Applied Biology Summary PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document provides a summary of applied biology topics, covering fundamental characteristics of living organisms, cell structure, the cell, modern cell theory, macromolecules (carbohydrates, lipids, and proteins), and protein folding. It emphasizes the structure and function of biological molecules and their roles in living systems. The summary also describes the different structures of proteins.
Full Transcript
**Applied biology** Fundamental Characteristics of a living organisms: 1. Cellular structure 2. Contain hereditary information written in a universal genetic language , passed on by DNA 3. Cells obtain energy and nutrients from the environment 4. Organisms respond to changes in the exte...
**Applied biology** Fundamental Characteristics of a living organisms: 1. Cellular structure 2. Contain hereditary information written in a universal genetic language , passed on by DNA 3. Cells obtain energy and nutrients from the environment 4. Organisms respond to changes in the external environment by regulating their internal environment 5. Life is organized into hierarchical levels 6. Living organisms interact with each other **the cell** 1. Nutrition 2. Metabolism 3. Growth 4. Homeostasis 5. to be able to reproduce 6. sensitive to its environment **modern cell theory** 1. are the structural and functional units of living beings 2. Each posses their own genetic material 3. Originate from pre existing cells 4. Are similar in chemical composition 5. Are surrounded by a plasma membrane that enclose the cytoplasm, where chemical reactions take place **[\ Macromolecules]** Repetitive units-monomers line together to form a large molecule- polymer each polymer can be based on different types of monomers **[Amino acids form proteins]** **Amino** **acids** form **proteins** **nucleotides** form **nucleic** **acids** **monosaccharides** form **polysaccharides** **fatty acids** form **lipids** **[Carbohydrates]** Sugars, a diverse family of Molecules composed mainly of carbon, hydrogen and oxygen atoms. General formula **[(CH2O)N]** the number of times when the group repeats Define the type of carbonhydrates. Caroonhydrates Will have the suffix**\" OSE\"** **[the main function of carbon Hydrates are:]** 1. energy Source 2. Mechanical Support 3. building blocks ![](media/image2.png) **[Monosaccharides]** the monomers composing all carbon hydrates, [ ] Will Usually have the empirical formula of (CH2O) n **[the main types of monosaccharides are:]** Trioses (3 Carbons) Pentoses (5 Carbons) Ribose Hexoses (6 carbons) glucose **Types of isomers change within the Location of the carbonyl groups and the OH groups** Different monosaccharides may have the same chemical formula but different orientation of OH group (hydroxide) to the rest of the molecules**[.]** ![](media/image4.png) **[Monosaccharide:]** Different position of the carbonyl group [ ] (H-C=O) 1. ALDOSE: if the group is at the end of the structure 2. Ketose if the group is at any position in the structure 3. ring formation: In aqueous solution, the aldehyde or ketone group of a sugar molecule tends to react with a hydroxyl group of the same molecule , thereby closing the molecule into a ring Each monosaccharide has several hydroxyl groups and may form several bonds**[:]** 1. **Oligosaccharide**s - are composed of 2 to 10 units of monosaccharides linked 2. **Polysaccharides** - are composed of 10 units of monosaccharides or more **[\ ]** **[BOND:]** 1. **Glycosidic Bond** - When one monosecchried connects with another it create two sugar molecules the bond is formed between oxygen atom on one sugar to carbon on the Other. **[Biologically relevant polysaccharides]** ![](media/image8.png) **[Lipids:]** Fatty acids: **[Fatty acids differ in:]** 1. Number of carbons in their hydrophobic chain 2. Degree of unsaturation(number of double bonds) ![](media/image10.png) **[Level of unsaturation]**: Number of double bonds found in the tail when there are more bonds the level of Un saturation is higher level of Unsaturation affects Molecules Packing Bad packing=low melting point/ **[Fatty acid molecules have 2 chemically distinct regions: ]** 1. Long hydrocarbon chain- which is hydrophobic and poorly chemically reactive. 2. Carboxylic head- that in water is ionized and is highly reactive. **[Fatty acids pack into stable aggregates]** 1. The extant of packing depends on the degree of saturation 2. Fully saturated fatty acids pack into crystalline structures , stabilized by many hydrophobic interactions 3. The presence of one or more unsaturated fatty acids with CIS double bonds interferes with this tight packing and results in less stable aggregates **[Triglycerides]** The simplest lipid constructed from fatty acid are the triacylglycerol - also known as triglycerides Fatty acids are stored in cells as an energy reserve (fats and oils)through an ester linkage to glycerol. ![](media/image12.png) **[Ester fond]** 3 fatty acids attach to a single glycerol molecule, in 3 condensation reactions Triglycerides The simplest lipid constructed from fatty acid are the triacylglycerol - also known as triglycerides Fatty acids are stored in cells as an energy reserve (fats and oils) through an ester linkage to glycerol. the carboxylic acid on the fatty acid donates **OH, the OH** on the glycerol donates H: this molecule is hydrophobic. **[Functions]** 1. energy storage 2. is venation 3. Water source for the cell Most naturally occurring **triglycerides** are composed of **mixed** **fatty** acid of different type **The properties of fats depend** on the **length** and **saturation** of the **fatty** **acid** chains they carry **Saturated** fats are found **in meat and dairy products** **Plant** **oils** contain **unsaturated** **fatty** **acids** , which may be **monounsaturated** (contain one double bond) or polyunsaturated (containing multiple double bonds) Fatty acid produce as much as 6 times more energy than glucose Triglycerides are hydrophobic and therefor unhydrated ( the organism does not have to carry the extra weight of water usually associated with polysaccharides) Triglycerides stored under the skin serve as insulation In most eucaryotic cells, triglycerides form oily droplets in water, serving as metabolic fuel In vertebrates , specialized cells called Adipocytes (fat cells) store large amount of triglycerides as fat droplets that fill the/ **[Phospholipids:]** The most important lipids in the cells**[:]** Mainly composed of fatty acids and glycerol, but only to 2 fatty acids The remaining OH group is linked to hydrophilic phosphate group which in turn is attaches to a small hydrophobic compound Phosphatidyl choline is one of the most common phospholipid in cell membranes Phosphatidyl choline is one of the most common phospholipid in cell membranes In an aqueous environment , the hydrophobic tails of phospholipids pack together to form a double monolayer (lipid bilayer) There hydrophilic heads are on the outside , facing the aqueous environment The hydrophobic tails are on the inside, where water is excluded Because of their nature, all lipids form aggregates that are held together by hydrophobic forces ![](media/image14.png) **[Proteins]** Biomolecules, Polymers in charge of the function of the cell, the structure and the shape. Polypeptides. a chain of amino acids that are connect to each other **Amino acids:** the **monomer that build the protein** **each amino acid has an alpha carbon** on that connects the **carboxyl group**, the Amino group and the **side chain (R)** that dictates the type of the amino acid. ![](media/image16.png) **amino acids are amphoteric** - can function as both acids and base. **Carboxyl group - Coo H- acidic** **Amino group-N Ha- Alkaline** The molecule react as acid or as base depends on the chemical environment: the acid base reaction will form a 2Witterion (a molecule that has a positive electric charge and a negative electric charge. When are incorporated in a polypeptide chain , the amino acid charge will depend solely on the R side chain **[Classification of Amino acids]** **[Non polar amino acids-]** **R group are not polar and hydrophobic** (composed of methyl or aromatic groups) **Glycine is the simplest amino acid** (the simplest structure where the R group is composed of a hydrogen molecule **Alanine, valine, cystine and isoleucine tend to cluster together within proteins** and **stabilize the protein structure** **Methionine** serves as the initiating amino acid in eukaryotic protein systems **[Polar amino acids:]** Have a not charged polar group and are more soluble in water Are hydrophilic. Form hydrogen bond with water Serine, threonine and tyrosine have a structure similar to the non polar AA- in which one hydrogen has been substituted with the OH group **[+ and - charged amino acids-]** ** R groups are either positively** or **negatively** charged and are the **most** **hydrophilic amino acids** AA can not only be **involved in the formation of protein synthesis,** but also in the case of **glutamic acid- can be involved** in signaling processes **Glutamic acid- is used by neurons nerve cells to send signals to other cells** **[Peptide bond:]** the connection of amino acids With each other forms polypeptide chain. This chain has directionality- that is usually reading from left to right (N-to-C)**.** **N- terminus - free amino group** **C - terminus - free carboxylic group** ![](media/image18.png) polypeptides are notated by the names of the amino acids composing them The linking of amino acids to a polypeptide chain is formed when the amine and carboxylic group are not charged**.** Long polypeptide chains are very flexible, and protein can fold in multiple ways The shape of every protein depends on many sets of noncovalent bonds that form within the protein These bonds involve atoms that rely on the polypeptide backbone as well the ones that are in the AA side chain The polar amino acid side chain tend to lie on the outside of the protein, where they can interact with water The non polar amino acid side chain are buried inside forming a thigtly packed hydrophobic core of atoms that are hidden from water **[Proteins folding:]** Three types of non covalent bonds that help the protein fold 1. Electrostatic attraction 2. Hydrogen bonds 3. Wan der walls attraction each single bond is quite weak, many of the often act together to create a strong bonding arrangement 4. Hydrophobic force The hydrophobic force has a central role in shaping the protein structure as it helps protein folding In aqueous environment 1. Amino acid order of linkage 2. 