Conic Sections: Equations and Types PDF

Summary

This document is about conic sections, such as circle, parabola ,ellipse and hyperbola and their equations. The document contains examples of identifying conic sections and practice questions. It is aimed at students learning precalculus or higher-level mathematics.

Full Transcript

𝑨𝒙 + π‘©π’š + π‘ͺ = 𝟎 π‘¨π’™πŸ + π‘©π’™π’š + π‘ͺπ’šπŸ + 𝑫𝒙 + π‘¬π’š + 𝑭 = 𝟎 𝟐 𝟐 𝑨𝒙 + π‘©π’™π’š + π‘ͺπ’š + 𝑫𝒙 + π‘¬π’š + 𝑭 = 𝟎 2 2 π‘₯ + 𝑦 + 3π‘₯ + 4 = 0 𝐴π‘₯ 2 2 + 𝐡π‘₯𝑦 + 𝐢𝑦 2 𝐡 βˆ’ 4𝐴𝐢 A =1...

𝑨𝒙 + π‘©π’š + π‘ͺ = 𝟎 π‘¨π’™πŸ + π‘©π’™π’š + π‘ͺπ’šπŸ + 𝑫𝒙 + π‘¬π’š + 𝑭 = 𝟎 𝟐 𝟐 𝑨𝒙 + π‘©π’™π’š + π‘ͺπ’š + 𝑫𝒙 + π‘¬π’š + 𝑭 = 𝟎 2 2 π‘₯ + 𝑦 + 3π‘₯ + 4 = 0 𝐴π‘₯ 2 2 + 𝐡π‘₯𝑦 + 𝐢𝑦 2 𝐡 βˆ’ 4𝐴𝐢 A =1 2 = 0 βˆ’4(1)(1) B =0 = βˆ’4 C =1 CIRCLE By Using Conic Discriminant: 2 π‘₯ + 10π‘₯ + 4 = 0 𝐴π‘₯ 2 2 + 𝐡π‘₯𝑦 + 𝐢𝑦 2 𝐡 βˆ’ 4𝐴𝐢 A =1 2 = 0 βˆ’4(1)(0) B =0 =0 C =0 PARABOLA By Using Conic Discriminant: 2 2 4π‘₯ + 4𝑦 βˆ’ 20π‘₯ βˆ’ 32𝑦 + 81 = 0 By Using Conic Discriminant: 2 2 25π‘₯ + 𝑦 βˆ’ 100π‘₯ βˆ’ 125 = 0 By Using Conic Discriminant: 2 2 9π‘₯ βˆ’ 𝑦 βˆ’ 54π‘₯ βˆ’ 8𝑦 βˆ’ 59 = 0 By Using Conic Discriminant: 2 𝑦 βˆ’ 72π‘₯ βˆ’ 153 = 0 By Using Conic Discriminant: 2 2 𝐴π‘₯ + 𝐡π‘₯𝑦 + 𝐢𝑦 + 𝐷π‘₯ + 𝐸𝑦 + 𝐹 = 0 β‰  β‰  2 2 π‘₯ + 𝑦 + 4π‘₯ βˆ’ 6𝑦 βˆ’ 12 = 0 2 2 25π‘₯ + 4𝑦 βˆ’ 50π‘₯ + 8𝑦 βˆ’ 71 = 0 By Observing the Quadratic Terms 2 2 9π‘₯ βˆ’ 4𝑦 βˆ’ 18π‘₯ βˆ’ 16𝑦 βˆ’ 43 = 0 2 π‘₯ + 8π‘₯ + 16𝑦 + 64 = 0 By Observing the Quadratic Terms 2 2 16π‘₯ + 81𝑦 βˆ’ 324𝑦 βˆ’ 972 = 0 2 2 16π‘₯ βˆ’ 4𝑦 + 24𝑦 βˆ’ 100 = 0 By Observing the Quadratic Terms 2 10𝑦 + 57 = βˆ’π‘¦ + 8π‘₯ 𝐡𝑦 πΆπ‘œπ‘›π‘–π‘ π·π‘–π‘ π‘π‘Ÿπ‘–π‘šπ‘–π‘›π‘Žπ‘›π‘‘ π‘„π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ π‘‡π‘’π‘Ÿπ‘šπ‘  2 2 3π‘₯ βˆ’ 5π‘₯ + 