Physics Derivations PDF
Document Details

Uploaded by PoisedPhotorealism5686
Tags
Summary
This document presents various derivations of physics concepts including Coulomb's law, electric fields from dipoles, Gauss' Law, and torque on dipoles. Also includes expressions for electric potential, and capacitance. It is suitable for high school and undergraduate physics studies.
Full Transcript
Here is the conversion of the text in the image to markdown format: ### 1. Express Coulomb's Law in Vector Form! - $F_{12} \frac{\vec{r_1}-\vec{r_2}}{|r_1-r_2|}$ $F_{12} = \frac{kq_1q_2(r_1-r_2)}{|r_1-r_2|^2}$ = $\frac{kq_1q_2}{|r_1-r_2|^2}$ $\frac{\vec{r_1}-\vec{r_2}}{|r_1-r_2|}$ $\frac{|r_1-r_2|}...
Here is the conversion of the text in the image to markdown format: ### 1. Express Coulomb's Law in Vector Form! - $F_{12} \frac{\vec{r_1}-\vec{r_2}}{|r_1-r_2|}$ $F_{12} = \frac{kq_1q_2(r_1-r_2)}{|r_1-r_2|^2}$ = $\frac{kq_1q_2}{|r_1-r_2|^2}$ $\frac{\vec{r_1}-\vec{r_2}}{|r_1-r_2|}$ $\frac{|r_1-r_2|}{|r_1-r_2|^2}$. Force applied by $F_{21}$: - = $F_{12} = \frac{kq_1q_2(r_1-r_2)}{|r_1-r_2|^3}$ $\vec{F_{21}} = \frac{kq_1q_2(\vec{r_2}-\vec{r_1})}{|r_2-r_1|^2}$ = $\frac{kq_1q_2}{|r_2-r_1|^2}$ $(\vec{r_2}-\vec{r_1})$ $\vec{F_{21}} = \frac{kq_1q_2(\vec{r_2}-\vec{r_1})}{|r_2-r_1|^3}$ $F_{21} = -F_{12}$ ### 2. Derive an expression for Electric Field at any point on axial line of the Electric Dipole:- The image appears to show a diagram illustrating an electric dipole along the x-axis with charges -q and +q separated by a distance 2l. There's a point P at a distance x from the center of the dipole where the electric field needs to be calculated. Distances are $x+l$ and $x-l. Net Electric field at point P! $\vec{E_{net}} = \vec{E_2} - \vec{E_1}$ Due to +q, $E_2 = \frac{kq}{(x-l)^2}$ Due to -q, $E_1 = \frac{kq}{(x+l)^2}$ $E_{net} = \frac{kq}{(x-l)^2} - \frac{kq}{(x+l)^2} = kq[\frac{1}{(x-l)^2} - \frac{1}{(x+l)^2}]$ $= kq[\frac{(x+l)^2 - (x-l)^2}{(x^2 - l^2)^2}] = kq [\frac{4xl}{(x^2 - l^2)^2}] = \frac{kq(2l)(2x)}{(x^2 - l^2)^2} [ \because p = q \times 2l]$ $\vec{E} = \frac{2kpx}{(x^2 - l^2)^2}$ For ideal dipole! - $l << r$, so $l^2 \rightarrow neg.$ $E = \frac{2kp}{x^3}$ or $E = \frac{1}{4\pi\epsilon_0} \frac{2p}{x^3}$ ### 3. Derive an expression for Electric field at a point on Equitorial line of an Electric dipole:- The image shows the geometry for calculating the electric field at a point P on the equatorial line of an electric dipole. The dipole consists of charges -q and +q separated by a distance 2l. Point P is at a distance r from the center of the dipole. $r^2 = x^2 + l^2$ $r = \sqrt{x^2+l^2}$ Here, $E_1=E_2=E$ Due to -q &+q E$_1 = \frac{kq}{x^2 + l^2}$ $E_2 = \frac{kq}{x^2 + l^2}$ Thus, Net Field: - $E_{net} = 2Ecos\theta = 2E[\frac{l}{r}]$ $[cos\theta = \frac{1}{r}]$ $= 2\frac{kq}{x^2+l^2} \times \frac{l}{\sqrt{x^2+l^2}} = \frac{kp}{(x^2+l^2)^{3/2}}$ For ideal dipole, $l << r$, $l^2 \rightarrow 0$ $E = \frac{kp}{x^3}$ or $E = \frac{1}{4\pi\epsilon_0} \frac{p}{x^3}$ ### 4. Deduce the Expression for torque