3D structure 3. Combination of polypeptide These are known as primary, secondary.. 1. **[primary structure:]** - the amino acid sequence is the Primary structure of the protein Will dictate the 3-D form of the protein as well as its function in the cell **only proteins of the same kind Will have the same primary structure** 2. **[secondary structure]** - the formation of local sub- structures. based on hydrogen bonds, is known as the secondary Structure alpha helix Beta sheets/strands the hydrogen bonds are formed between the amino and carboxylic group, making these Structures Very common A. **Alpha Helix** -- formed as a polypeptide chain tunes around itself R side chains are located outside of the helix the Hydrogen bonds are formed between every 4th amino acid B. **Beta Sheets-** Rigid, Pleated structure common in Polypeptides with small polar R groups. the R groups must be small to reach for each other and make the connection Parallel shape-all of the N terminus and C terminus are lined at the same side Anti parallel sheet-the C terminus and the N terminus are not the same side 3. **[Tertiary structure] -** the full, 3D conformational of the protein is known as the tertiary structure Formed when the coils and sheets of the secondary structure themselves fold or coil The tertiary structure of a protein defined its function **[This struture is held by R group interactions, Which include: ]** ionic bonds Hydrogen bonds Hydrophobic interactions Disulfide bonds (covalent) **[Disulfide Bonds :]** a bond formed between 2 thiols groups General formula- R- S- S-R will form only between cysteines [ ] 4. **[Quaternary Structure -]** the combination of several polypeptide chains to one functional structure-A connection of R groups This includes two identical polypeptides or several different polypeptides interacting together ![](media/image22.png)**[Protein functions: ]** 1. **Metabolic enzymes** 2. **Structural proteins** Most abundant proteins in living organisms Function as the architectural framework Actin and tubulin are the most abundant cytoskeleton proteins in animal cell 3. **Transport proteins** Allow polar and charged molecules to enter to exit the cell through the membrane 4. Cell signaling proteins Three major types of signaling protein are: 1\. Membrane receptors 2\. Nuclear receptors 3\. Intracellular signaling proteins (protein kinases, phosphatases) The ligand must fir precisely into the receptor binding site These pathways are called signal transduction pathways 5. Genomic caretaker proteins **[globular proteins]** will usually be Hydrophilic a Polypeptide will become a protein only when it gains cellular function, which means that every protein is a polypeptide, but not every polypeptide is a protein. **[factors affecting protein]** Activity - Protein functions include interactions with other molecules the bond formation is highly specific and selective. **[Hydrophobic R groups]** located in the outer part of the protein - transtemporal Protein Hydrophilic groups located in the outer part of the protein inner cells protein. **[factors affecting protein Activity]** - Protein functions include interactions with other molecules the bond formation is highly specific and selective. **[binding site-]** the region in the protein that interacts with another molecule**.** **[Denaturation]**- destruction of the 2nd. 3rd and 4th levels **[Renaturation]**- reassemble its bonds and function from polypeptide to protein, needs to be slow PH- each protein has a optimal pH range it can be found Temp- adding heat can win the bondsמ salt concentration- Can cause bonds we don\'t want**.** **[PH]**- each protein has a optimal pH range it can be found**.** **[Temp]**- adding heat can win the bonds **[salt concentration]**- Can cause bonds we don\'t want **in the cell, its easier to break inoic bonds then covalent bonds** **[Enzymes]** **[sub state]** - the source material **[Product -]** the result of the source material **[Metabolic/Catabolic pathways-]** chemical reactions of creation and breaking bonds almost **[every procedure]** in the cell has an intervention of enzymes**.** **Enzymes are high, specific, catalyzing single type of reaction.** **E+S -\> \[ES\] -\> \[EP\] -\> E+P** Bonds formed between the enzyme and the substrate/product are relatively weak intermolecular bonds this allow the quick release of the Product. **[active site-]** the site Which the substrate binds ![](media/image25.png) **[Factors effecting enzyme function]** **PH**- enzymes has a optimal pH range it can be found **Temp**- adding heat can win the bonds **Substrate concentration-**when the concentration is higher, the reaction speed will be quicker, until the enzyme will be the limiting regent**.** **[Co-factors]** Molecules that help the enzymes to function **inorganic compounds: metal ions** **organic compounds: known as co-enzymes** **[Holoenzyme]**- enzyme-cofactor complex apoenzyme-an enzyme which requires co factor for its fruition and is hot connected to one**[]** **[Allosteric Site-]** A site in the protein/enzyme that also can make connections. affects the shape of the protein can make an non active protein to active, and the opposite**[.]** **[Inhibitors- ]** **chemical products that install enzyme function[.]** ![](media/image27.png)**[Competitive inhibitors-]** a part of the inhibitor might be alike to the substrate and competes the substract with connecting to the enzyme ,once it will connect to the enzyme ,the enzyme will not complete its job**.** **[Non competitive inhibition-]** the inhibitor connects to the allostery site and changes the protein shape,to something the substrate cannot connect to the enzyme. **[nucleic Acids :]** **Nucleotides :** [The monomers composing nucleus acids which contains 3 subunits:] 1. Five carbon sugar(pantose) 2. Nitrogenous base(on carbon 1) 3. Phosphate group( on carbon 5) [PO4\^-2] **The main function of these two molecules is producing proteins[:]** ![](media/image29.png)4 nucleotides composed the **DNA**: 1. Cytosine (c) 2. Guanine (G) 3. Adenine (A) 4. **Thymine (T)** 4 nucleotides composed the **RNA**: 1. Cytosine (c) 2. Guanine (G) 3. Adenine (A) 4. **UTACIL (U)** **The nitrogenous base classifies nucleotides :** **Pyrimidines** contain **one ring of 6 Atoms** **Purines** contain two rings **of 5 and 6 atoms** [Five carbon sugar(pentose)] ![](media/image31.png)The sugar contains 5 carbons , 4 of them form Cyclic structure with oxygen atom, and the 5 links to the phosphate group**[.]** The sugar differential between DNA and RNA, due to change on the group located on carbon two in the ring. **[\ ]** [Phosphodiester bond] Nucleotide chains are formed by phosphodiester linkage This is a condensation reaction **The nitrogenous base is NOT included in this bond.** **[The backbone has directionality :]** 5' carbon prime end- a free phosphate group 3' carbon prime end- a free OH group There are **nucleotides derivatives** such as **ATP** , and **CoA** and more they share the same basic components **in their structure as nucleotide** that assembled the DNA and the **RNA but they are not the same in their chemical structure** **[Functions of nucleotides:]** 1\. Information flow 2\. Energy cycle 3\. Cofactors for enzymes 4\. Phosphate donors 5\. They carry chemical energy in the easily hydrolyzed phosphoanhydride bonds (ATP) 6\. They combine with other groups to form coenzymes 7\. They are used as specific signaling molecules In the cell **[Prokaryotes:]** ### [ARCHAEA] - Can live in extreme environments. - Possess genes and several metabolic pathways that are more closely related to those of eukaryotes. - Use more diverse energy sources than eukaryotes: organic compounds such as sugars, ammonia, metal ions, or hydrogen gas. - Are often mutualists or commensals (e.g., methanogens). ### [BACTERIA] - Are ubiquitous, and the roles they play in the carbon and nitrogen cycles are vital to life on Earth. - Typically small in shape (the smallest bacteria -- mycoplasma, \~0.2 µm diameter). - Morphology is maintained by the cell wall in combination with cytoskeletal elements. - Only a small percentage of bacteria is pathogenic. **Bacteria and archaea are unicellular organisms:** 1. Specific metabolic processes: **photoautotrophs**- use light to generate energy (plants) **Chemoheterotrophs** - obtain energy by the oxidation of electron donors in their environments (animals) **Photoheterotrophs** - use sunlight as energy, but take carbon from other organisms **Chemoautotrophs** - use chemical reactions to produce energy 2\. Multiple shapes (spherical , rod shape) 3\. Different motility (static or with flagella) ![](media/image33.png) ### [Bacteria] ### Shape ### Arrangement ### ### [Main structures:] ### Envelope capsule ,cell wall ,cell membrane ### Appendages- pili,flagella Core- nucleoid , cytosol Envelope: Made out of an outer membrane an inner plasma membrane and a peptidoglycan layer (provides rigidity) Responsible for many cellular processes The primary protection of bacterial cells against chemical and biological threats Promote bacterial adherence and colonization capsule: A gel like ,thick layer composed of polysaccharides Serves for cellular protection Promote colonization yet do not contribute to growth or replication cell wall: Rigid layer,located outside of the cell membrane Determines the shape of the cell Composed mostly of peptidoglycan cell membrane: Composed of lipids and proteins, with a typical carbohydrate components Structured according to the fluid mosaic model The number of proteins is great that In eukaryotic cells because they preform functions that would be preformed by organelle membranes in eukaryotic cells Its selectively permeable and keeps ions, proteins and other molecules within the cell and prevents them from diffusing into the extracellular environment , while other molecule (usually small,non polar ones) may move through the membrane More flexible than the eukaryotic membrane because there are no strelos (such as cholesterol) cytoplasm: Contains ribosomes (smaller than eukaryotes ) Thousands of enzyme types Metabolites and inorganic ions Circular segments (one or more) of plasmid DNA **[Gram staining:]** Gram reaction reflects fundamental differences in the biochemical and structural properties of bacteria Gram staining allows the bacteria present in a sample to be distinguished and classified Based on the different color assumed , which depends on their permeability to the dye (Cristal