54 = 3(5 βˆ’ 3𝑦 ) 𝐡𝑦 πΆπ‘œπ‘›π‘–π‘ π·π‘–π‘ π‘π‘Ÿπ‘–π‘šπ‘–π‘›π‘Žπ‘›π‘‘ π‘„π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ π‘‡π‘’π‘Ÿπ‘šπ‘  π‘©πŸ βˆ’ πŸ’π‘¨π‘ͺ π‘Έπ’–π’‚π’…π’“π’‚π’•π’Šπ’„ π‘»π’†π’“π’Ž π‘»π’šπ’‘π’† 𝒐𝒇 π‘ͺπ’π’π’Šπ’„ π‘₯ + 5𝑦 2 βˆ’ 𝑦 + 7 = 0 4π‘₯ 2 βˆ’ 3π‘₯ = 𝑦 βˆ’ 4𝑦 2 + 25 3𝑦 2 βˆ’π‘₯ 2 = π‘₯ + 7𝑦 βˆ’ 4 2π‘₯ π‘₯ + 4 + 36 = 𝑦 βˆ’ 7 4π‘₯ 2 βˆ’ 5x + 23 = 2(10 βˆ’ 2𝑦 2 ) CIRCLE What is Circle? A circle is consist of all points on the plane equidistant from a RADIUS fixed point called the center. CENTER The distance from the center to any point on the circle is constant and is called the radius of the circle. 25 STANDARD FORM (𝒙 βˆ’ 𝒉) 𝟐 + (π’š βˆ’ π’Œ)𝟐 = 𝒓 𝟐 𝟐 𝟐 𝟐 𝒙 +π’š =𝒓 β„Ž & π‘˜ = π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  r = radius x & 𝑦 = π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’π‘  π‘œπ‘“ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 26 GENERAL EQUATION 𝑨𝒙 𝟐 + π‘ͺπ’šπŸ + 𝑫𝒙 + π‘¬π’š + 𝑭 = 𝟎 𝐴π‘₯ 2& = quadratic terms 𝐢𝑦 2 𝐷π‘₯ + 𝐸𝑦 = linear term F =any constant 27 Find the center and the radius of the equation. 𝒙 𝟐 + π’šπŸ = πŸ‘πŸ” center = (0,0) radius = 6 28 2023 CIRCLE 29 Find the center and the radius of the equation. (𝒙 + 𝟏)𝟐 + (π’š βˆ’ 𝟐)𝟐 =πŸ— center = (-1 , 2) radius = 3 30 Find the center and the radius of the equation. (𝒙 βˆ’ πŸ’)𝟐 + (π’š βˆ’ πŸ•)𝟐 = πŸπŸ“ center = (4 , 7) radius = 5 31 𝟐 𝟐 𝒙 + π’š = πŸ‘πŸ” 𝟐 𝟐 (𝒙 + πŸ•) +(π’š + πŸ–) = πŸ”πŸ’ Find the center 𝟐 𝟐 (𝒙 + 𝟏𝟎) +(π’š + πŸ—) = πŸπŸ“ and radius then graph. 𝟐 𝟐 (𝒙 + πŸ“) +(π’š βˆ’ 𝟏𝟎) = πŸ— (𝒙 + 𝟏)𝟐 +(π’š βˆ’ 𝟐)𝟐 = πŸπŸ” 𝟐 𝟐 (𝒙 βˆ’ πŸ‘) + π’š = πŸπŸ” 𝐺𝑒𝑑 π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘“π‘œπ‘Ÿ π‘₯. 