidad de los restos orgánicos de los suelos. Cuando los restos orgánicos tienen una relación C/N de alrededor de 100 se dice que la razón es alta. Es el caso de las espículas de los pinos. Como contienen poco nitrógeno la actividad biológica es limitada. Se trata de una vegetación acidificante. Cuando C/N vale 30 los restos contienen suficiente nitrógeno para soportar una intensa actividad microbiana. En este caso la vegetación es mejorante. Cuando se incorporan los restos orgánicos al suelo se produce una intensa actividad microbiana, debido a la abundancia de restos fácilmente atacables. Después disminuye la actividad al ir quedando los restos más estables que sólo pueden ser descompuestos por los organismos más agresivos. Al principio actúan hongos, después las bacterias y por último los actinomicetos. Los restos orgánicos se transforman muy rápidamente comparados con la fracción mineral, por ello la velocidad de formación del horizonte A es mayor que la del horizonte Bw. La velocidad de descomposición depende del tipo de resto vegetal aportado y del medio. El fin inexorable de todos los compuestos orgánicos del suelo es su mineralización, por tanto sus destrucción. Pero muchos compuestos son lo suficientemente estables como para permanecer en cantidades suficientes en los suelos (su descomposición se compensa con los aportes). Los compuestos húmicos pueden tener una vida media de cientos a miles de años. 2.3 Sustancias húmicas Constituyen grupos heterogéneos que no están definidos por una composición determinada (como seria lo ideal) sino que se establecen en base a su comportamiento frente a determinados reactivos (según sean solubles o precipiten). El humus al tratarlo con una serie de reactivos extractantes se separa en una serie de fracciones. A cada fracción extraída se le da un nombre. Mediante los reactivos alcalinos, como la NaOH, se separan las huminas (que son insolubles) de los ácidos fúlvicos y húmicos, que son solubles. Estos últimos se separan mediante tratamiento ácido, generalmente ClH; los ácidos fúlvicos son solubles en ClH mientras que los húmicos son insolubles. El comportamiento frente al calcio diferencia dos fracciones de ácidos húmicos: ácidos húmicos pardos, solubles en calcio y ácidos húmicos grises, insolubles en calcio. 2.3.1 Acidos Fúlvicos Constituyen una serie de compuestos sólidos o semisólidos, amorfos, de color amarillento y naturaleza coloidal, fácilmente dispersables en agua y no precipitables por los ácidos, susceptibles en cambio de experimentar floculación en determinadas condiciones de pH y concentración de las soluciones de cationes no alcalinos. 2.3.2 Acidos húmicos Se presentan como sólidos amorfos de color marrón oscuro, generalmente insolubles en agua y en casi todos los disolventes no polares, pero fácilmente dispersables en las soluciones acuosas de los hidróxidos y sales básicas de los metales alcalinos, constituyendo un hidrosol que puede experimentar floculación mediante el tratamiento de los ácidos o los demás cationes. Desde el punto de vista estructural, su molécula parece estar constituida por un núcleo de naturaleza aromática más o menos condensado, así como por una región cortical con mayor predominio de radicales alifáticos, presentando en conjunto el carácter de heteropolímeros condensados. 2.3.3 Huminas Los compuestos húmicos no extraibles con reactivos alcalinos o huminas, constituyen un grupo de sustancias relativamente diferentes entre sí, cuyo origen puede tener lugar mediante la vía de herencia o la de neoformación. En el primer caso se encuentra la humina heredada. La humina heredada está constituida por partículas de densidad menor de 1,8 gr/cm3 pero que al contrario que la materia orgánica libre, con la que presenta otras diferencias de tipo químico, se hallan retenidas en los agregados de la fracción pesada del suelo mediante uniones que no se rompen por medio de la agitación mecánica común pero si por la de los ultrasonidos. Es mayoritaria en aquellos suelos que tienen una vegetación de difícil biodegradación. La fracción de humina heredada se encuentra débilmente ligada a la fracción arcilla de los suelos mediante una serie de enlaces lábiles que resisten la acción de la agitación mecánica clásica, pero no la de los ultrasonidos, que se utilizan para su extracción. Entre las huminas de neoformación se encuentran las huminas de insolubilización extraíbles, de naturaleza comparable a la de los ácidos húmicos y fúlvicos, pero irreversiblemente ligada a la fracción mineral por medio de enlaces que solo pueden ser destruidos en el laboratorio por medio de agentes químicos que rompen la unión con los silicatos. Así obtenemos la humina unida al hierro y la humina unida a la arcilla (Humina de insolubilización). Al finalizar el tratamiento obtenemos un residuo que se denomina humina de insolubilización no extraíble 2.5 Propiedades de la materia orgánica La materia orgánica tiene una gran importancia en la génesis y fertilidad del suelo. 