violet or gentian violet) 2 large classes are identifiable: positive bacteria (wall rich in peptidoglycans ) Negative bacteria (wall with few peptidoglycans) The distinction is important for antibiotic therapy (penicillin effective again gram +) **[Nucleoid:]** Contains a single long single circular DNA molecule Plasmids conger resistance to toxins and antibiotics in the environment. **[Bacteria]**: Prokaryotes reproduce asexually with a quick mechanism called binary fission: the cell duplicates its DNA and divides into two equal parts: - DNA is duplicated prior cell division - Cell starts dividing with each DNA molecule in each of the newly formed daughter ce[ll] - After separation into 2 chromosomes , the cell membrane inverts at two facing points until it joins , with the subsequent detachment of the formed subunits will five fish to two cells ![](media/image35.png) התרשים מתאר את תהליך החלוקה של תא פרוקריוטי (למשל חיידקים), שנקרא **Binary Fission** (חלוקה בינארית). זהו התהליך שבו תא פרוקריוטי משתכפל ומתחלק לשני תאים בת. ### שלבים בתהליך: 1. **שכפול כרומוזום והפרדה**: - הכרומוזום המעגלי של התא הפרוקריוטי משוכפל. - שני עותקי ה-DNA מתחילים להיפרד זה מזה ומתמקמים בקצוות שונים של התא. 2. **התארכות התא**: - התא ממשיך להתארך, ותוך כדי כך, עותקי ה-DNA ממשיכים להתרחק זה מזה. 3. **חלוקה לשני תאי בת**: - התא מתחלק לשניים על ידי היווצרות מחיצה (septum) במרכז התא. - נוצרים שני תאי בת זהים גנטית. **[\ ]** The microbiota: The totality of microorganisms - bacteria , fungi, archaebacteria and Protozoa (included viruses) that colonize a specific environment in a specific period of time The microbial population is mostly concentrated in the intestinal tract The human microbiota has now been defined as an "additional organ" since the set of symbiotic microorganisms (also called commensals) living within the body are fundamental for the correct metabolic activities The intestinal microbiota is made up of over trillions of microorganisms , which preform different functions that are fundamental for the well being of the body The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function They help to digest food and contribute to the fermentation of non digestible substances, creating molecules that are essential for the well being of the body They take part in the synthesis of substances essential for the body such as vitamin K and some B vitamins Microbiota dysbiosis can lead to dysregulation of bodily functions and diseases. ![](media/image37.png)**[The oral microbiota]**: Oral facultative anaerobic bacteria are essential for the nitrate-nitrite-nitric oxide pathway due to their capacity to reduce nitrate to nitrite Nitric oxide is essential in multipurpose physiological processes Reduction in nitric oxide bioavailability is associated with the occurrence or worsening Of pathologies. Antiseptic mouthwashes eradicate the oral bacteria flora, resulting in nitric oxide-deficient conditions**.** **\ ** **[Eukaryotic cell: ]** Characterized by the presence of : 1\. Cell membrane 2\. Nucleus 3\. Endoplasmic reticulum 4\. Golgi apparatus 5\. Mitochondria 6\. Cytosol and cytoskeleton 7\. Lysosomes **[The endomembrane system:]** The endomembrane system consists of all the compartments are involved in the major cellular functions , including the processing of proteins that are destined for export from the cell, lipid synthesis and a variety of signaling events **[the cell membrane --]** a layer of phospholipids that isolates between the extracellular fluid to the cytoplasm. The phospholipids have an Hydrophilic head that faces the aqueous environment and hydrophobic tail facing towards one another The membrane is not uniform and contains sugars, proteins( inside the membrane) ,cholesterol The membrane is 5-10 mm thick It has a lipid bilayer (two layers) The membrane controls the passage of molecules ![](media/image39.png) Maintains homeostasis **[integral membrane proteins:]** channels-transfer substances from one side of the Membrane to the other : Carriers Pumps Enzymes receptors-help to communicate between cells and receiving signals from the outsides Peripheral protein-weak bonds, are stacked to the membrane, some serves as hormone binding sited,some are important in cell-to-cell communication and adhesion**[.]** **[Nucleus]:** the largest organelle in human cells (6 microns) contains the DNA Nuclear envelope made of two lipids bilayers Nuclear pores. enable the passage of materials between the nucleus and the rest of the cell (in and out) -THE DNA DOESN'T LEAVE THE NUCLEUS Inside the nucleus there is a specific area called the nucleolus which is a factory for rRNA synthesis **[Nuclear pores]** Channels formed by protein complexes that mediate the traffic between the nucleus and the cytoplasm selectively permeable to ion , small metabolites and globular proteins Each nuclear pore is formed from an elaborate structure termed the nuclear pore complex (NPC) , composed of multiple copies (50-100) of nucleoporines ![](media/image41.png)**[Mitochondria]** site of cellular respiration → energy factory has double membrane 0.5-1 micron diameter UP to 10 micron length cristae-\> increase surface area contain their own cyclic DNA contain enzymes necessary for aerobic respiration new mitochondria originate from growth and division of [ ] preexisting mitochondria Highly mobile, constantly changing their shape and able to move to where energy is required the most in cells Outer membrane: Role in maintaining the shape of the mitochondria and exchange of metabolites with the cytoplasm purines: Large transport proteins which forms a large aqueous channel permeable to all molecules smaller than 5000 Da , allowing exchange between mitochondria and cytoplasm transporters (TOM): Mitochondrial protein import Intermembrane space: Small sub compartment between the 2 mitochondrial membranes Aqueous compartment and plays a role in apoptosis Crucial role during respiration **[Matrix]** Enzymes involved e.g n the oxidative metabolism (Krebs cycle) Multiple copies of mitochondrial DNA Mitochondrial specific ribosomes (mito-ribosome) to synthesize mitochondrial proteins **[Inner membrane: ]** Folded in Cristal- large surface area in small volume Highly impermeable to molecules and ions Transporters renders the membrane selectively permeable to small molecules It contains proteins complexes for the oxidative phosphorylation and ATP synthesis [ ] ![](media/image43.png) **[endoplasmic Reticulum (ER)]** - network of Membranes - continuous with the nuclear envelope [ ] - made up Of two subunits - rER - Cisternae continuous with the outer membrane of the nuclear envelope [ ] - rER membrane coated with ribosomes - site of synthesis and folding of proteins, mainly functions for: 1. serration by exocytosis 2. integral membrane proteins 3. some cytosolic proteins, such as the enzymes within organelles **[SER ]** - no ribosomes bound - contains enzymes - cisternae are tubular 4. Lipid Synthesis 5. Storage of ca+2 in muscle cells 6. Detoxification of drugs and Alcohol **[Golgi Apparatus]** ![](media/image45.png) flattened, Membrane-enclosed sacs (also cisternae) 0.5 to 2.0 micron in diameter located near the nucleus surrounded by a single lipid bilayer membrane **post translational Modifications:** Protein modification after transtation (synthesis) modification by Golgi enzymes IReleased by Vesicles Serves as a factory in which proteins received from the ER are further processes and sorted for transport to their eventual destinations: lysosomes, the plasma membrane or secretion **.** **Protein trafficking and modification** Proteins and lipids arrive in cluster of fused vesicles from the ER to the CIS golgi They than travel from the cis face to the trans face, and are modified into functional molecules Finally they leave the trans golgi and are directed to specific intracellular or extracellular locations **[The cytoplasm]** The semifluid substance of a cell that is external to the nuclear envelope and internal to the cellular membrane Contains all membranous organelles Contains the cytosol: aqueous solution containing metabolites, coenzymes, inorganic ions, and mitochondria Contains the cytoskelton : a framework of protein scaffolds that provides the cytoplasm and the cell with their structure **[The cytosol: ]** The major side of cellular metabolism Occupy up to the 50% of the volume of the cell It contains enzymatic proteins that catalyze various reactions such as 1\. breakdown of sugars 2\. Synthesis of fats, nucleotides and proteins 3\. Storage substances accumulate in the cytosol (glycogen, triglycerides) The cytosol of a eukaryotic cell contains three types of filaments that can be distinguished on the bases of their diameter, type of subunit, and subunit arrangement: 1\. Microfilaments 2\. Microtubules 3\. Intermediate filaments **[Microfilaments]** intertwisted strands made from actin-monomer thinnest (7- NM) found in animals and plants found as linear filaments or form structural network Used for motility, shaping and signaling: support micro villus cytokinesis Endocytosis and exocytosis contractility **[Microtubules]** ![](media/image47.png) Tubular dimers polymerize to form microtubules, which generally consists of 13 linear protofilaments assembles around a hollow core Are polar structure with two distinct ends: a fast growing plus end (+) and a slow growing minus end (-) In cells , the minus end are anchored in structures called microtubule organizing centers (MTOCs) The primary MTOC in a cell is called the controsome, and it is usually located adjacent to the nucleus In nondividing cells, microtubule network radiate out from the centrosome to provide the basic organization of the cytoplasm, including the positioning of organelles Globular protein Dimers (liquid inside) microtubules grow in length by adding Tubulin dimers the fiber gives the cell resist external compressive forces form network of roads within the cell: guide vesicles from the ER to the golgi apparatus and to the Plasma Membrane allows separation of DNA molecules during cell division, trough the formation of cent irons and centromeres **[intermediate filaments]** fibrous proteins coild into cables 8- 12 nm diameter found in the cells of only some animals, including Vertebrates the structural role of this fibers is to bear tension Intermediate filaments (IF) form an elaborate network in the cytoplasm of most cells, extending from a ring surrounding the nucleus to the plasma membrane An essential role of IF is to distribute tensile forces across cells In a tissue Assembled from a large diverse family of proteins (vimentin, keratines) but the most common are the LAMINS, found in the nucleus IF proteins are useful in the diagnosis and treatment of certain tumors Tumor cells retain many of the differentiated properties of the cells from which they are derived, including the expression of particular IF proteins With the use of markers specific for those IF proteins , diagnostician can often determine whether a tumor originated in epithelial, mesenchymal, or neuronal tissue Because epithelial cancers and mesenchymal cancers are sensitive to different treatments, identifying the IF proteins in a tumor cell helps the physician select the most effective treatment for destroying the tumor The progressive loss of the epithelial cytokeratins, and corresponding gain of mesenchymal vimentin , correlates with an increase in tumor invasiveness and metastatic potential **[lysosome ]** Single lipid bilayer, Membrane vesicles 50-70 MM contain hydrolytic enzymes Lysosomal membrane contain proton pumps Acidic internal environment---\> ph 5.5 lysosom functions as sites of intracellular digestion: Degradation of exogenous macromolecules Removal of excess or non functional organelles (autophagy) The process by which an aged orgenlle is degraded in a lysosome is called AUTOPHAGY**[.]