𝐺𝑒𝑑 π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘“π‘œπ‘Ÿ 𝑦. 2 (π‘₯ βˆ’ 3) = 0 𝑦2 = 0 π‘Ÿ 2 = 16 (π‘₯ βˆ’ 3)2 = 0 𝑦2 = 0 π‘Ÿ 2 = 16 π‘₯βˆ’3=0 𝑦=0 π‘Ÿ=4 π‘₯=3 π‘ͺ = (πŸ‘, 𝟎) 𝒓=πŸ’ 33 CIRCLE 2023 (𝒙 + 𝟐 𝟏𝟏) +(π’š βˆ’ 𝟐 πŸ–) = πŸ”πŸ’ π‘ͺ𝒆𝒏𝒕𝒆𝒓 = (βˆ’πŸπŸ, πŸ–) π’“π’‚π’…π’Šπ’–π’” = πŸ– 34 CIRCLE 2023 (𝒙 βˆ’ 𝟐 πŸ“) βˆ’πŸ— = βˆ’(π’š + πŸ’)𝟐 (𝒙 𝟐 βˆ’ πŸ“) +(π’š + 𝟐 πŸ’) = πŸ— π‘ͺ𝒆𝒏𝒕𝒆𝒓 = (πŸ“, βˆ’πŸ’) π’“π’‚π’…π’Šπ’–π’” = πŸ‘ 35 CIRCLE 2023 (𝒙 βˆ’ 𝟐 𝟐) βˆ’πŸ– = βˆ’(π’š βˆ’ πŸ“)𝟐 (𝒙 𝟐 βˆ’ 𝟐) +(π’š βˆ’ 𝟐 πŸ“) = πŸ– π‘ͺ𝒆𝒏𝒕𝒆𝒓 = (𝟐, πŸ“) π’“π’‚π’…π’Šπ’–π’” = πŸ– 36 CIRCLE 2023 REDUCING CIRCLE’S EQUATION INTO STANDARD FORM 37 STANDARD FORM (𝒙 βˆ’ 𝒉) 𝟐 + (π’š βˆ’ π’Œ)𝟐 = 𝒓 𝟐 𝟐 𝟐 𝟐 𝒙 +π’š =𝒓 β„Ž & π‘˜ = π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  r = radius x & 𝑦 = π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’π‘  π‘œπ‘“ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 38 Find the equation having the Center at (0,0). Center at the origin and radius of 2 units. center = (0,0) 𝟐 𝟐 𝟐 𝒙 + π’š = 𝒓 r=2 𝟐 𝟐 𝟐 𝒙 +π’š =𝟐 𝒙 𝟐 + π’šπŸ =πŸ’ 39 CIRCLE 2023 Find the equation center at the origin and radius of 7 units. center = (0,0) 𝟐 𝟐 𝟐 𝒙 + π’š = 𝒓 r=7 𝟐 𝟐 𝟐 𝒙 +π’š =πŸ• 𝒙 𝟐 + π’šπŸ = πŸ’πŸ— 40 CIRCLE 2023 STANDARD FORM (𝒙 βˆ’ 𝒉) 𝟐 + (π’š βˆ’ π’Œ)𝟐 = 𝒓 𝟐 𝟐 𝟐 𝟐 𝒙 +π’š =𝒓 β„Ž & π‘˜ = π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  r = radius x & 𝑦 = π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’π‘  π‘œπ‘“ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 41 Write the equation of a circle centered at the (2, 4) and radius of 5 units. 𝟐 𝟐 𝟐 h=2 (𝒙 βˆ’ 𝒉) + (π’š βˆ’ π’Œ) = 𝒓 k=4 𝟐 𝟐 𝟐 r=5 (𝒙 βˆ’ 𝟐 ) + (π’š βˆ’ πŸ’) = πŸ“ 𝟐 𝟐 (𝒙 βˆ’ 𝟐 ) + (π’š βˆ’ πŸ’) = πŸπŸ“ 42 CIRCLE 2023 Find the equation of a circle centered at the (-7, 5) and radius of 10 units. 