NCMB312 LEC MIDTERM FLUID & ELECTROLYTES PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document provides an overview of fluid and electrolytes, including body fluid compartments, third space fluid shifts, electrolyte types, osmosis, and related concepts. It explains factors impacting osmosis and provides examples of osmosis in practice, and differentiates between crystalloid and colloid solutions.
Full Transcript
***-- 1^ST^ SEM MIDTERM WEEK 7 --*** -------------------------- **FLUID & ELECTROLYTES** -------------------------- -- ----------------------------- **BODY FLUID COMPARTMENTS** -- ----------------------------- - The body has two main fluid compartments: intracellular and extr...
***-- 1^ST^ SEM MIDTERM WEEK 7 --*** -------------------------- **FLUID & ELECTROLYTES** -------------------------- -- ----------------------------- **BODY FLUID COMPARTMENTS** -- ----------------------------- - The body has two main fluid compartments: intracellular and extracellular. ------------------------------- ---------------------------------------------------------------------------------- **Intracellular fluid (ICF)** fluid inside the cells, making up approximately 70% of the body\'s total fluid. **Extracellular fluid (ECF)** fluid outside the cells, making up approximately 30% of the body\'s total fluid. ------------------------------- ---------------------------------------------------------------------------------- -- -------------------------------------- **Extracellular Fluid Compartments** -- -------------------------------------- ------------------------------------------- ----------------------------------------------------------------------------------- ---------------------------------------------------------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Compartment** **Description** **Volume (Adult)** **Interstitial fluid** **fluid surrounding cells, including lymph** **11-12 liters** **Intravascular fluid** **fluid inside blood vessels** **6 liters (3 liters plasma, 3 liters formed elements)** **Transcellular fluid** **fluid in specialized compartments (e.g., cerebrospinal fluid, synovial fluid)** **1 liter** ------------------------------------------- ----------------------------------------------------------------------------------- ---------------------------------------------------------- -- ----------------------------- **Third Space Fluid Shift** -- ----------------------------- - Occurs when fluid moves from the intravascular space to the interstitial space but is not available for use by the body. - This can lead to decreased urine output, increased heart rate, decreased blood pressure, and edema. -- -------------------------------------- **Signs of Third Space Fluid Shift** -- -------------------------------------- - Decreased urine output - Increased heart rate - Decreased blood pressure - Edema - Increased body weight - Imbalances in intake and output due to decreased tissue perfusion -- ---------------------------------------- **Examples of Third Space Fluid Loss** -- ---------------------------------------- - **Intestinal obstruction** - **Pancreatitis** - **Crushing injuries** - **Bleeding due to trauma or dissecting aortic aneurysm** - **Major venous obstructions** -- -------------------- **Electrolytes 💡** -- -------------------- - Are active chemicals found in body fluids that carry positive or negative charges. -- --------------------------- **Types of Electrolytes** -- --------------------------- ------------- -------------------------------------------------------------------------------------------------------- **Cations** positively charged electrolytes (e.g., sodium, potassium, calcium, magnesium, hydrogen ion) **Anions** negatively charged electrolytes (e.g., chloride, sodium bicarbonate, potassium, sulfate, protein ions) ------------- -------------------------------------------------------------------------------------------------------- -- ------------------------------- **Electrolyte Concentration** -- ------------------------------- - The concentration of electrolytes in the intracellular fluid (ICF) differs from that in the extracellular fluid (ECF). However, electrolyte levels in the ECF are typically measured due to their accessibility ![](media/image2.png) -- ---------------------------------- **Osmosis and Fluid Movement 🌈** -- ---------------------------------- - **Osmosis** is the movement of solvent (usually water) from an area of lower to higher concentration of solute. A diagram of a solution Description automatically generated -- ------------------------------- **Factors Affecting Osmosis** -- ------------------------------- - Concentration of solute - Osmotic pressure (the amount of hydrostatic pressure needed to stop the flow of water by osmosis) - Oncotic pressure (the pressure exerted by proteins in the blood) -- ------------------------- **Examples of Osmosis** -- ------------------------- - Water movement from an area of lower sodium concentration to an area of higher sodium concentration - Water movement from the intravascular space to the interstitial space in response to increased sodium concentration in the ECF -------------------------------- ---------------------------------------- **INFO** Solute Concentration Water Movement **High solute concentration** **Water moves into the compartment** **Low