** Lysosomes contain a group of enzymes that degrade all types of biological polymers - proteins, nucleic acids, carbohydrates and lipids into their monomeric subunits All the lysosomal enzy,es work most efficiently at acid PH values and collectively are termed acid hydrolyses Lysosomes represent morpholically divers organelles defined by the common function of degrading intracellular material Lysosomes are visualized as dense spherical vacuoles , but they can display considerable variation in side and shape as a result of differences In the materials that have been taken up for digestion**[.]** **[Viruses]** **Viruses are not classified as a living organisms** Infective agents that typically consist of a nucleic acid molecule in a protein coat Are too small to be seen by light microscopy Are able to multiply ONLY within the living cell of a host ![](media/image49.png) Contain hereditary information written in a universal genetic language (DNA or RNA ) but are not able to pass them to the offspring Nucleic acid: made from DNA or RNA , single or double strand long molecules that carry genetic information Capsid: a protective protein coat that has a protective function and a role in receptor recognition , targeting the virus to a susceptible host and cell type Phospholipid envelope (only on some viruses): derives form the host's cell membrane Spike projection: glycoproteins involved in receptor recognition and viral tropism (I.e neuaminidase and haemagglutinin, on the surface if the influenza a virus) **Characteristics** Small ( \~200-300 nm) No internal cellular sturcture Incapable of replication outside of a living host cell **Genome\ **ssRNA viral genomes can be divided into 2 types: Positive strand (+) ssRNA (mRNA) Negative strand (-) ssRNA **Capsid function** ![](media/image51.png) Made of proteins The wall that protects the virus and wraps the RNA/DNA Allows the virus to attach to other cells and affect it**-** **Envelope** can wrap the capsid Is taken from the host cell (the membrane ) The spikes on the membrane help the virus to settle on the host cell Virtually all cell- including plants mammalian and bacteria- can serve as virus host Viral reproduction is usually lethal to the host cell In many case the infected cell breaks open(lose) are release the viral progeny which can in fact neighboring cells ![](media/image53.png) Viruses can contain an outer surface that is composed solely of viral-encoded proteins (papilloma and polio) Virus can bear a lipid bilayer envelope in which viral encoded proteins are embedded (pox virus and HIV) in retroviruses the DNA is synthesized using the viral RNA as template They use the enzyme reverse transcriptase (viral origin) to convert RNA into DNA Viral DNA is integrated in the host genome and transcribed (production of viral proteins) Because the reverse transcriptase is not used by the host cell for any purpose, it has been one of the prime targets of drugs currently used to treat AIDS**.** ![](media/image55.png) **[\ ]** **[THE CELL MEMBRANE ]** Structure and functions of cell membranes: Regulate the transpoet of nutrients within the cell (import) Regulates the transport of certain products outside the cell (export) Regulate the chemical physical stability of the intracellular environment Regulate cellular growth and motility Regulates the interaction between cells and between cell and extracellular matrix (communication) 1\. it keeps the biomolecules of each organelle separate from the others 2\. It act as a selective barriers separating its content from the extracellular environment 3\. It regulates exchanges between cells and the external environment LIPIDS: the major component is represented by phospholipids, together with steroids and glycolipids which spontaneously arrange themselves, due to properties of lipids with the hydrophobic ends facing inwards PROTEINS: integral (intrinsic) and peripheral (extrinsic) CARBOHYDRATES: oligosaccharides confined to the external surface only **General membrane structure:** Thin film of lipid and protein held together by noncovalent interactions Lipid bilayer serves as basic fluid structure (impermeable barrier) Proteins mediate all other functions of membrane THE LIPID BILAYER: Constitute about 50% of the mass of most animal cell membranes Are amphipathic (have an hydrophilic polar end and an hydrophobic polar end) Are self sealing (spontaneously aggregate to bury hydrophobic tail) Phospholipids are modifies so that a phosphate group (PO4-) replaces one of the three fatty acids normally found on a lipid. ![](media/image57.png) Differences in length and saturation of the fatty acid tails influence how phospholipid molecule pack agains one another, effecting the fluidity of the membrane. **PHOSPHATIDYLCHOLINE :** Is the most common phospholipid In cell membranes It belongs to the glycerophospholipids group 1 glycerol backbone 2 long fatty acid tails 1 phosphate group 1 choline residue ![](media/image59.png)**Glycolipids:** Lipids with a carbohydrate attached by a glycosidic bond Only 5% of all eukaryotic cell plasma membrane Are present exclusively in the layer facing away from the cytosol (external surface of the membrane) Play part in cellular protection, cell recognition and in the transmission of electrical impulses **Sterols:** Rigid ring structures related to steroids They contain a single polar hydroxyl group Short non polar hydrocarbon chain Cholesterol is the major sterol found in animal cells The effect of cholesterol is depended on the lipid composition of the membrane- it makes saturated membranes more rigid, but unsaturated membranes more flexible ![](media/image61.png)**[Phospholipids in water:]** Can spontaneously form three closed structures in water The closed structure is stable because it avoids exposure of the hydrophobic hydrocarbon tails to water, which could be energetically unfavorable The molecules can move freely within the plane of the membrane The fluidity of the Philips bilayer depends on the length and saturation of FA hydrocarbon chains Fluidity is modulated by the inclusion of the sterol cholesterol**.** ![](media/image63.png) **\ ** At LOW temperatures (low kinetic energy) the phospholipids tend to pack together and the membrane would lose its partial fluidity - cholesterol increases the fluidity of the membrane At HIGH temperatures (high kinetic energy) the phospholipids would be too moblile and the membrane as a whole too fluid - cholesterol limits the speed of movement of the fatty acid chains which leads to a reduction of membrane fluidity MEMBRANE FLUIDITY: Enables many membrane proteins to diffuse rapidly in the plane of the bilayer and to interact one another (cell signaling) Permits membrane lipids and protein to diffuse from sites where they have been inserted after their synthesis to other regions of the cell (diffusion) Ensures that membrane molecules are distributed evenly between daughter cells during cell division ![](media/image65.png) Phosphatidylcholine- confined to outer monolayer Sphingomyelin-confined to outer monolayer Cholesterol- equally distributed Phosphatidylethanolamine - confined to inner monolayer Phosphatidylserine-confined to inner monolayer Glycolipids-are present ONLY the non cytoplasmic side of the plasma membrane Phosphatidylinositol -a minor constituent in the plasma membrane of animal cells, is located in the cytosolic monolayer here they participate in CELL SIGNALING **[MEMBRANE PROTEINS]** Constitute about 50% of the mass of most plasma membranes Transport nutrients, metabolites and ions across the lipid bilayer Anchor the membrane to macromolecules on either side of the membrane Receptors: detect a chemical signal in the cell environment and transfer it inside the cell Work as enzymes to catalyze specific reactions at the membrane Each type of cell membrane contains different set of proteins- reflecting the specialized functions of the particular membrane **[INTEGRAL MEMBRANE PROTEINS:]** Transmembrane proteins span a phospholipid bilayer and are built of three segments: 1\. hydrophilic exoplasmic domain 2\. Hydrophobic membrane-spanning domain consisting of on or more alpha helices or of multiple beta strands 3\. Hydrophilic cytoplasmic domain the polypeptide chain crosses the membrane in most of the cases with a alpha helix conformation Some beta barrels form large transmembrane channels (proteins that are folded in B sheet structure are rolled in a cylinder ![](media/image67.png) MEMBRANE ASSOCIATED PROTEINS: Lipid anchored membrane proteins are bound covalently to one or more lipid monolayer The lipid groups play a role in protein interaction and in signal transduction **[PERIPHERAL MEMBRANE P]** Localized to either the cytosolic or the exoplasmic face of the plasma membrane Play a role in the two way communication between the cell interior and the cell exterior ![](media/image69.png) On the outer surface of the plasma membrane are often attached to components of the extracellular matrix (supporting functions) **[GLYCOPROTEINS]** Many membrane proteins are glycoproteins Sugar residues are added in the lumen of the ER and in the Golgi apparatus Short sugar chains (oligosaccharides) are attached to the proteins -\> glycoproteins ![](media/image71.png)**[GLICOCALIX]** The carbohydrate