𝟐 𝟐 𝟐 h = -7 (𝒙 βˆ’ 𝒉) + (π’š βˆ’ π’Œ) = 𝒓 k=5 𝟐 𝟐 𝟐 r = 10 (𝒙 + πŸ• ) + (π’š βˆ’ πŸ“) = 𝟏𝟎 𝟐 𝟐 (𝒙 + πŸ• ) + (π’š βˆ’ πŸ“) = 𝟏𝟎𝟎 43 CIRCLE 2023 Find the equation of a circle centered at the (3, -6) and radius of 𝟏𝟏 units. 𝟐 𝟐 𝟐 h=3 (𝒙 βˆ’ 𝒉) + (π’š βˆ’ π’Œ) = 𝒓 k = -6 𝟐 𝟐 𝟐 r = 11 (𝒙 βˆ’ πŸ‘) + (π’š + πŸ”) = ( 𝟏𝟏) 𝟐 𝟐 (𝒙 βˆ’ πŸ‘) + (π’š + πŸ”) = 𝟏𝟏 44 CIRCLE 2023 The circle has a center at the origin and passing the point (-3,4). 𝒅= (π’™πŸ βˆ’ π’™πŸ )𝟐 +(π’šπŸ βˆ’ π’šπŸ )𝟐 DISTANCE FORMULA 𝐰𝐑𝐞𝐫𝐞: π’™πŸ , π’šπŸ 𝒂𝒓𝒆 π’™πŸ , π’šπŸ are the coordinates of the two points (0,0) (-3,4). 45 CIRCLE 2023 The circle has a center at the origin and passing the point (-3,4). 𝒅= (π’™πŸ βˆ’ π’™πŸ )𝟐 +(π’šπŸ βˆ’ π’šπŸ )𝟐 (0,0) (-3,4). 𝒅= (βˆ’πŸ‘ βˆ’ 𝟎)𝟐 +(πŸ’ βˆ’ 𝟎)𝟐 𝒅= 𝟐 (βˆ’πŸ‘) +(πŸ’) 𝟐 𝒅 = πŸ— + πŸπŸ” 𝒅 = πŸπŸ“ 𝒅 = πŸ“ π’–π’π’Šπ’•π’” 46 CIRCLE 2023 REDUCING TO STANDARD FORM 47 π’š 𝟐 βˆ’πŸπŸ’π’š + π’™πŸ βˆ’πŸ’π’™ + πŸ‘πŸ• = 𝟎 𝟐 (𝒙 βˆ’πŸ’π’™ + ___) + (π’š 𝟐 βˆ’ πŸπŸ’π’š + ___) = βˆ’πŸ‘πŸ• βˆ’πŸ’ βˆ’πŸπŸ’ = (βˆ’πŸ)𝟐 = πŸ’ = (βˆ’πŸ•)𝟐 = πŸ’πŸ— 𝟐 𝟐 𝟐 𝟐 (𝒙 βˆ’πŸ’π’™ + πŸ’) + (π’š βˆ’ πŸπŸ’π’š + πŸ’πŸ—) = βˆ’πŸ‘πŸ• + πŸ’ + πŸ’πŸ— 𝟐 𝟐 (𝒙 βˆ’ 𝟐) + (π’š βˆ’ πŸ•) = πŸπŸ” πŸπŸ” = πŸ’ π‘ͺ𝒆𝒏𝒕𝒆𝒓 = (𝟐 , πŸ•) π’“π’‚π’…π’Šπ’–π’” = πŸ’ 48 CIRCLE 2023 π’™πŸ + π’š 𝟐 βˆ’ πŸπŸ’π’™ + πŸ’π’š + πŸ’πŸ“ = 𝟎 𝟐 (𝒙 βˆ’πŸπŸ’π’™ + ___) + (π’š 𝟐 + πŸ’π’š + ___) = βˆ’πŸ’πŸ“ βˆ’πŸπŸ’ πŸ’ = (βˆ’πŸ•)𝟐 = πŸ’πŸ— = (𝟐)𝟐 = πŸ’ 𝟐 𝟐 𝟐 𝟐 (𝒙 βˆ’πŸπŸ’π’™ + πŸ’πŸ—) + (π’š + πŸ’π’š + πŸ’) = βˆ’πŸ’πŸ“ + πŸ’πŸ— + πŸ’ 𝟐 𝟐 (𝒙 βˆ’ πŸ•) + (π’š + 𝟐) = πŸ– πŸ–= πŸ’ βˆ™πŸ=𝟐 𝟐 π‘ͺ𝒆𝒏𝒕𝒆𝒓 = (πŸ• , βˆ’πŸ) π’“π’‚π’…π’Šπ’–π’” = 𝟐 𝟐 49 CIRCLE 2023 π’™πŸ + π’š 𝟐 + πŸ–π’™ βˆ’ πŸ’π’š βˆ’ πŸ“ = 𝟎 𝟐 (𝒙 + πŸ–π’™ + ___) + (π’š 𝟐 βˆ’ πŸ’π’š + ___) = πŸ“ πŸ– βˆ’πŸ’ = (πŸ’)𝟐 = πŸπŸ” = (βˆ’πŸ)𝟐 = πŸ’ 𝟐 𝟐 𝟐 𝟐 (𝒙 + πŸ–π’™ + πŸπŸ”) + (π’š βˆ’ πŸ’π’š + πŸ’) = πŸ“ + πŸπŸ” + πŸ’ 𝟐 𝟐 (𝒙 + πŸ’) + (π’š βˆ’ 𝟐) = πŸπŸ“ πŸπŸ“ = πŸ“ π‘ͺ𝒆𝒏𝒕𝒆𝒓 = (βˆ’πŸ’ , 𝟐) π’“π’‚π’…π’Šπ’–π’” = πŸ“ 50 CIRCLE 2023 Write the general equation of a circle with center (4, - 1) and radius of 7 units. 𝟐 𝟐 𝟐 (𝒙 βˆ’ 𝒉) + (π’š βˆ’ π’Œ) = 𝒓 h=4 𝟐 𝟐 𝟐 k = -1 (𝒙 βˆ’ πŸ’ ) + (π’š + 𝟏) = πŸ• r=7 𝒙 βˆ’ πŸ’ 𝒙 βˆ’ πŸ’ + π’š + 𝟏 π’š + 𝟏 = πŸ’πŸ— 𝟐 𝟐 𝒙 βˆ’ πŸ–π’™ + πŸπŸ” + π’š + πŸπ’š + 𝟏 = πŸ’πŸ— 𝟐 𝟐 𝒙 + π’š βˆ’ πŸ–π’™ + πŸπ’š + πŸπŸ• βˆ’ πŸ’πŸ— = 𝟎 𝟐 𝟐 𝒙 +π’š βˆ’ πŸ–π’™ + πŸπ’š βˆ’ πŸ‘πŸ = 𝟎 51 CIRCLE 2023 Write the general equation of a circle with center (-7, - 5) and radius of 9 units. (𝒙 βˆ’ 𝒉) 𝟐 + (π’š βˆ’ 𝟐 π’Œ) = π’“πŸ h = -7 𝟐 𝟐 𝟐 k = -5 (𝒙 + πŸ•) + (π’š + πŸ“) = πŸ— r=9 𝒙 + πŸ• 𝒙 + πŸ• + π’š + πŸ“ π’š + πŸ“ = πŸ–πŸ 𝟐 𝟐 𝒙 + πŸπŸ’π’™ + πŸ’πŸ— + π’š + πŸπŸŽπ’š + πŸπŸ“ = πŸ–πŸ 𝟐 𝟐 𝒙 + π’š + πŸπŸ’π’™ + πŸπŸŽπ’š + πŸ•πŸ’ βˆ’ πŸ–πŸ = 𝟎 𝟐 𝟐 𝒙 + π’š + πŸπŸ’π’™ + πŸπŸŽπ’š βˆ’ πŸ• = 𝟎 52 CIRCLE 2023 Find the general equation of a circle with center (6, 11) and radius of 10 units. (𝒙 βˆ’ 𝒉) 𝟐 + (π’š βˆ’ 𝟐 π’Œ) = π’“πŸ h=6 𝟐 𝟐 𝟐 k = 11 (𝒙 βˆ’ πŸ”) + (π’š βˆ’ 𝟏𝟏) = 𝟏𝟎 r = 10 𝒙 βˆ’ πŸ” 𝒙 βˆ’ πŸ” + π’š βˆ’ 𝟏𝟏 π’š βˆ’ 𝟏𝟏 = 𝟏𝟎𝟎 𝟐 𝟐 𝒙 βˆ’ πŸπŸπ’™ + πŸ‘πŸ” + π’š βˆ’ πŸπŸπ’š + 𝟏𝟐𝟏 = 𝟏𝟎𝟎 𝟐 𝟐 𝒙 + π’š βˆ’ πŸπŸπ’™ βˆ’ πŸπŸπ’š + πŸπŸ“πŸ• βˆ’ 𝟏𝟎𝟎 = 𝟎 𝟐 𝟐 𝒙 + π’š βˆ’ πŸπŸπ’™ βˆ’ πŸπŸπ’š + πŸ“πŸ• = 𝟎 53 CIRCLE 2023 PARABOLA WHAT IS A PARABOLA? The second commonly known conic section is the parabola. It is defined as a curve that has points which are equidistance from the fixed point and the given line. The shape of the curve of the parabola is similar to an elongated semi-circle 2023 PARABOLA 55 PARTS OF A PARABOLA 2024 PARABOLA 56 VERTEX (V) is