solute concentration** **Water moves out of the compartment** **Equal solute concentration** **No water movement** -------------------------------- ---------------------------------------- -- ---------------------- **Osmotic Pressure** -- ---------------------- - Pressure exerted by the concentration of solutes in a plasma. - Osmotic pressure pulls fluid into the capillary from the ICF. -- ---------------------- **Oncotic Pressure** -- ---------------------- - **Colloid oncotic pressure or Colloid osmotic pressure**. - Pressure exerted by proteins, particularly albumin, in a bloodstream. - **Colloid** is fluid consisting of no-soluble substances that are evenly distributed within a solvent. - Which fluid in the body moves based on the concentration of protein, particularly albumin. Protein attracts fluid, tubing, or water. - **Blood is an example of a colloid solution.** -- ------------------------------------------ **Crystalloid versus Colloid Solutions** -- ------------------------------------------ - **Crystalloid or colloid solutions** can be used to temporarily replace blood or replenish fluid losses from the body. - **Crystalloid solutions** are mineral ions dissolved in water. - **Examples:** normal saline (0.9% NaCl), half normal saline (0.45% NaCl), and lactated Ringer's solution (Plasma-Lyte). - Commonly used to replace fluid in hypovolemia. - **Colloid solutions** are commonly used as temporary blood replacement until the correct type of blood is available for infusion - **Examples:** albumin solutions, hyper-oncotic starch, and dextran. -- --------------- **Diffusion** -- --------------- - Movement of solute from an area of higher concentration to an area of lower concentration. - Example: diffusion of carbon dioxide and oxygen between the alveoli and pulmonary capillaries. ![A diagram of a solution Description automatically generated](media/image4.png) ------------------------------------------- ------------------------------------------------------- -------------------------------------------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Gases** **Concentration** **Movement** **Carbon Dioxide** **Higher in venous blood, lower in alveoli** **From pulmonary capillaries to alveoli** **Oxygen** **Higher in alveoli, lower in pulmonary capillaries** **From alveoli to pulmonary capillaries)** ------------------------------------------- ------------------------------------------------------- -------------------------------------------- -- -------------------------- **Hydrostatic Pressure** -- -------------------------- - Also called hydraulic pressure - Pressure exerted by a fluid on the wall of a blood vessel. - Example: fluid movement from blood vessels to interstitial fluid space in cases of obstruction or right-sided heart failure. - Hydrostatic pressure pushes fluid out of the capillary toward the ICF. A diagram of a diagram of a pressure Description automatically generated -- ---------------- **Filtration** -- ---------------- - Movement of water from an area of higher hydrostatic pressure to an area of lower hydrostatic pressure. - The kidneys filter approximately **180 L of plasma per day.** - **Example:** - Movement of fluid from intravascular compartment to interstitial compartment. - The passage of water and electrolytes from the capillary bed to the interstitial fluid**hydrostatic pressure** results from the pumping action of the heart -- ------------------------------- **Osmolality and Tonicity 🧬** -- ------------------------------- -- ---------------- **Osmolality** -- ---------------- - Number of dissolved particles in a unit of fluid. - The number of milliosmoles of solute (the standard unit of osmotic pressure) per kilogram of solvent - Measure of a solution\'s ability to create osmotic pressure and affect the movement of water between compartments. - Expressed as **milliosmoles per kilogram (mOsm/kg).** ------------------------------------------- --------------------- ---------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Normal Range** **Serum Osmolality** **275-290 mOsm/kg** **Urine Osmolality** **200-800 mOsm/kg** ------------------------------------------- --------------------- ---------- -- ---------------- **Osmolarity** -- ---------------- - **The number of milliosmoles (the standard unit of osmotic pressure) per liter of solution** - **Expressed as milliosmoles per liter (mOsm/L).** -- -------------- **Tonicity** -- -------------- - Ability of all solutes to cause an osmotic driving force that promotes water movement from one compartment to another. - It determines the normal state of cellular hydration and cell size. - Most commonly refers to the **NaCl content of the solution.** ------------------------------------------- ----------------------------------------------------------------------------------------------------------- ---------------------------------------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Tonicity** **Uses** **Examples** **Isotonic** **- Used to replace fluid loss, increase extracellular fluid volume without causing cellular shifts.\ **- 0.9% Normal Saline (NS)\ - Commonly used in dehydration, blood loss, or surgery.** - Lactated Ringer\'s (LR)\ - 5% Dextrose in Water (D5W)** **Hypotonic** **- Shifts fluids into cells, causing them to swell.