layer on the cell surface Provides protection of the cell surface from mechanical and chemical damage The diversity and the position of the oligosaccharides chain on the cell surface plays a role in cell-cell recognition processes **[GLICOCALIX]** The carbohydrate layer on the cell surface Provides protection of the cell surface from mechanical and chemical damage The diversity and the position of the oligosaccharides chain on the cell surface plays a role in cell-cell recognition processes **[DIFFUSION OF MEMBRANE PROTEINS]** rotational diffusion: can rotate rapidly around the axis perpendicular to the plane of the bilayer Lateral diffusion: move laterally within the membrane**[\ ]** **[MEMBRANE PROTEINS ARE COMPARTMENTALIZED ]** Cell can restrict the movement of its membrane proteins (using tight junctions) **[SMALL MOLECULE MEMBRANE TRANSPORT:]** ![](media/image73.png) The lipid bilayer is a barrier to the passage of most hydrophilic molecules, included all ions All the other uncharged molecule can in principle cross the membrane by simple diffusion The rate at which a solute crosses a lipid bilayer depends on the size and solubility of the solute The rate of flow of a solute across the bilayer is directly proportioned to the difference in its concentration on the two sides of the membrane **Solute**: a molecule or substance that is dissolved in water and is not able to freely cross the membrane Solutes require specialized structures (transporters) that will mediate the passage through the membrane **[TRANSPORT PPROTEINS:]** All transport proteins are transmembrane proteins containing multiple membrane spanning segments that generally are alpha helices Protein segments cluster together forming a protein channel that allow selected molecule to cross the membrane without coming in direct contact with the inner part of the membrane 1\. The trnansporter: alternates between two conformations, so that the solute-binding site of the transporter is sequentially accessible on one side of the bilayer and then the other 2\. Channel protein: forms a pore across the bilayer through which specific solutes can passively diffuse ![](media/image75.png)**THE CHEMICAL GRADIENT:** The driving force that regulates the solute movement across the membrane Solutes will move from a region of high concentration to a region of low concentration The chemical gradient provides the direction and speed of the movement from one side of the membrane to the other **THE ELECTROCHEMICAL GRADIENT:** Composed of the chemical gradient and the membrane potential (the difference between the interior and the exterior of a biological cell) Driving force that not only take in account the concentration of solutes across the membrane, but also its charge distribution The membrane potential changes from one cell type to another and is particularly relevant for neurons ![](media/image77.png) **[Passive transport:]** allows solutes to move down their concentration gradients and occurs spontaneously when a substance diffuses through a biological membrane following its concentration or electrochemical gradient, at a higher rate than expected. It requires the presence of specific membrane proteins (transporters or channels) The direction of transport across the membrane is determined by the direction of the chemical or electrochemical gradient of the substance itself For each of the different inorganic ions, there are specific channels through which each of them can diffuse very rapidly following its own electrochemical gradient **[Active transport: ]** against the concentration gradient - requires an input of energy. only transporters can carry out active transport, and the transporters that perform this function are called pumps Primary active transport- uses ATP Secondary active transport-uses an electrochemical gradient Gradient driven pumps: NA+ symport 1\. It is drive by an Na+ gradient 2\. Binding of Na+ and glucose is cooperative the overall result is the net transport of both Na+ and glucose into the cell The transporter switches conformation only when is fully occupied or fully empty, thereby ensuring strict coupling of the transport of Na+ and glucose ![](media/image79.png) **[ATP driven pumps]** They use the energy released by ATP hydrolysis To drive transport against the concentration gradient There are 3 class of ATP driven pumps 1\. V-type proton pump 2\. P type pump 3\. ABC transporter 1.. V-type proton pump 2. P type pump **[The P type Ca++ atpase pump:]** It is located in the sarcoplasmic reticulum (SR) of muscle cells SR serves as storage of Ca++, which is released during muscle contraction The Ca++ pump pumps Ca++ outside the cytosol back to the SR after contraction ![](media/image82.png) Ion pumping proceed by a stepwise conformational changes to pump Ca+ + into the SR The hydrolysis of 2 ATP molecules controls the conformational changes of the pump and will allow the entrance of 2 Ca++ molecules into the SR lumen and the release of H+ in the cytosol The H+ are required to stabilize the empty Ca++ binding cassette and to close the passage to the SR 3. **[ABC transporters]:** **[\ ]** **[The nuclear import is regulated by:]** The superfamily of nuclear import receptors (at least 18 isoforms in humans) ** The CARGO PROTEINS** 1. To initiate the nuclear import, nuclear localization signals must be recognize by nuclear import receptors 2. Most of these receptors are part of a large family of protein that regulates protein import 3. Different nuclear import receptors bind different nuclear localization signals and thereby different cargo proteins 4. Cargo protein 4 requires adapter protein to bind to its nuclear import receptor, adaptors are structurally related to nuclear import receptors and recognize NLS on cargo proteins - By using a variety of import receptors and adaptors, cells are able to recognize a broad repertoire of NLS that are displayed on nuclear proteins**[.]** ![](media/image91.png)**[Nuclear import receptors:]** are soluble proteins that contain multiple low affinity binding sited for specific regions found in the unstructured domains of several nucleoporines (FG repeats) **[FG repeats recognition:]** of nucleoporines in the cytosol serve to initiate the recruitment of import receptors bound to cargo proteins The proteins contain a nuclear localization signal that is recognized by nuclear import receptors, which interact with the cytosol in fibrils that extend from the rim of the pore After being captured, the import receptors with their cargo find their way through the gel-like mesh work formed from the unstructed regions of the nuclear pore proteins until nuclear entry triggers cargo release After cargo delivery, the receptors return to the cystoscope via nuclear pores for **[The RAN GTPase cycle:]** Nuclear import and export both use the RAN GTPase cycle The small monomeric GTPase is a molecular switch that can exist in 2 conformational states, depending on whether GTP or GDP is bound Energy supplied by GTP hydrolysis drives nuclear transport The RAN GTPase imposes directionality on nuclear import through NPCs RAN-GDP falls off the import receptor in the cytosol, and is then free to bind another protein destined for the nucleus RAN-GTP binds to the import receptors causing it to release the protein in the nuclear compartment RAN is converted from one conformation to the other with the help of accessory proteins that are differently localized: RAN GAP (GTPase activating proteincytosolic) and RAN GEF (guanin nucleotide exchange factor,which is exclusively nuclear) The localization of these accessory proteins guarantees that the concentration of RAN GTP. Is higher in the nucleus, thus driving the nuclear import cycle in the desired ![](media/image93.png)direction **[The nuclear envelope is disassembled during mitosis]** During mitosis the nuclear envelope is disassembled, in order to allow the 2 daughter cells to separate The process is initiated by the phosphorylation of lamins, nucleoporines and of inner nuclear membrane protein by the CDS PROTEINS (cycling dependent kinases) After the cell separation, CDK is inactivated, lamins are de=phosphotylated and the nuclear envelope is free to reassemble again in the daughter cells **[The nucleolus]** The most prominent structure visible in eukaryotic nucleus The site for the synthesis and processing of ribosomal RNA - rRNA and the assembly of ribosomes It is not bound to a membrane, but it is a huge biomolecular condensate of macromolecules Positioned with high regularity at the center of the nucleus The size of nucleolus reflects the number of ribosomes that the cell is producing; it can scale up to 25% of the size of the whole nucleus in cells that are producing a large amount of proteins It is formed by DNA loops of 10 clusters located in 5 chromosomes that carry genes encoding ribisomal RNA Each nucleolus is composed of: Fibrillar center- site of rRNA transcription from rDNA Dense fibrillar component- rRNA processing ![](media/image95.png) Granular component- ribosomal subunit assembly Nucleolus formation after mitosis, before mitosis (when chromosomes condensate, the nucleolus fragments and disappear) At the end of mitosis, at the 10 DNA loops of the 5 chromosomes start rRNA synthesis (fibrillar center), process rRNA (dense fibrillar components) and start pre ribosomal assembly (granular component), small nucleoli are formed and then condensed in a single nucleolus ![](media/image97.png) **[Different stages of nucleolar formation]**: During cell cycle, the nucleoulus changes appearance and dissociate in mitosis After mitosis, each of the human chromosomes clusters that carry rRNA genes, begins to form a tiny nucleolus. They rapidly coalesce as they grow to form the single large nucleolus typical of many interphase cells ribosomal assembly: **Ribosomal RNAs** are synthesized and combined with proteins to form ribosomes - a complex process that requires more than 200 proteins and rRNA to compose a finished ribosom Eukaryotes have a separated, specialized polymerase that is dedicated to the production of rRNA: RNA POLYMERASE 1 RNA polymerase 1 transcribes rDNA in rRNA in nuclear fibrils centers Immunolabeling (marking and recognizing proteins) of RNA pol 1 is concentrated in the fibrillar centers The rDNA repeats are called nucleolar organizing regions (NORs) as they serve to structure the activity, and hence the architecture of the nucleolus **[Chromosomes]** Eukaryotic DNA is packaged into a set of chromosomes that contain long strings of genes Genes- the information carrying