2.5.1 Propiedades físicas. Confiere al suelo un determinado color oscuro Estructura. Da lugar a una buena estructura, estable. Las sustancias húmicas tienen un poder aglomerante, las cuales se unen a la fracción mineral y dan buenos flóculos en el suelo originando una estructura grumosa estable, de elevada porosidad, lo que implica que la permeabilidad del suelo sea mayor. Tiene una gran capacidad de retención de agua lo que facilita el asentamiento de la vegetación, dificultando la acción de los agentes erosivos La temperatura del suelo es mayor debido a que los colores oscuros absorben más radiaciones que los claros. Protege al suelo de la erosión. Los restos vegetales y animales depositados sobre la superficie del suelo lo protegen de la erosión hídrica y eólica. Por otra parte, como ya hemos mencionado, el humus tiene un poder aglomerante y da agregados que protegen a sus partículas elementales de la erosión. Protege al suelo de la contaminación. La materia orgánica adsorbe plaguicidas y otros contaminantes y evita que estos percolen hacia los acuíferos. 2.5.2 Propiedades químicas y fisicoquímicas. Las sustancias húmicas tienen propiedades coloidales, debido a su tamaño y carga (retienen agua, hinchan, contraen, fijan soluciones en superficie, dispersan y floculan). La materia orgánica es por tanto una fase que reacciona con la solución del suelo y con las raíces. Capacidad de cambio. La materia orgánica fija iones de la solución del suelo, los cuales quedan débilmente retenidos, están en posición de cambio, evita por tanto que se produzcan pérdidas de nutrientes en el suelo. La capacidad de cambio es de 3 a 5 veces superior a la de las arcillas, es por tanto una buena reserva de nutrientes. Influye en el pH. Produce compuestos orgánicos que tienden a acidificar el suelo. Influye en el estado de dispersión/floculación del suelo. Es un agente de alteración por su carácter ácido. Descompone los minerales. 2.5.3 Propiedades biológicas Aporte de nutrientes a los microorganismos y fuente de energía. TEMA 3 PREGUNTA 7 1.2 Estado energético del agua en el suelo El concepto de estado energético es tan importante o más que la cantidad de agua del suelo, pues predice el comportamiento, ya que el movimiento del agua está regulado por su energía. El agua en el suelo tiene varias energías y su medida se expresa en unidades de potencial (energía por unidad de masa). Los tipos de energía más importantes son: energía potencial (es la que tiene un cuerpo por su posición en un campo de fuerza), energía gravitacional (es la que tiene un cuerpo en función de su posición en el campo gravitacional), energía cinética (debida al movimiento), energía calorífica, energía química, energía atómica, energía eléctrica... La energía libre será la suma de todas estas energías. E. libre = Ep + Eg + Ec + Ecal + Eq + Ea + Ee +.. Como resultado de esa energía un cuerpo se puede desplazar o queda en reposo. El grado de energía de una sustancia representa una medida de la tendencia al cambio de ese cuerpo. Las sustancias sufren cambios para liberar y disminuir su energía. Al conjunto de fuerzas que retienen el agua del suelo se llama potencial de succión. Tiene un sentido negativo y es el responsable de las fuerzas de retención del agua dentro del suelo, es igual al potencial matricial más el osmótico. Frente a él está el potencial gravitacional que tiene un signo positivo y tiende a desplazar el agua a capas cada vez más profundas. Cuando el potencial de succión es mayor que el potencial gravitacional, el agua queda retenida en los poros, y cuando el potencial de succión es menor que el gravitacional, el agua se desplaza hacia abajo. Potencial matricial es debido a dos fuerzas, adsorción y capilaridad. La atracción por adsorción (Figura 1) se origina como consecuencia de superficie de sólidos descompensados eléctricamente. Las moléculas del agua actúan como dipolos y son atraídas, por fuerzas electrostáticas, sobre la superficie de las partículas de los constituyentes del suelo. Figura 1 Por otra parte en los microporos del suelo queda retenida el agua por fuerzas capilares (Figura 2). Figura 2 Potencial osmótico (Figura 3) es debido a las sales. Cuando se ponen en contacto dos líquidos de diferente concentración la disolución más concentrada atrae al agua para diluirse. Sólo es importante en el caso de suelos salinos. Figura 3 PREGUNTA 8 1.4 Tipos de agua en el suelo El agua del suelo puede clasificarse en una serie de términos diferentes, ya sea desde un punto de vista físico o desde el punto de vista agronómico. 1.4.1 Desde el punto de vista físico Agua higroscópica. Absorbida directamente de la humedad atmosférica, forma una fina película que recubre a las partículas del suelo. No está sometida a movimiento, no es asimilable por las plantas (no absorbible). Está fuertemente retenida a fuerzas superiores a 31 atmósferas, que equivale a pF de 4,5. Agua capilar. Contenida en los tubos capilares del suelo (figura 7). Dentro de ella distinguimos el agua capilar absorbible y la no absorbible. Figura 7 i) Agua capilar no absorbible. Se introduce en los tubos capilares más pequeños