\ **- 0.45% Normal Saline (1/2 NS)\ - Used in cases of intracellular dehydration (e.g., diabetic ketoacidosis, hyperosmolar hyperglycemia).** - 0.33% Normal Saline\ - 2.5% Dextrose in Water** **Hypertonic** **- Draws water out of cells, causing them to shrink.\ **- 3% Normal Saline\ - Used in severe hyponatremia, cerebral edema, or to stabilize blood pressure.** - 5% Dextrose in Normal Saline (D5NS)\ - 10% Dextrose in Water (D10W)** ------------------------------------------- ----------------------------------------------------------------------------------------------------------- ---------------------------------------- -- ----------------------- **Effective Osmoles** -- ----------------------- - Are solutes that are capable of affecting water movement. - Examples: sodium, mannitol, glucose, and sorbitol. - **Osmotic diuresis** is the increase in urine output caused by the excretion of solutes, such as glucose or mannitol. - In high concentrations, glucose or mannitol can act as solutes within the bloodstream that cause a force that pulls water out of the ICF and brings it into the ECF (bloodstream). - Then is filtered out of the bloodstream at the kidneys and excreted into the urine. -- --------------------------- **Fluid Gain and Loss 💧** -- --------------------------- -- ---------------- **Fluid Gain** -- ---------------- - Gained through eating and drinking. - Average daily intake and output of water are approximately equal. -- ---------------- **Fluid Loss** -- ---------------- - Fluid is lost through: - Kidneys (urine output) - Skin (insensible losses through sweating and evaporation) - Lungs (insensible losses through respiration) - GI tract (stool) ------------------------------------------- ------------------------------------------------- ---------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Average Daily Loss** **Kidneys** **1-2 liters** **Skin** **500 ml (insensible perspiration)** **Lungs** **300 ml (insensible loss during respiration)** **GI tract** **100-200 ml (stool)** ------------------------------------------- ------------------------------------------------- ---------- ![A screenshot of a medical chart Description automatically generated](media/image6.png) -- ------------------------------------ **Laboratory Diagnostic Values 📊** -- ------------------------------------ -- ---------------------------------- **Urine Specific Gravity (USG)** -- ---------------------------------- - Measures the ability of the kidneys to excrete or conserve water. - Normal range: **1.010-1.025**. -- ------------------------------- **Blood Urea Nitrogen (BUN)** -- ------------------------------- - Product of protein metabolism. - **Normal circumstances**: protein is broken down into amino acids, which are then broken down into ammonia molecules, which are converted to urea. - A waste product that is produced by the liver and excreted by the kidneys. - It is a measure of the amount of urea in the blood. - **Urea** is a waste product that is produced when the body breaks down protein. - The normal range for BUN is **10-20 mg/dL.** - Factors that can increase BUN include: - Decreased renal function - Dehydration - GI bleeding - Increased protein intake - Fever - Sepsis - Factors that can decrease BUN include: - End-stage liver disease - Low protein diet - Starvation or malnutrition - Expanded fluid volume (e.g. during pregnancy) -- ----------------- **Creatinine ** -- ----------------- - Waste product that is produced by the muscles and excreted by the kidneys. - It is a measure of muscle metabolism. - Product of muscle metabolism and is used as an indicator of renal function. - The normal range for creatinine is **0.7-1.4 mg/dL.** - Creatinine is a better indicator of renal function than BUN because it is not affected by protein intake and metabolic state. ------------------------------------------- ----------------- ------------------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **BUN** **Creatinine** **Normal Range** **10-20 mg/dL** **0.7-1.4 mg/dL** **Affected by Protein Intake** **Yes** **No** **Affected by Metabolic State** **Yes** **No** ------------------------------------------- ----------------- ------------------- -- ---------------- **Hematocrit** -- ---------------- - Percentage of red blood cells in the blood. - The normal range for hematocrit is: - 42-52% for males - 35-47% for females - Factors that can increase hematocrit include: - Dehydration - Polycythemia (a condition that results in an increased level of circulating RBCs) - Factors that can decrease hematocrit include: - Overhydration - Anemia (a condition that results in a decreased level of RBCs) -- ------------------- **Homeostasis 🌎** -- ------------------- - The ability of the body to maintain a stable internal environment despite changes in the external environment. - [The organs involved in homeostasis include:] - Kidneys - Heart - Lungs - Pituitary glands - Adrenal glands - Parathyroid glands -- ----------------------------------------------------- ***🌊* Regulation of Water and Electrolyte Balance** -- ----------------------------------------------------- A diagram of a flowchart Description automatically generated -- ----------------------- **Kidney Function 🌟** -- ----------------------- - The kidneys play a vital role in maintaining fluid and electrolyte balance. They: - Regulate extracellular fluid volume and osmolality - Remove fluid and waste products from the body - Regulate electrolyte levels in the extracellular fluid - Regulate pH levels in the extracellular fluid - Excrete metabolic waste and toxic substances -- -------------------------------- **Heart and Blood Vessels ❤️** -- -------------------------------- - The heart and blood vessels play a role in maintaining fluid and electrolyte balance by: - Pumping oxygenated blood to the kidneys - Maintaining sufficient pressure in the systemic circulation -- ------------- **Lungs 👅** -- ------------- - The lungs play a role in maintaining fluid and electrolyte balance by: - Removing water through exhalation - Maintaining acid-base balance -- ------------------------ **Pituitary Glands 🧠** -- ------------------------ - The pituitary glands play a role in maintaining fluid and electrolyte balance by: - Releasing antidiuretic hormone (ADH) to conserve water - Regulating blood volume and serum osmolality -- -------------------------------- **Antidiuretic Hormone (ADH)** -- -------------------------------- - Hormone produced by the hypothalamus that plays a crucial role in regulating water and electrolyte balance in the body. - **Functions:** maintain the osmotic pressure of the cells by controlling the retention and excretion of water by the kidneys. - Stimulates the reabsorption of water in the kidneys, which helps to maintain blood volume and serum osmolality. - **Mechanism of Action:** - ADH is released in response to decreased blood volume and serum osmolality. - ADH activates proteins and enzymes that increase the permeability of the distal convoluted tubules (DCT) to water. - Water is reabsorbed from the DCT back into the circulation, increasing blood volume and decreasing urine excretion. - **Effects of ADH on the Body:** - Increased blood volume - Decreased urine excretion - Increased potassium loss - Decreased serum osmolality -- ----------------- **Isotonicity** -- ----------------- - Refers to the balance of water and electrolytes in the body. - It is achieved when the concentration of solutes in the blood is equal to the concentration of solutes in the cells. -- ---------------------- **Thirst Mechanism** -- ---------------------- - **Thirst** is a mechanism that helps to regulate fluid balance in the body. - Thirst is stimulated by increased serum osmolality and decreased blood volume. - Thirst causes the body to drink more water, which helps to dilute the blood and increase blood volume. -- ------------------- **Baroreceptors** -- ------------------- - Specialized sensors that detect changes in blood pressure. - Located in the left atrium, carotid arteries, and aortic arches. - **Functions of Baroreceptors:** - Detect changes in blood pressure - Regulate sympathetic and parasympathetic neural activity - Maintain stable blood pressure levels and homeostasis -- ------------------------------------------------- **Renin-Angiotensin-Aldosterone System (RAAS)** -- ------------------------------------------------- - Complex system that helps to regulate blood pressure and fluid balance. ------------------------------------------- ------------------------------------------------------------------ ---------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Hormone** **Function** **Renin** **Stimulates the formation of angiotensin I and angiotensin II** **Angiotensin I** **Causes vasoconstriction and increases blood pressure** **Angiotensin II** **Stimulates the release of aldosterone** **Aldosterone** **Increases sodium and water reabsorption in the kidneys** ------------------------------------------- ------------------------------------------------------------------ ---------- -- -------------------- **Adrenal Glands** -- -------------------- - Located on top of each kidney and play a crucial role in regulating fluid balance and blood pressure. - Secrete aldosterone, which increases sodium and water reabsorption in the kidneys. - **Functions of Aldosterone:** - Increases sodium and water reabsorption in the kidneys - Increases blood pressure - Causes potassium loss -- ------------------------ **Parathyroid Glands** -- ------------------------ - Located in the thyroid gland plays a crucial role in regulating calcium and phosphate balance. - Secrete parathyroid hormone, which increases calcium reabsorption in the kidneys and bones. - **Functions of Parathyroid Hormone:** - Increases calcium reabsorption in the kidneys and bones - Increases bone resorption - Regulates calcium and phosphate balance -- ------------------------------------------------------- **🌊 Regulation of Fluid Volume and Blood Pressure 🌊** -- ------------------------------------------------------- -- ------------------------------------------------------ **Baroreceptors and the Sympathetic Nervous System** -- ------------------------------------------------------ - Baroreceptors play a crucial role in regulating fluid volume and blood pressure. - **Upon stimulation of the baroreceptors, the sympathetic nervous system is activated, leading to:** - Constriction of renal arterioles - Reduction of blood flow to the kidneys - Decrease in glomerular filtration rate (GFR) - **Release of enzymes and hormones involved in fluid volume and blood pressure regulation, including:** - Renin - Angiotensin 1 and 2 - Aldosterone - *These hormones promote sodium and water reabsorption from the renal tubules, increasing blood pressure and circulating blood volume.