units that specify all the RNA molecules and proteins that originate the organism The human genom is diploid and is organized into 23 pairs of chromosomes (46 in total) The 2m diploid human genom must be condensed and packed to fit in the nucleus Karyotype: each human cell nucleus (except gametes) contain two copies of each chromosome (homologous) In the human body there are 22 pairs of chromosomes and 2 sex chromosomes The analysis of the karyotype allows to identify chromosomes and to check if part of them are lost or switched between different chromosomes once a DNA is condensed. chromosomes can be separated by size and centrome location exposing chromosomes to chromatin-binding stains can create different.color bands on different chromosomes, distinguishing them from one another Display of arrangement in pairs is called karyotype each homologous chromosomes have the same length, centrosome location and color pattern Medical uses- screening for defective or abnormal number of chromosomes which can be associated With different disorders and reciprocal chromosomal translocation Only 1% of the while genome codes for proteins in humans Almost half of the chromosomal DNA is the results of duplication and deletion events during evolution (rearrangements) Each gene is composed of exons: short DNA sequence that codes for proteins and introns: long stretches of noncoding DNA that interrupt the relatively short segments of DNA that code for protein In addition to introns and exons each gene has a regulatory DNA sequences which are responsible for ensuring that the gene is turned on or off at the proper time, expresses at the appropriate level, and only in the proper type of cell each chromosome has three specialized sites: **Replication origin**: the location at which the replication of the chromosome begins **Centromere**: the structure that holds together two chromatides and allows one copy of each chromosome to be pulled in each daughter cell, it associates with the proteins complex KINETOCHORE - that interacts with the mitosis spindle **Telomeres**: the end of each chromosome that contain a repeated sequence that enable the ends of each chromosome to be efficiently duplicated **.** The DNA of human interphase chromosomes is still tightly packed and have a dynamic structure Specific regions of interphase chromosomes decondense to allow access to specific DNA sequences for gene expression, DNA repair and replication and then recondense when these processes are completed Each process has to be highly controlled, rapid and localized. ![](media/image99.png) **[The chromatin:]** Each chromosome consists of a single long linear DNA molecule along the proteins that fold the dna thread into compact structure The complex of DNA and proteins involved in the chromosome packaging is called CHROMATIN proteins are distinguished in two classes: 1\. Histone proteins: are responsible for the first and most basic level of dna PACKING 2\. Non histone proteins: are responsible of fprecesses of gene expression, DNA replication and DNA repair a chromosome is about one third DNA. And two thirds protein by mass [ ] **[The nucleosome :]** The most basic structures of chromosome packing The nucleosome core particle consists of DNA wrapped around an histone complex core The structure of multiple nucleosome joined together is called "beaded on a string" Each individual nucleosome core particle consists of: 1\. A complex of 8 histone proteins- two molecules, each of histone H2A,H2B,H3 and H4 2\. A double stranded DNA. Of 147 nucleotide pairs long the histone octamer forms a protein core around which the double stranded DNA is wrapped Each nucleosome Core particle is joined together by a linker DNA sequence Nucleosomes repeat at intervals of 200 nucleotide pairs The formation of nucleosomes converts the DNA molecule into a chromatin thread that is 1/3 of its initial length When the DNA is wrapper around the histone, it is wrapped in a left handed coil of 1.7 turns The interface between histone and DNA is extensive, 142 hydrogen bonds are formed between the DNA and the histone core in each nucleosome [ ] ![](media/image101.png) Each histone has a N terminal tail in its structure Each tail protrude from the disc shaped core structure in a fully assembled histone core Their conformations are highly flexible and they serve as binding sites for sets of other proteins and are essential for the control of critical aspects of chromatin structure **[Changes in nucleosomes allow access to DNA:]** ATP depentdent chromatin remodeling complexes locally reposition the DNA wrapped around nucleosomes DNA is an isolated nucleosome unwrapped from each end at the rate of 4 times per second, and it stays unwrapped for 10-50 milliseconds before the structure closes - nucleosome sliding In this way, the enzyme can expose or hide a sequence of DNA , controlling it's availability to other DNA binding proteins Histone H1 (linker histone) binds the nucleosome and help compacting the nucleosomal DNA, it is presented in a 1:1 ratio with nucleosomes and its the less conserves in the histone family**[.]** ![](media/image103.png) **[Chromatin structure:]** Interphase chromosomes are further organized into loops by large proteins rings Cohesion protein complex are loaded on chromatin to form a small DNA loop ATP HIDROLYSIS progressively moves cohesion complexes and enlarges DNA loops DNA loops enlargements is stoped by sequence specific clamp proteins that are present on the DNA sequence; when they enter in contact, the DNA folding stopsv **[The chromosome structure : mitosis ]** Mitotic chromosomes undergo further processes of condensation During mitosis, chromosomes coil up to form an highly condensed structure. This type of of condensation reduces a typical interphase chromosome by tenfold and changes chromosome appearance The condensation process is mediated by condensing proteins that further fold the DNA mulecule with ATP hydrolysis ![](media/image105.png) This loops which in loops organization, combine with the ever tighter wnding of these loops around the chromosomes central axis generates the compact structure of the mitotic chromosomes The structure of chromatin varies along a single interphase chromosome Heterochromatin: highly condensed form, is called CLOSED and INACTIVE, it prevents gene expression Euchromatin: less condensed form, is called OPEN and ACTIVE, allow gene transcription They both represent a set of different chromatin structures with different degrees of condensation The constitutive **heterochromatin** in the centromere and telomeres remains permanently condensed The facultative has been condensed in a manner that is only temporary ![](media/image107.png) **Heterochromatin** has condensed chromatin structure and is inactive for transcription. **Euchromatin** has loose chromatin structure and active for transcription. When euchromatic regions are converted to heterochromatic state, their genes are generally switched off. **Heterochromatin and euchromatin are defined by specific histone modifications.** The structure of chromatin varies along a single interphase chromosome. **The Heterochromatic State Is Self-Propagating** המצב ההטרוכרומטי הוא \"Self-Propagating\" (בעל יכולת שימור עצמי), כלומר, מצב זה משמר את עצמו באופן אוטונומי לאורך חלוקות תאיות ולעיתים גם מדור לדור. המושג מתייחס לאופן שבו אזורים של דנ\"א הטרוכרומטי (דחוס ולא פעיל מבחינה שעתוקית) שומרים על המאפיינים שלהם באמצעות מנגנונים אפיגנטיים. ![](media/image109.png) התמונה מתארת את התופעה של **Position Effect Variegation (PEV)** ב-Drosophila (זבוב הפירות), שמתרחשת כאשר גנים שעברו טרנסלוקציה כרומוזומלית או הוזזו לאזור קרוב להטרוכרומטין הופכים לשקטים או לא פעילים (סגירת שעתוק), באופן שמוביל לשונות בביטוי הגנים. - שונות בביטוי הגנים בין תאים בתהליך ההתפתחות גורמת לאפקט מגוון (variegation) בביטוי פנוטיפים, כמו שינויי צבע בעין או בכנפיים של ה-Drosophila. - התופעה מדגישה את החשיבות של מיקום הגן בתוך הכרומוזום ואת השפעת הסביבה הכרומטינית על הביטוי שלו. **השפעת הטרנסלוקציה:** כיצד שינוי מיקום של גנים משפיע על הסביבה הכרומטינית שלהם (מעבר מסביבה אאוכרומטית לסביבה הטרוכרומטית). **תפקידי המחסום (barrier):** איך המחסום מונע התפשטות ההטרוכרומטין, ומה קורה כאשר המחסום \"מוסר\" או עובר שינוי. **השלכות על ביטוי גנים:** ההבדל בביטוי של גנים שהיו פעילים בסביבה אאוכרומטית אך מושתקים כעת בגלל קרבתם להטרוכרומטין. ![](media/image111.png) האיור מציג את תהליך התפשטות ההטרוכרומטין בשלבים המוקדמים של התפתחות עוברית וכיצד הוא מוביל לשונות בביטוי גנים בין שיבוטי תאים (clones). ### שלבי התהליך באיור: - במהלך ההתפתחות המוקדמת, אזורי ההטרוכרומטין מתחילים \"לזחול\" (spread) ולהתפשט לתוך האאוכרומטין הסמוך. - מידת ההתפשטות שונה מתא לתא, ולכן היא משפיעה באופן שונה על ביטוי הגנים: - באיור השמאלי, רק גן 1 מושפע (מושתק). - באיור האמצעי, גנים 1, 2 ו-3 מושתקים. - באיור הימני, אין השפעה על אף אחד מהגנים. - כאשר התאים מתחלקים, כל תא שומר על המצב האפיגנטי של ההטרוכרומטין כפי שהיה בתא האב שלו. - כך נוצרים שיבוטי תאים (clones) עם דפוסי ביטוי גנים שונים: - שיבוט שבו גן 1 מושתק (ירוק באזור גן 1 בלבד). - שיבוט שבו גנים 1, 2 ו-3 מושתקים. - שיבוט שבו אף גן לא מושתק. ### המסר העיקרי של האיור: - התפשטות ההטרוכרומטין היא **אקראית** בתאים שונים בשלבי ההתפתחות המוקדמים, ומשמרת את הדפוסים האפיגנטיים שנוצרו לאורך חלוקת התאים. - תהליך זה מוביל ליצירת **variegation** (שונות) בביטוי גנים באורגניזם, תופעה שמכונה **Position Effect Variegation (PEV)**. ### השלכה ביולוגית: - זה מסביר כיצד דפוסים משתנים של ביטוי גנים יכולים להוביל לשינויים פנוטיפיים באורגניזמים, כמו כתמים של צבע שונה בעיניים או בכנפיים של זבוב הפירות. האיור מתאר את ההשפעה של **מיקום הגן White** על הביטוי שלו בזבוב הפירות (**Drosophila**), כתוצאה מהיפוך כרומוזומלי נדיר (**rare chromosome inversion**), תוך התמקדות בתופעה של **Position Effect Variegation (PEV)**. ### מה האיור מראה? #### 1. בחלק העליון (מצב נורמלי): - **מיקום הגן White:** - הגן White, שאחראי על צבע עיני הזבוב, נמצא באזור אאוכרומטי (פתוח ומאפשר ביטוי גנים) רחוק מהטרוכרומטין (בצבע ירוק). - יש מחסום (**barrier**) שמפריד בין האזור האאוכרומטי להטרוכרומטין, כך שהגן מתבטא בצורה תקינה, והעיניים של הזבוב אדומות לגמרי. #### 2. בחלק התחתון (לאחר היפוך כרומוזומלי): - **מיקום חדש של הגן White:** - בעקבות היפוך כרומוזומלי, הגן White עובר לקרבת אזור ההטרוכרומטין. - המיקום החדש גורם לכך שהגן עלול להיות מושפע מהתפשטות ההטרוכרומטין (סגירה אפיגנטית), מה שמוביל להשתקה חלקית או מלאה של הגן בתאים מסוימים. - התוצאה היא שונות בביטוי הגן בין תאים, כך שחלק מהעיניים יישארו אדומות וחלקן לבנות, וייווצר מראה \"מנוקד\" או \"כתמי\" בעיניים. ### המשמעות הביולוגית: - **PEV:** התופעה מתארת את ההשפעה של מיקום גנים על ביטויים כתוצאה מקרבתם לאזורי הטרוכרומטין. - **השתקה אפיגנטית:** ככל שהגן קרוב יותר להטרוכרומטין, כך גדל הסיכוי שהוא יושתק, מה שגורם לשינויים פנוטיפיים (במקרה זה, צבע העיניים). ### יישום: איור זה עוזר להבין את הקשר בין ארגון הכרומוזום במרחב לבין ביטוי הגנים, ואת ההשפעה של שינויים כרומוזומליים (כמו היפוך) על הפנוטיפ. ** The Core Histones Are Covalently Modified at Many Different Sites** ![](media/image113.png) ### המשמעות הביולוגית: - המודיפיקציות על זנבות ההיסטונים יוצרות \"קוד היסטוני\" (**Histone Code**) שמשפיע על האופן שבו הכרומטין מתארגן: - מבנה **דחוס (הטרוכרומטין):** ביטוי גנים מושתק. - מבנה **פתוח (אאוכרומטין):** ביטוי גנים פעיל. - הבנת מנגנונים אלה חיונית להבנת ויסות גנים, אפיגנטיקה והתפתחות מחלות. התמונה מציגה את **האתרים השונים של מודיפיקציות קוולנטיות** על זנבות ההיסטונים המרכזיים (H2A, H2B, H3, H4). ### בקצרה: 1. **מודיפיקציות שמוצגות:** - **מתילציה (M):** הוספת קבוצות מתיל. - **אצטילציה (A):** הוספת קבוצות אצטיל. - **פוספורילציה (P):** הוספת קבוצות פוספט. 