acting on a dipole of dipole moment $\vec{p}$ in presence of Uniform Electric field ($\vec{E}$): - :: Torque $= f \times d$ where, d = Perpendicular dist. $\vec{\tau} = \vec{\tau_1} + \vec{\tau_2} = f \times d + f \times d = qE(lsin\theta) + qE(lsin\theta) = 2qElsin\theta$ $[\because P= q \times 2l]$ or $\tau = pEsing$ $\tau = \vec{p} \times \vec{E}$ $\theta = \text{Angle bet} \vec{p} \times \vec{E} | \vec{p} \& \vec{E}$ Case I When $\theta = 0$ $\tau = pEsin\theta = pEsin0^\circ$ $\tau = 0$ Stable Equilibrium Case II When $\theta = 180^\circ$ $\tau = pEsin\theta = pEsin180^\circ$ $\tau = 0E$ Unstable Equilibrium Case Ⅲ When $\theta = 90^\circ$ $\tau = pEsin\theta = pEsin90^\circ$ $\tau = pE$ max. Torque ### 5. Derive Gauss Law:- The net Electric field through a closed surface (3D) is $\frac{1}{\epsilon_0}$ times then net charge enclosed by surface. $\phi_{closed} = \frac{q_{in}}{\epsilon_0} = \oint \vec{E}.d\vec{A}$ Verification of Gauss law using Coulomb's law: - $\therefore$ Electric flux:- $d\phi = E.dA \text{d} \phi = E d A cos \theta $ [$\theta = 0^\circ$] $d\phi = E dA$ Since $\vec{E}$ is same everywhere, on spherical surface:- $\int d\phi = \int E. dA$ $\phi = EA$ where, $E = \frac{1}{4\pi\epsilon_0 R^2}$ & $A = 4\pi R^2$ $\phi = \frac{1}{4\pi\epsilon_0}\frac{q}{R^2} 4\pi R^2$ $\phi = \frac{q}{\epsilon_0}$ ### 6. Derive expression for Electric field ($\vec{E}$) due to a straight uniformly charged infinite line of charge density. Here $\lambda = \text{Linear charge density}$, $\lambda = \frac{q}{r}$ Here, Gaussian surface is cylinderical & The direction of $\vec{E}$ field is radially outward because of $+$ive charge. The image shows a diagram of an infinite line charge with Gaussian surfaces around it to calculate the electric field using Gauss's law. I'm not certain what to replace the variable 'Dine' with, so I left a question mark. $\phi_1 = \int E dA cos\theta [\theta = 90^\circ$] $\phi_2 = \int E dA cos\theta [\theta = 90^\circ$] $\phi_3 = \int E dA cos\theta [\theta = 0^\circ$] Net flux! $\phi_{het} = \phi_1 + \phi_2 + \phi_3$ $= \int EdAcos90 + \int EdAcos90 + \int EdAcos0^\circ = 0 + 0 + \int E dA$ $\phi = EA$ Total Curved area of surface $= 2 \pi r l$ so $ \phi = E(2\pi r l)$ Acc. to Gauss law. $\phi = \frac{q_{in}}{\epsilon_0}$ $E (2\pi r l) = \frac{\lambda l}{\epsilon_0} $ [$q_{in} = \lambda l$] $E = \frac{\lambda}{2\pi r \epsilon_0}$ ### 7. Find Electric field due to uniformly charged infinity large plane thin sheet with surface charge density. $\sigma$ = Surface charge density; Gaussian surface $\rightarrow$ Cylinderical. (The image is of a pillbox) Tolal flux! - The image appears to show a cylindrical Gaussian surface intersecting a charged plane. $\phi_{net} = \phi_1 + \phi_2 + \phi_3 = \int E dAcos0^\circ + \int E dAcos0^\circ + \int E dAcos90^\circ $ $= \int E dA + \int E dA + 0$ += EA + EA $\phi = 2EA \qquad (1)$ According to Gauss law' - $\phi = \frac{qin}{\epsilon_0} \qquad (2)$ $2EA= \frac{\sigma A}{\epsilon_0} \qquad [q = \sigma A]$ $E=\frac{\sigma}{2 \epsilon_0}$ It is independent of $r$. ### 8. Derive the Expression for potential due to point charge! The image is of a positive charge at a distance from another infinitesimally small charge. Here, P point at a distance, $r$ from +q charge Workdone to bing $q_0$ from infinite to point P is equal to! - $W(p \rightarrow \infty) = \int_p^{\infty} F_{ex} dr = \int_p^{\infty} \frac{Kq_0 q}{r^2} dr cos\theta$ $= -Kq q_0 \int_{\infty}^r \frac{1}{r^2} dr [cos \theta = -1]$ $W(p\rightarrow \infty) = \frac{K q q_0}{r}$ Electric Potential:- $V = \frac{W_{ex}}{q_0} = \frac{Kq q_0}{r} \times \frac{1}{q} = \frac{K q}{r}$ or $V = \frac{1}{4 \pi \epsilon_0} \frac{Q}{r}$ ### (9) Derive the expression for the Electric potential due to an Electric dipole at any point on the axial line. We know that electric potential will be!: $V=\frac{KQ}{r}$ Net Potential!: $V_{net} = V_1+V_2$ $V_{net}=\frac{-Kq}{(x+l)}+\frac{Kq}{(x-l)}$ $=Kq[\frac{1}{x-l}-\frac{1}{x+l}]$ $=Kq[\frac{x+l-(x-l)}{x^2-l^2}]$ $=Kq(\frac{2l}{x^2-l^2})$ $Vnet = \frac{KP}{x^2 - l^2}$ Generally x>>>l, $l^2 \rightarrow 0$ $Vnet = \frac{KP}{x^2}$ or $V_{net}= \frac{1}{4π\epsilon_0} \frac{P}{x^2}$ * Electric Potential at any Point ### (10) Potential Energy of an Electric dipole in Uniform Electric field. Asw e know that In uniform electric field dipole experiences net force! :$\tau = \vec{P}\times\vec{E}$ $(\tau=PE\sin \theta)$ Net Workdone in rotating dipole. - $W_{el}=\int_{\theta_1}^{\theta_2} \tau . d\theta$ $=\int_{\theta_1}^{\theta_2} PE\sin\theta .d\theta$ $=-\int_{\theta_1}^{\theta_2} PE d(\cos \theta)$ $=-PE[\cos \theta]_{\theta_1}^{\theta_2}$ $W_{el} = +PE[\cos \theta ^2-\cos\theta 1]$ By potential energy: - $du=-Wex$ $U_2-U_1= PE (\cos \theta^2-\cos\theta1)$ Put, $\theta_=90$ & $U_1=0$ $U = -PECos$ $U=-\vec{P}\vec{E}$ Case(i) $\theta=90^\circ$ $\tau=PEsin90$ $= PE$. $U=-PECos0^\circ =- PECos90$ $=PE$. $W_{el}=+ PE[\cos 90-\cos 0]=- PE$ $V_2=PE$ Case (ii) $\sigma =\sigma,0, 0+180^\circ$ $\tau= V_2=0 PEsino$ $\qquad \text{and} \qquad \tau=PEsin\theta$ $U=-PECos o \qquad \text{and} \qquad =-PEsonlso$ $U=-PE$ $V=PE\left( \frac{q}{v} = c\right)$ ### 10 Deduce the expression for Energy stored in Capacitor & also find the Energy density: The amount of workdone to add charge to a capacitor is stored in form of electric potential energy in the spare between the 2 blades. Let 'g' is the charge, given to a capacitor &v be the potential difference. Add dq charge to a capacitor. Workdone $dw = dqv$ Integrate it!: $\int_{0}^{w} dw = \int_{0}^{q} dq v$ $w=\int_{0}^{q} \frac{q}{L} dq$ $w= [(9^2/ 2]/c]^q_0= [ q^2-0](1/c)$ Potential Energy: $U=q^2/(2c)$ $U= 1/2 (v)^2/ c=(1c^2v^2)/(2c)\qquad =LV^4=0 $ ### U= 1/2 (Q/V.2) $UU = \frac{1}{2} Qv \text{(energy/ volume)}$ Energy Density = U= 1CV^{2}/2 / Ad = 1 epsilon A * E^2 d /2 /Ad = epslm^2 0 u = epsilon^2 . ( epsilon 0 / 2] $$u =\frac12 \epsilon {0E^2} $$ ### 11 Obtain the Expression of Drift velocity? At any instant of time, average thermal velocity of 𝑒−in a, electron is zero: - $V_{av}=0, V_1+V_2+V_3+.....+_n/n$