* -- ------------------------------------------------- **Renin-Angiotensin-Aldosterone System (RAAS)** -- ------------------------------------------------- - Complex system that responds to low circulating blood volume and low blood pressure. - It is a critical regulator of fluid balance and blood pressure. - **The RAAS is activated by the sympathetic nervous system, leading to:** - Decreased renal perfusion - Decrease in GFR - Release of renin, an enzyme that converts angiotensin 1 to angiotensin 2 - Angiotensin 2 acts on the renal tubules to increase sodium and water reabsorption - Release of aldosterone, which increases sodium and water reabsorption and promotes potassium excretion ![A screenshot of a computer Description automatically generated](media/image8.png) -- -------------------------- **Natriuretic Peptides** -- -------------------------- - Hormones that affect fluid volume and cardiovascular function through the excretion of sodium, direct vasodilation, and opposition of the RAAS. - **There are four types of natriuretic peptides:** ------------------------------------------- ---------------------------------------------- ------------------------------------------------------------------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Peptide** **Tissue Distribution** **Function** **Atrial Natriuretic Peptide (ANP)** **Atrial myocardium** **Decreases blood pressure, promotes sodium and water excretion** **Brain Natriuretic Peptide (BNP)** **Ventricular myocardium, brain** **C-type Natriuretic Peptide (CNP)** **Brain, ovary, uterus, testes, epididymis** **D-type Natriuretic Peptide (DNP)** **Like ANP, BNP, and CNP** ------------------------------------------- ---------------------------------------------- ------------------------------------------------------------------- -- -------------------------------------- **Atrial Natriuretic Peptide (ANP)** -- -------------------------------------- - Peptides are produced by the atrial myocardium in response to increased atrial blood pressure, angiotensin 2 stimulation, endothelin release, and sympathetic nervous system discharge. - **FUNCTIONS:** - Decreases water and sodium loads in the circulatory system - Promotes water and sodium excretion through urination - Stimulates lipolysis (breakdown of fats) - Opposes the RAAS, decreasing blood pressure - **Release of ANP in response to:** - Increased sodium chloride concentration - Increased blood volume - Increased blood pressure - Stretching of the atrial wall of the heart - **ANP works in four ways to decrease blood pressure and maintain fluid and electrolyte balance:** - Suppresses the RAAS - Decreases the release of aldosterone - Increases sodium and water excretion - Stimulates lipolysis - Normal ANP levels in plasma are **20-77 pg/mL.** - Levels increase with increased blood volume and blood pressure and decrease in chronic heart failure and with the use of medications such as enalapril. A diagram of a flowchart Description automatically generated -- ------------------------------------ **🌊 Fluid Balance and Regulation** -- ------------------------------------ -- ------------------------- **Aldosterone and ANP** -- ------------------------- - Aldosterone and Atrial Natriuretic Peptide (ANP) play crucial roles in regulating fluid balance in the body. - **Aldosterone**: A hormone produced by the adrenal glands that helps regulate sodium and potassium levels in the body. - **ANP**: A hormone produced by the heart that helps regulate blood pressure and fluid balance. - **When aldosterone levels decrease, it can lead to:** - Decreased blood pressure - Decreased sodium retention - Decreased blood volume - Decreased potassium excretion - **ANP has the following effects:** - Suppresses the production of Antidiuretic Hormone (ADH) by the posterior pituitary gland - Increases the rate of urine production and water excretion - Decreases blood pressure, sodium retention, and blood volume ![Diagram of blood pressure Description automatically generated](media/image10.png) **ANP & RAAS PHYSIOLOGY** -- --------------------------- **Osmoreceptors and ADH** -- --------------------------- - **Osmoreceptors **are specialized sensors located on the surface of the hypothalamus that detect changes in sodium concentration. - Stimulated as osmotic pressure increases, leading to an increase in serum osmolality and dehydration of neurons, prompting a quick release of impulses to the hypothalamus to release ADH. - **ADH (Antidiuretic Hormone)** is a hormone produced by the posterior pituitary gland that helps regulate water balance in the body. - ADH increases water reabsorption in the kidneys, leading to decreased urine output and increased blood volume. - ADH is released in response to increased serum osmolality and dehydration. -- ------------------------------- **🌊 Fluid Volume Imbalances** -- ------------------------------- -- ---------------------------------------- **Hypovolemia (Fluid Volume Deficit)** -- ---------------------------------------- - A condition where the loss of extracellular fluid (ECF) volume is greater than the fluid intake. - Is not the same as dehydration, as **dehydration** refers to the loss of water alone with increased serum sodium levels. - **Causes: "DRAINED" (DUE