2. **אתרי המודיפיקציות:** - כל זנב היסטון מכיל עמדות ספציפיות לשינויים (מסומנות במספרים, כמו K4, K9 בהיסטון H3). - השינויים מתרחשים בעיקר בקצה ה-N-טרמינלי של ההיסטונים (zנבות). 3. **השפעה:** - מודיפיקציות אלה משפיעות על דחיסות הכרומטין ועל ביטוי הגנים: - **מתילציה:** קשורה להשתקה או אקטיבציה של גנים (תלוי במיקום). - **אצטילציה:** לרוב גורמת לפתיחת הכרומטין וביטוי גנים. - **פוספורילציה:** מעורבת בתהליכים כמו תיקון דנ\"א. התמונה ממחישה את החשיבות של \"קוד ההיסטונים\" בוויסות האפיגנטי של ביטוי הגנים. ![](media/image115.png) The pattern of modification of histone tails can determine how a stretch of chromatin is handled by the cell. **[Chromatin Acquires Additional Variety Through the Site-Specific Insertion of a Small Set of Histone Variants:]** ![](media/image117.png) התמונה מציגה **וריאנטים של היסטונים** שמחליפים היסטונים קנוניים בנוקלאוזום ומשפיעים על תפקוד הכרומטין: - **H3.3:** מקושר לשעתוק אקטיבי. - **CENP-A:** תומך בתפקוד הצנטרומר והרכבת הקינטוכור. - **H2AX:** משתתף בתיקון דנ\"א ושבירות דו-גדיליות. - **H2AZ:** קשור לוויסות ביטוי גנים וחלוקת כרומוזומים. - **MacroH2A:** מעורב בדיכוי שעתוק ובהשבתת כרומוזום X. וריאנטים אלו מאפשרים גמישות מבנית ותפקודית לכרומטין בתהליכים תאיים חשובים. **[Covalent Modifications and Histone Variants Act in Concert to Control Chromosome Functions]** ![](media/image119.png) [ ] **[Covalent Modifications and Histone Variants Act in Concert to Control Chromosome Functions]** 1. **זנבות ההיסטונים (Histone Tails):** 1. הזנבות, שמודגשים, הם אזורים שמאפשרים שינויים אפיגנטיים שמווסתים את הגישה לדנ\"א על ידי שינויים בקשרים בין הנוקלאוזומים. 2. **מנגנוני בקרה:** השינויים הקוולנטיים בזנבות ההיסטונים, יחד עם וריאנטים שונים של ההיסטונים עצמם, פועלים יחד כדי לשלוט בתפקודים הכרומוזומליים, כמו שעתוק, שכפול או תיקון דנ\"א. **איך זה קשור לתפקודים הכרומוזומליים?** השינויים בזנבות ובמבנה הליבה יכולים לקבוע אם אזור כרומוזומלי יהיה פתוח ונגיש לשעתוק (אאוכרומטין) או סגור ודחוס (הטרוכרומטין). **[A Complex of Reader and Writer Proteins Can Spread Specific Chromatin Modifications Along a Chromosome ]** המשפט מתאר מנגנון ביולוגי שבו חלבונים מסוג \"Reader\" ו-\"Writer\" פועלים יחד כדי להפיץ שינויים כרומטיניים (כמו מתילציה או אצטילציה) לאורך הכרומוזום. המשפט מתאר מנגנון ביולוגי שבו חלבונים מסוג \"Reader\" ו-\"Writer\" פועלים יחד כדי להפיץ שינויים כרומטיניים (כמו מתילציה או אצטילציה) לאורך הכרומוזום. ### איך זה עובד? 1. **Reader Proteins ( חלבוני קורא):** - מזהים ומתחברים למודיפיקציות קיימות על זנבות ההיסטונים (למשל, קבוצת מתיל על ליזין 9 בהיסטון H3, H3K9me). - פעולתם מאפשרת הכרה מדויקת של המודיפיקציות הקיימות. 2. **Writer Proteins ( חלבוני כותב):** - מבצעים את המודיפיקציות על היסטונים סמוכים (כמו הוספת קבוצות מתיל או אצטיל). - למשל, חלבון Writer שמוסיף מתילציה עשוי לפעול ליד המיקום שבו חלבון Reader זיהה מתילציה קיימת. 3. **מנגנון הפצה:** - חלבוני Reader ו-Writer פועלים יחד במעגל חוזר: - ה-Reader מזהה את השינוי הקיים. - ה-Writer מוסיף את אותו שינוי באזור סמוך. - כך נוצרת התפשטות של המודיפיקציה לאורך הכרומוזום. ### חשיבות ביולוגית: - **הטרוכרומטין:** מנגנון זה יכול לסייע ביצירת אזורים של הטרוכרומטין דחוס לאורך הכרומוזום, שמונעים שעתוק של גנים באזורים אלו. - **זיכרון אפיגנטי:** התהליך משמר את דפוסי הכרומטין במהלך חלוקת התא. - **תגובה לדינמיקה תאית:** המנגנון מאפשר לתא לשנות במהירות אזורים מסוימים של כרומטין בהתאם לצורך (למשל, במהלך תיקון דנ\"א או שעתוק).**[\ ]**![](media/image121.png)האיור מתאר את מנגנון הפעולה של קומפלקס Reader-Writer להפצת שינויים כרומטיניים: 1. **מודיפיקציות קוולנטיות על זנבות ההיסטונים (Mark):**\ סימנים אפיגנטיים כמו מתילציה או אצטילציה שמתווספים על ידי Writer. 2. **Reader Protein:**\ מזהה את המודיפיקציות ומושך חלבונים נוספים. 3. **קומפלקס חלבוני:**\ מבצע פעולות נוספות כמו שינוי מבנה הכרומטין או גיוס רכיבים פונקציונליים אחרים. **מטרה:**\ שינוי ביטוי גנים, דחיסה או פתיחה של כרומטין ותפקודים ביולוגיים אחרים. מודיפיקציות קובעות אם אזורי דנ\"א יהיו פעילים (פתוחים) או מושתקים (דחוסים). **[Covalent Modifications and Histone Variants Act in Concert to Control Chromosome Functions]** המשפט מתאר כיצד **מודיפיקציות קוולנטיות** ו**וריאנטים של היסטונים** פועלים יחד כדי לשלוט על תפקודי הכרומוזומים, כמו שעתוק, תיקון דנ\"א ודחיסת כרומטין. ### פירוט: 1. **מודיפיקציות קוולנטיות**: - שינויים כימיים בזנבות ההיסטונים, כגון: - **מתילציה** (Methylation): יכולה לעודד השתקת גנים (למשל, H3K9me) או ביטוי (למשל, H3K4me). - **אצטילציה** (Acetylation): קשורה לרוב לפתיחת הכרומטין ולביטוי גנים. - **פוספורילציה** (Phosphorylation): חשובה לתהליכים כמו תיקון דנ\"א. 2. **וריאנטים של היסטונים**: - היסטונים שאינם סטנדרטיים, שמוחלפים בהיסטונים הרגילים בנוקלאוזומים. לדוגמה: - **H2A.Z**: מסייע בפתיחת הכרומטין ושעתוק. - **H3.3**: משתלב באזורים פעילים של כרומטין. 3. **שיתוף פעולה**: - מודיפיקציות קוולנטיות יוצרות \"סימנים\" שמושכים חלבונים, בעוד וריאנטים של היסטונים משנים את תכונות הכרומטין. - יחד, הם שולטים באיזורים בכרומוזום שיהיו פתוחים (אאוכרומטין) או סגורים (הטרוכרומטין). **[Covalent Modifications and Histone Variants Act in Concert to Control Chromosome Functions]** ![](media/image123.png) 1. **H3K9me3 (טרי-מתילציה על ליזין 9):**\ מוביל להיווצרות הטרוכרומטין והשקטת גנים. 2. **H3K4me3 + H3K9ac (טרי-מתילציה על ליזין 4 ואצטילציה על ליזין 9):**\ קשור לביטוי גנים פעיל. 3. **H3K27me3 (טרי-מתילציה על ליזין 27):**\ משתיק גנים דרך קומפלקס Polycomb Repressive. **מטרה:**\ שליטה על מבנה הכרומטין והשפעה על ביטוי גנים. **[Heterochromatin-specific histone modifications allow heterochromatin to form and to spread]** ההטרוכרומטין הופך דחוס ולא נגיש, מה שמוביל להשתקת גנים באזורים אלו. תהליך זה חיוני לשמירה על יציבות הגנום ודיכוי טרנספוזונים או אלמנטים חוזרניים. ![](media/image125.png)**[A Complex of Reader and Writer Proteins Can Spread Specific Chromatin Modifications Along a Chromosome:]** Reader and Writer Proteins can work in concert to either decondense or condense long stretches of chromatin. **[\ ]** **[Barrier DNA Sequences Block the Spread of Reader--Writer Complexes and thereby Separate Neighboring Chromatin Domains]** **תפקיד Reader--Writer:** - קומפלקסים אלה אחראים על התפשטות מודיפיקציות כרומטין (כגון מתילציה או אצטילציה) לאורך הכרומוזום. - לדוגמה: התפשטות הטרוכרומטין (H3K9me3) עלולה לדחוס אזורי כרומטין פעילים ולגרום להשתקת גנים בלתי רצויה. **תפקיד Barrier DNA:** - רצפי Barrier פועלים כמחסום פיזי או פונקציונלי שמונע את המשך פעולתם של ה-Reader--Writer. - מבנים פוטנציאליים כוללים: - **קשירה לחלבונים ספציפיים:** רצפים אלה מגייסים חלבונים שמונעים גישה של קומפלקסים. - **מודיפיקציות מתחרות:** למשל, אזורים עם אצטילציה פעילה (H3K9ac) יכולים למנוע מתילציה. - **קשירה למרכיבי מבנה גרעיניים (Nuclear Pores):** מחברת את הדנ\"א לנקודות עיגון המונעות דחיסה נוספת. **מטרה ביולוגית:** - שמירה על גבולות בין תחומי כרומטין פעילים (אאוכרומטין) לדחוסים (הטרוכרומטין). - מניעת השפעה של מודיפיקציות אפיגנטיות באזורים שבהם אין צורך בשינוי כרומטין. **[The Chromatin in Centromeres Reveals How Histone Variants Can Create Special Structures]** הכרומטין בצנטרומרים מדגים כיצד וריאנטים של היסטונים יכולים ליצור מבנים ייחודיים. ### עיקרי הדברים: 1. **היסטון וריאנט CENP-A:** - בצנטרומרים, היסטון H3 מוחלף בווריאנט ייחודי בשם **CENP-A**. - CENP-A שונה מהיסטון H3 ומאפשר היווצרות של כרומטין ייחודי. 2. **תפקיד CENP-A:** - יוצר מבנה כרומטין ייחודי בצנטרומר המהווה פלטפורמה לקישור של קומפלקס הקינטוכור. - מבטיח חיבור נכון של המיקרוטובולים לכרומוזומים במהלך חלוקת התא. 3. **חשיבות ביולוגית:** - מבנה הכרומטין הייחודי בצנטרומר מבטיח הפרדה מדויקת של כרומוזומים במהלך המיטוזה. - שינויים בווריאנטים כמו CENP-A עלולים להוביל לחוסר יציבות גנומית. ### סיכום: וריאנטים של היסטונים, כמו CENP-A, יוצרים מבנה כרומטין ייחודי בצנטרומרים החיוני לתפקוד נכון של כרומוזומים. ![](media/image127.png) וריאנטים של היסטונים, כגון CENP-A, חיוניים ליצירת מבנה ייחודי בצנטרומר, שתומך בתפקודו המדויק בחלוקת התא. **[The Chromatin in Centromeres Reveals How Histone Variants Can Create Special Structures]** 1. **Normal Nucleosome (נוקלאוזום רגיל):** - בנוי מארבעת ההיסטונים H2A, H2B, H3, ו-H4. - נמצא ברוב הכרומטין ומשמש לדחיסת הדנ\"א ולוויסות ביטוי גנים. 2. **Nucleosome with Centromere-Specific Histone H3 ( נוקלאוזום בצנטרומר):** - מכיל וריאנט של היסטון H3 הנקרא **CENP-A** במקום H3 רגיל. - וריאנט זה ייחודי לצנטרומרים ומאפשר יצירת מבנה מיוחד שמזהה את הצנטרומר ומסייע בגיוס הקינטוכור. ### משמעות: - הנוקלאוזום עם CENP-A מייצר מבנה כרומטין ייחודי הנחוץ להפרדה נכונה של הכרומוזומים במהלך המיטוזה. **[Chromatin Acquires Additional Variety Through the Site-Specific Insertion of a Small Set of Histone Variants]** וריאנטים של היסטונים מוסיפים מגוון לכרומטין, מווסתים תפקודים ספציפיים, ומאפשרים שליטה מורכבת על מבנה ותפקוד הגנום ![](media/image129.png)**[The Chromatin in Centromeres Reveals How Histone Variants Can Create Special Structures]** ### עיקרי התמונה: 1. **DNA צנטרומרי של שמר (Yeast Centromeric DNA):** - רצף דנ\"א ספציפי שמזוהה על ידי חלבונים קושרי דנ\"א. - רצף זה מהווה את הבסיס ליצירת הצנטרומר. 2. **נוקלאוזומים ייחודיים לצנטרומר (Centromere-Specific Nucleosome):** - מכילים וריאנט של היסטון H3, כמו **CENP-A**, שמאפשר יצירת מבנה כרומטין מיוחד הנחוץ לחיבור הקינטוכור. 3. **חלבונים קושרי דנ\"א ספציפיים (Sequence-Specific DNA-Binding Proteins):** - מזהים את הדנ\"א הצנטרומרי ותורמים להרכבת הקינטוכור. 4. **קינטוכור (Yeast Kinetochore):** - קומפלקס חלבוני הנבנה על הצנטרומר ומתווך את החיבור בין הכרומוזום למיקרוטובולים. - מאפשר את תנועת הכרומוזומים במהלך החלוקה התאית. 