the main point of the parabola which lies at the middle portion of the curve. It is also the midpoint of the fixed point of the curve and the given line. DIRECTRIX (DL) is a line which is outside and parallel to the parabola curve. FOCUS (F) it is another important point of the parabola that is located inside of the curve. The focus is also known as the fixed point of the parabola. FOCAL DISTANCE (a) is the length of space from the focus to the vertex. It is also the distance between the directrix line and the vertex. focal distance LATUS RECTUM (LR) is a chord that is parallel to the directrix line and intersecting the parabola at the point of focus. The end points of the latus rectum are defined as R1 and R2. The length of the latus rectum is always 4 times of the focal distance. The half of the latus rectum is called the semi latus rectum. AXIS OF THE PARABOLA also known as axis of symmetry because it is the line that divides the parabola into two equal parts. The axis of the parabola passes through the points of Vertex and Focus; and this line is perpendicular to the directrix and the latus rectum. axis of symmetry ECCENTRICITY (e) is the ratio of the distances from a fixed point to one of the points of the curve and from this point to the directrix line. Eccentricity value expresses the degree of roundness of the given curve. For a parabola, eccentricity value is always equal to 1. eccentricity value STANDARD FORM AND ANALYTICAL PROPERTY OF PARABOLA 2023 PARABOLA 64 IF THE VERTEX IS AT THE ORIGIN (0,0) 𝟐 𝟐 π’š = πŸ’π’‘π’™ 𝒙 = πŸ’π’‘π’š Horizontal Parabola Vertical Parabola If 4p >0 , opens to the If 4p >0 , opens upward right If 4p 0 , opens upward right If 4p

Use Quizgecko on...
Browser
Browser