TO LOSS OF FLUIDS)** - **D**iabetes insipidus - **R**educed fluid intake - **A**bnormal fluid loss (vomiting, diarrhea, GI suctioning, sweating) - **I**nsufficient adrenal function - **N**ausea or no access to fluids - **E**dema formation in burns or ascites (third space fluid shift) - **D**ysfunction in liver **Manifestations: \"THIRSTY WOLFCUB\"** - **T**hirst - **H**ypotension (Decreased blood pressure) - **I**ncreased heart rate - **R**educed urine output (Oliguria) - **S**unken neck veins (Flat neck veins) - **T**ime (Prolonged capillary filling time) - **Y**earning for water (Weight loss) - **W**eakness (Muscle weakness) - **O**utput of urine concentrated - **L**ethargy or confusion - **F**eel cool, clammy skin - **C**ollapse (Shock) - **U**rine concentrated - **B**rain fog (Confusion) - **Diagnostic Tests:** ------------------------------------------- -------------------------- --------------------------------------------------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Test** **Result** **Interpretation** **BUN (Blood Urea Nitrogen)** **Elevated** **Indicates dehydration or fluid volume deficit** **Creatinine** **Elevated** **Indicates kidney dysfunction** **BUN/Creatinine ratio** **\> 20:1** **Indicates fluid volume deficit** **CBC ** **Elevated hct and hgb** **Indicates hemoconcentration** **Urine specific gravity** **Elevated** **Indicates water loss and concentrated urine** **Urine osmolality** **Increased** **Serum osmolality** **Increased** **Indicates water loss and concentrated serum** **Urine sodium** **Decreased** **Indicates kidney conservation of sodium** ------------------------------------------- -------------------------- --------------------------------------------------- - **Medical management includes:** - **GOAL:** correct the fluid deficit and restore fluid balance. - Oral route is preferred for mild cases, with increased oral fluid intake. - IV route is initiated for acute or severe cases, with parenteral fluid resuscitation using isotonic electrolyte solutions (e.g. lactated Ringer\'s solution or normal saline solution). - Hypotonic electrolyte solutions (e.g. 0.45% sodium chloride) may be prescribed to provide both electrolytes and water and promote renal excretion of metabolic waste. - **Nursing management includes:** - Frequent and accurate assessment of intake and output - Use of fluid balance charts or IO record forms to track fluid status - Monitoring of vital signs and laboratory results to adjust treatment as needed. - **In patients with hypovolemia, expect the following changes in vital signs:** - Decreased blood pressure - Decreased cardiac output - Tachycardia (increased heart rate) - Decreased peripheral pulses - Increased respiratory rate (tachypnea) due to decreased lung tissue perfusion - *These changes are compensatory mechanisms to maintain blood pressure and oxygen delivery to tissues.* -- ---------------------------------------- **Hypervolemia (Fluid Volume Excess)** -- ---------------------------------------- - Isotonic expansion of the extracellular fluid (ECF) caused by abnormal retention of water and sodium. - **Causes:** - **Congestive heart failure**: inability of the heart to circulate fluid properly - **Renal failure or kidney injury**: inability of the kidneys to filter blood, leading to water and sodium retention - **Liver cirrhosis**: liver failure leading to fluid volume excess in two ways: - Affected liver sends signals to kidneys to retain excess sodium and water - Liver failure leads to decreased production of albumin, a protein that maintains stable blood volume - Excessive consumption of table salts or sodium-containing fluids - Excessive administration of sodium-containing fluids - **Clinical Manifestations of Hypervolemia:** - Distended neck veins due to fluid volume overload - Edema (third spacing) due to fluid shifting out of the intravascular system and into tissues. - Crackles, shortness of breath (SOB), or wheezing due to pulmonary edema. - Weight gain due to fluid retention - Elevated blood pressure due to increased blood volume - Increased urine output - **Diagnostic Tests:** ------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------ ---------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Laboratory Test** **Expected Result** **BUN (Blood Urea Nitrogen)** **Decreased due to plasma dilution** **Hematocrit** **Decreased due to plasma dilution** **Urine Sodium** **Elevated if kidneys are attempting to excrete excess volume, but decreased in conditions such as cirrhosis, heart failure, or nephrotic syndrome** ------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------ ---------- - **Pharmacologic Therapy:** - Diuretics to inhibit reabsorption of sodium and water by the kidneys. - Furosemide (loop diuretic) for severe hypervolemia - Thiazide diuretics (e.g., hydrochlorothiazide) for mild to moderate hypervolemia - **Nursing Management:** - Monitor intake and output at irregular intervals to identify excessive fluid retention. - Weigh patient daily and note any rapid weight gain. - Monitor breath sounds and degree of edema. - Assess for pitting edema by measuring circumference of extremities daily. - Encourage adherence to prescribed diet and sodium restriction. - Instruct patient to avoid over-the-counter medications that may contain sodium. - **Medical