5. **מיקרוטובולים (Microtubules):** - סיבים דינמיים שמתחברים לקינטוכור ומשמשים להנעת הכרומוזומים אל קטבי התא. ### משמעות: התמונה מדגישה את החשיבות של הצנטרומר, נוקלאוזומים ייחודיים, והקינטוכור בתהליך חלוקת התא. המבנה המדויק מבטיח חלוקה נכונה של הכרומוזומים ומונע טעויות, כמו אי-שוויון כרומוזומלי בתאים הבת. **[The Chromatin in Centromeres Reveals How Histone Variants Can Create Special Structures]** **[Some Chromatin Structures Can Be Directly Inherited]** מבני כרומטין מסוימים, הכוללים מודיפיקציות אפיגנטיות, ניתנים להעברה בתורשה אפיגנטית מתא לתא, דבר שמאפשר שמירה על תפקוד וכיוון גנטי גם לאחר חלוקת תא. Epigenetic inheritance Inheritance of phenotypic changes in a cell or organism that do not result from changes in the nucleotide sequence of DNA. Can be due to positive feedback loops of transcription regulators or to **[hereditable]** modifications in chromatin such as DNA methylation or histon modifications. ![](media/image131.png) - מבנה הכרומטין (הטרוכרומטין או אאוכרומטין) נשמר בתאי הבת, למרות השכפול. - הדבר מבטיח שמידע אפיגנטי יועבר באופן מדויק מדור לדור בתאים. ### חשיבות: - שמירה על יציבות גנומית. - מניעת ביטוי לא רצוי של גנים. - שמירה על זהות התא והתפקודים הגנטיים שלו. **[Experiments with Frog Embryos Suggest that both Activating and Repressive Chromatin Structures Can Be Inherited Epigenetically]** 1. **תורשה אפיגנטית:** - מבני כרומטין, בין אם הם **פתוחים ומפעילים** או **סגורים ומדכאים**, יכולים לעבור מדור תא אחד למשנהו מבלי לשנות את רצף הדנ\"א. 2. **מבנה כרומטין מפעיל:** - כרומטין פתוח (אאוכרומטין) מאפשר גישה של גורמי שעתוק, ומוביל לביטוי גנים. - קשור למודיפיקציות כמו **אצטילציה** (H3K9ac) או **מתילציה של H3K4** (H3K4me3). 3. **מבנה כרומטין מדכא:** - כרומטין דחוס (הטרוכרומטין) משתיק ביטוי גנים על ידי מניעת גישה של גורמי שעתוק. - קשור למודיפיקציות כמו **מתילציה של H3K9** (H3K9me3) או **H3K27me3**. 4. **ממצאים מניסויי הצפרדעים:** - לאחר חלוקת התא בעוברים של צפרדעים, נצפה שדפוסי הכרומטין נשמרו. - גנים שהיו פעילים נשארו פעילים, וגנים מושתקים נשארו מושתקים בתאים הבאים. - הדבר מצביע על כך שהכרומטין \"זוכר\" את המצב התפקודי שלו. 5. **מנגנונים:** - מתווכים על ידי חלבוני **Reader--Writer**, שמזהים מודיפיקציות קיימות ומעתיקים אותן לכרומטין החדש. - דפוסי מתילציה של דנ\"א גם מסייעים בשמירת המצב האפיגנטי. ### משמעות ביולוגית: - מבני כרומטין מפעילים ומדכאים יכולים להיקבע במהלך ההתפתחות המוקדמת ולעבור לתאי הבת. - זה קריטי לשמירה על זהות התא ולביטוי דיפרנציאלי של גנים ברקמות שונות. **[Epigenetic inheritance:]** Inheritance of phenotypic changes in a cell or organism that do not result from changes in the nucleotide sequence of DNA **[Experiments with Frog Embryos Suggest that both Activating and Repressive Chromatin Structures Can Be Inherited Epigenetically.]** **[One of the two X chromosomes is inactivated in the cells of mammalian females by heterochromatin formation.]** ![](media/image133.png) - התמונה מראה שיתוק של כרומוזום X שונה בכל תא, וכתוצאה מכך התאים בצאצאים נושאים תבנית קבועה של השתקת כרומוזום X (או X\_p או X\_m). ### חשיבות ביולוגית: - **איזון גנים:** מבטיח שנקבות (XX) יקבלו ביטוי גנים שווה לזה של זכרים (XY). - **ביטויים שונים:** תורשה אקראית זו יכולה לגרום לפנוטיפים שונים, כמו בתופעת **מוזאיקה גנטית** (לדוגמה, בפרוות חתולות קליקו). ### התמונה: - **צד שמאל:** מראה את הבחירה האקראית של כרומוזום X להשבתה ותורשה של הדפוס לדורות של תאים. - **צד ימין:** מראה את גוף Barr בתאי גרעין של נקבה, לעומת זכר שאין לו גוף Barr. In cats, one of the genes specifying coat color (black or orange) is located on the X chromosome. In female calicos, one X chromosome carries the form of the gene that specifies black fur, the other carries the form of the gene that specifies orange fur. **[Chromosomes Are Folded into Large Loops of Chromatin]** **לולאות הכרומטין** הן מבנים פונקציונליים שמארגנים את הכרומוזומים באופן תלת-ממדי, ומאפשרים שליטה מדויקת בוויסות ביטוי גנים, דחיסת הכרומטין, ותפקודים תאיים אחרים. **[Polytene Chromosomes Are Uniquely Useful for Visualizing Chromatin Structures]** Polytene cells of flies such as Drosophila, grow abnormally large through multiple cycles of DNA synthesis without cell division. Polyploid cells**[.]** **תאים פוליטניים (Polytene cells)** הם תאים ייחודיים, כמו אלה שנמצאים בזבוב הדרוזופילה, שבהם הדנ\"א משוכפל פעמים רבות ללא חלוקת תא, מה שמוביל לתאים פוליפלואידיים (polyploid cells). **[Polytene Chromosomes in one salivary cell of Drosophila They Are Uniquely Useful for Visualizing Chromatin Structures]** ![](media/image135.png) **[ There Are Multiple Forms of Chromatin -]** צורות הכרומטין השונות מאפשרות ויסות מדויק ודינמי של הפעילות הגנומית, תוך התאמה לצרכים התפקודיים של התא. **[Chromatin Loops Decondense When the Genes Within Them Are Expressed- ]** **לולאות כרומטין נפתחות** (decondense) כאשר גנים בתוכן מתבטאים, תהליך המאפשר גישה לגנים על ידי מכונות השעתוק, ויסות גנים ותגובה לצרכים תפקודיים של התא. **[Chromatin Can Move to Specific Sites Within the Nucleus to Alter Gene Expression]** Chromatin Can Move to Specific Sites Within the Nucleus to Alter Gene Expression **[ Networks of Macromolecules Form a Set of Distinct Biochemical Environments inside the Nucleus]** The nuclear subcompartments- lacking a lipid bilayer membrane- can create distinct biochemical environments בגרעין התא קיימים **תת-מבנים פונקציונליים מוגדרים** ללא ממברנה ליפידית, שנוצרים באמצעות ריכוז מקרומולקולות. מבנים אלו מספקים סביבות ביוכימיות ייחודיות, קריטיות לתפקודים גרעיניים כמו שעתוק, עיבוד RNA ותיקון דנ\"א. ![](media/image137.png) **[Genome Comparisons Reveal Functional DNA Sequences by their Conservation Throughout Evolution]** השוואות גנומים חושפות רצפי דנ\"א שמורים, המעידים על תפקידם הפונקציונלי החשוב, ובכך מאפשרות הבנה טובה יותר של הביולוגיה האבולוציונית ותפקודי הגנום. **[Transposable DNA Elements Transposons are parasitic DNA sequences that can spread within the genomes. Our genome is thought to have been derived from transpositions that occurred so long ago...]** **[ The Genome Sequences of Two Species Differ in Proportion to the Length of Time Since They Have Separately Evolved]** ככל שחלף יותר זמן מאז שמינים התפצלו מאב קדמון משותף, כך יהיו יותר הבדלים ברצפי הגנום שלהם. עיקרון זה מאפשר לנו להבין קשרים אבולוציוניים ולהעריך את הזמן שחלף מאז ההתפצלות. **[The Genome Sequences of Two Species Differ in Proportion to the Length of Time Since They Have Separately Evolved]** ![](media/image139.png) **[Phylogenetic Trees Constructed from a Comparison of DNA Sequences Trace the Relationships of All Organisms]** מידת השוני הגנטי בין שני מינים פרופורציונלית לזמן שחלף מאז התפצלותם האבולוציונית. עיקרון זה מאפשר לחקור קשרים בין מינים ולמדוד את הזמן שחלף מאז שיתפו אב קדמון משותף **[ A Comparison of Human and Mouse Chromosomes Shows How the Structures of Genomes Diverge]** השוואת כרומוזומים של אדם ועכבר חושפת כיצד גנומים מתפצלים ומתפתחים לאורך זמן, תוך שמירה על גנים חיוניים ושינויים במבנים מותאמים לתפקודים ייחודיים. הבדלים אלו מדגישים את השפעת האבולוציה על מבנה ותפקוד הגנום. **[The Size of a Vertebrate Genome Reflects the Relative Rates of DNA Addition and DNA Loss in a Lineage]** Mammals have mainteined genome size of 3 billion nucleotide pairs, even though only about 150 million nucleotide pairs appear to be under specific regulated sequences.. Introns can be useful in duplication events. Introns increase the probability of a faurable duplication event. Duplications can occur in the long introns and not disrupt exons. **אינטרונים** תורמים משמעותית לאבולוציה בכך שהם מאפשרים שכפול בטוח של גנים מבלי לשבש את הרצפים המקודדים, וכך מגדילים את הסיכוי להתפתחות וריאציות מועילות בגנום.**[\ ]** **[We Can deduce the Sequence of Some Ancient Genomes]** שחזור גנומים עתיקים מאפשר הצצה לעבר האבולוציוני של אורגניזמים, מספק תובנות על הקשרים הגנטיים בין מינים קדומים למודרניים, ותורם להבנת ההיסטוריה הביולוגית של החיים על פני כדור הארץ. **[Many of the conserved sequences not coding for protein are known to produce untranslated RNA molecules (long noncoding RNAs, lncRNAs) that are thought to have important functions in regulating gene transcription.]** **lncRNAs** הם מולקולות RNA שאינן מתורגמות לחלבון, אך ממלאות תפקידים חיוניים בוויסות ביטוי גנים, ארגון כרומטין, ובקרה אפיגנטית, מה שהופך אותם למרכיב מרכזי בתפקוד הגנום ובמחקר הביולוגי. **[Changes in Previously Conserved Sequences Can Help Decipher Critical Steps in Evolution]** **Mutations** in the DNA Sequences That Control Gene Expression Have Driven Many of the Evolutionary Changes in Vertebrates מוטציות באזורים רגולטוריים השולטים בביטוי גנים היו מנוע מרכזי בהתאמות אבולוציוניות ובשינויים מורפולוגיים בחולייתנים. **[Gene Duplication Also Provides an Important Source of Genetic Novelty During Evolution]** **שכפול גנים (Gene Duplication)** הוא מנגנון אבולוציוני מרכזי שבו עותק נוסף של גן מסוים נוצר בגנום. תהליך זה מספק מקור חשוב ליצירת **גיוון גנטי** ולפיתוח תכונות חדשות במהלך האבולוציה. **[Duplicated Genes Diverge ]** The process of duplication and divergence almost certainly explains the presence of large families of genes with related functions. תהליך השכפול והדיברגנציה יוצר משפחות גנים גדולות עם תפקודים קשורים, המספקות בסיס להתאמות אבולוציוניות ולמורכבות ביולוגית. **[Mutations in the DNA Sequences That Control Gene Expression Have Driven Many of the Evolutionary Changes in Vertebrates]** ![](media/image141.png) **[ The Evolution of the Globin Gene Family Shows How DNA Duplications Contribute to the Evolution of Organisms]** אבולוציית משפחת ה-Globin ממחישה כיצד שכפול גנים ודיברגנציה יצרו מגוון תפקודים ביולוגיים החיוניים להסתגלות, תוך הרחבת יכולות פיזיולוגיות ואבולוציוניות של אורגניזמים לאורך הזמן. **[Genes Encoding New Proteins Can Be Created by the Recombination of Exons]** **שחלוף אקסונים** יוצר גנים חדשים על ידי חיבור מחדש של מקטעים מקודדים מגנים שונים. תהליך זה מייצר חלבונים עם פונקציות חדשות ומורכבות, ומהווה מנגנון מפתח ביצירת חדשנות גנטית במהלך האבולוציה. **[ Neutral Mutations Often Spread to Become Fixed in a Population, with a Probability That Depends on Population Size]** A Great Deal Can Be Learned from Analyses of the Variation Among Humans **[\.]** **[DNA replication:]** DNA REPLICATION IS THE PROCESS BY WHICH DNA MAKES **A COPY OF ITSELF DURING CELL DIVISION.** ![](media/image143.png)**Mutation:** Mutation Rates Are Extremely Low **1 -- 10\^10** שיעור מוטציות נמוך זה נשמר בזכות הדיוק הגבוה של אנזים **DNA polymerase** ויכולת ה**proofreading** שלו (בדיקת שגיאות ותיקונן), יחד עם מנגנוני תיקון כמו **mismatch repair** לאחר השכפול. **\ ** **DNA REPLICATION** **[ Eukaryotic Chromosomes Contain Multiple Origins of Replication]** 1. **Base-Pairing Enables DNA Replication** זיווג הבסיסים מאפשר שכפול של ה-DNA, כאשר כל גדיל מהווה תבנית ליצירת גדיל משלים בזכות זיווג קבוע של בסיסים -- A,G,T,C 2. **DNA Synthesis Begins at Replication Origins** סינתזת DNA מתחילה בנקודות שנקראות **מקורות השכפול (Replication Origins)**. אלו אזורים ספציפיים ב-DNA בהם מתחיל תהליך השכפול. 3. **Two Replication Forks Form at Each Replication Origin** מכל מקור שכפול נוצרים שני **מזלגות שכפול (Replication Forks)** בכיוונים מנוגדים, המתקדמים לאורך ה-DNA כדי להפריד את הגדילים וליצור עותקים חדשים. 4. **DNA Polymerase Synthesizes DNA Using a Parental Strand as a Template** DNA פולימראז (DN