Management:** - **Hemodialysis or peritoneal dialysis** may be used to remove excess fluid, nitrogenous waste, and control potassium and acid-base balance in patients with severely impaired renal function. -- ------------------------------------- **🌊 Electrolyte Volume Imbalances** -- ------------------------------------- - Disturbances in electrolyte balances are common in clinical practice and may need to be corrected based on history, physical examination findings, and laboratory values (with comparison to previous values). -- ----------------------- **Sodium Imbalances** -- ----------------------- - **Sodium (Na+)** is the most abundant electrolyte in the extracellular fluid (ECF) - Its concentration ranges from **135 to 145 mEq/L** **(135 to 145 mmol/L)** - The primary determinant of ECF volume and osmolality - **Major Function:** - Controlling water distribution throughout the body, because it does not easily cross the plasma membrane and because of its abundance and high concentration in the body - **Sodium is regulated by:** - ADH (Antidiuretic Hormone) - Thirst - Renin-Angiotensin-Aldosterone System -- ------------------------------------------------------------------------- **Syndrome of Inappropriate Secretion of Antidiuretic Hormone (SIADH)** -- ------------------------------------------------------------------------- - SIADH may be associated with sodium imbalance. - When there is a decrease in the circulating plasma osmolality, blood volume, or blood pressure, ADH (also called arginine vasopressin \[AVP\]) is released from the posterior pituitary. - Over secretion of ADH can cause SIADH. - **Patients at risk for SIADH:** - Older adults - Those who have had brain surgery or have a brain tumor, pulmonary malignancy, or acquired immune deficiency syndrome (AIDS) - Those on mechanical ventilation - Those taking selective serotonin reuptake inhibitors (SSRIs) -- ----------------------------------- **Sodium Deficit (Hyponatremia)** -- ----------------------------------- - **Hyponatremia** refers to a serum sodium level that is **less than 135 mEq/L (135 mmol/L).** +-----------------------+-----------------------+-----------------------+ | **TABULAR NOTES ( | | | | Insert Tab \> Table | | | | )** | | | +-----------------------+-----------------------+-----------------------+ | | **INFO** | **INFO** | +-----------------------+-----------------------+-----------------------+ | **Type of | **Description** | | | Hyponatremia** | | | +-----------------------+-----------------------+-----------------------+ | **Acute | **- Commonly the | | | Hyponatremia** | result of a fluid | | | | overload in a | | | | surgical patient.** | | | | | | | | **- This is a | | | | dilutional | | | | hyponatremia because | | | | the excess water | | | | dilutes the sodium in | | | | the bloodstream.** | | +-----------------------+-----------------------+-----------------------+ | **Chronic | **- Seen more | | | Hyponatremia** | frequently in | | | | patients outside the | | | | hospital setting, has | | | | a longer duration, | | | | and has less serious | | | | neurologic | | | | sequelae.** | | +-----------------------+-----------------------+-----------------------+ | **Exercise-Associated | **- More frequently | | | Hyponatremia** | found in women and | | | | those of smaller | | | | stature.** | | | | | | | | **- It can occur | | | | during extreme | | | | temperatures, because | | | | of excessive fluid | | | | intake before | | | | exercise, or | | | | prolonged exercise | | | | that results in | | | | excess loss of sodium | | | | through | | | | perspiration.** | | +-----------------------+-----------------------+-----------------------+ - **Clinical Manifestations: \"DROPS VAN\"** - Dry mucosa - Reduced saliva production - Orthostatic fall in blood pressure - Poor skin turgor - Severe headache - Vomiting - Abdominal cramping - Neurologic changes (Altered mental status, status epilepticus, coma) - **Assessment and Diagnostic Findings:** +-----------+-----------+-----------+-----------+-----------+-----------+ | | | | **TABULAR | | | | | | | NOTES ( | | | | | | | Insert | | | | | | | Tab \> | | | | | | | Table )** | | | +-----------+-----------+-----------+-----------+-----------+-----------+ | | **INFO** | | | | **INFO** | +-----------+-----------+-----------+-----------+-----------+-----------+ | **Paramet | **Normal | **Hyponat | **Hyponat | **Hyponat | | | er** | Range** | remia | remia | remia | | | | | (General) | due to | due to | | | | | ** | SIADH** | Sodium | | | | | | | Deficienc | | | | | | | y** | | +-----------+-----------+-----------+-----------+-----------+-----------+ | **Serum | **135-145 | -- | **Often | **Less | | | Sodium** | mmol/L** | -- | \< 100 | than 135 | | | | | | mEq/L** | mEq/L** | | | | | **Less | | | | | | | than 135 | | | | | | | mEq/L** | | | | +-----------+-----------+-----------+-----------+-----------+-----------+ | **Serum | **275-295 | **Decreas | **Decreas | **Decreas | | | Osmolalit | mOsm/kg** | ed** | ed** | ed** | | | y** | | | | | | +-----------+-----------+-----------+-----------+-----------+-----------+ | **Urinary | **Varies, | **Variabl | **Greater | **Less | | | Sodium** | but | e, | than 20 | than 20 | | | | generally | depends | mEq/L** | mEq/L** | | | | \> 20 | on | | | | | | mEq/L** | cause** | | | | +-----------+-----------+-----------+-----------+-----------+-----------+ | **Urine | **1.010-1 | **Low to | **Greater | **Low | | | Specific |.030** | normal** | than | (1.002 to | | | Gravity** | | | 1.012** | 1.004)** | | +-----------+-----------+-----------+-----------+-----------+-----------+ | **Periphe | **None** | **Absent* | **Absent* | **Sometim | | | ral | | * | * | es | | | Edema** | | | | absent, | | | | | | | but may | | | | | | | show | | | | | | | pitting | | | | | | | edema** | | +-----------+-----------+-----------+-----------+-----------+-----------+ | **Fluid | **Normal* | **Water | **Water | **None** | | | Distribut | * | retention | retention | | | | ion** | | inside | inside | | | | | | cells (no | cells | | | | | | edema)** | (pitting | | | | | | | edema)** | | | +-----------+-----------+-----------+-----------+-----------+-----------+ - **Medical Management:** - **Sodium Replacement**---the most common treatment for hyponatremia - **Sodium-rich foods or sodium supplements** for patients who can eat and drink. - **Lactated Ringer's solution** or **Isotonic saline (0.9% sodium chloride)** for patients who cannot consume sodium orally. - slowly through IV infusion - **Hypertonic Saline (3% sodium chloride)** may be administered in more severe cases, particularly in patients with SIADH. - Administered under close monitoring - **Parenteral Sodium Replacement** via NGT ------------------------------------------- ---------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Treatment** **Description** **AVP Receptor Antagonists** **blocking the effect of ADH at the nephron, which in turn allows diuresis to occur and leads to water excretion.** **Conivaptan HCl** **AVP receptor antagonist that is limited to the treatment of hospitalized patients.** **Tolvaptan** **Oral medication indicated for clinically significant hypervolemic and euvolemic hyponatremia that must be initiated and monitored in the hospital setting.** ------------------------------------------- ---------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------- - **Nursing Management:** - **Monitor the patients: "I WEIGH"** - I - I&O (Intake and Output) - W - Weight (Daily body weight) - E - Evaluate for excess water input or insufficient output - I - Identify patients at risk - G - GI symptoms (Anorexia, nausea, vomiting, abdominal cramping) - H - Hyponatremia (Monitor sodium levels) - **Detect early and control the signs of: "SALTS"** - S - Sodium levels (Monitor labs) - A - Assess fluid intake and output (I&O) - L - Look for GI symptoms (Anorexia, nausea, vomiting, abdominal cramping) - T - Track daily body weight - S - Start interventions early to prevent serious consequences - **Nursing Considerations:** - Fluid restriction - Assess for dehydration - **In using hypertonic solution,** careful monitoring for symptoms of rapid sodium increase, such as altered cognition, ataxia, pseudobulbar palsy, or coma, which can lead to **osmotic demyelination**. - Sodium levels should not be raised by more than 12 mEq/L in 24 hours. - Review the patient's current medications (e.g., SSRIs, anticonvulsants) as they may increase the risk of hyponatremia. - If hyponatremia is severe, place the patient on seizure precautions (e.g., padded side rails, monitoring) as a drop in sodium can lead to seizures or coma. - **Sodium Content of Common Foods and Fluids** ------------------------------------------- ------------------------- ---------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Food/Fluid** **Sodium Content (mg)** **Broth made with one beef cube** **900** **8 oz of tomato juice** **700** ------------------------------------------- ------------------------- ---------- -- ----------------------------------- **Sodium Excess (Hypernatremia)** -- ----------------------------------- - A condition where the serum sodium level is **higher than 145 mEq/L (145 mmol/L).** - It can be caused by a gain of sodium more than water or by a loss of water more than sodium. - **Causes: "FEDS IN"** - **F** - Fluid deprivation - **E** - Excessive sodium intake - **D** - Diuretics - **S** - Sodium-rich diet - **I** - Insufficient water intake - **N** - Diabetes insipidus - **Clinical Manifestations: "THIRSTY"** - **T** - Thirst - **H** - Headache - **I** - Increased fatigue (Fatigue) - **R** - Reduced saliva (Dry mouth) - **S** - Seizures (in severe cases) - **T** - Tremors (may also occur) - **Y** - Yawn (indicates fatigue or drowsiness) - **Assessment and Diagnostic Findings:** ------------------------------------------- ---------------------------------------------------------------------- ---------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Parameters** **Sodium Content (mg)** **Serum Sodium Level** **Exceeds 145 mEq/L** **Serum Osmolality** **Exceeds 300 mOsm/kg** **Urine Specific Gravity** **Increased (indicates concentrated urine)** **Urine Osmolality** **Increased (if water loss is from a route other than the kidneys)** **Diabetes Insipidus (Urine Osmolality)** **Less than 250 mOsm/kg (very dilute urine)** ------------------------------------------- ---------------------------------------------------------------------- ---------- - **Medical Management: "SLOW HYPE"** - **S** - Slow sodium reduction (Gradual reduction to avoid complications) - **L** - Lactated or hypotonic saline (0.45% NaCl) (Preferred for fluid balance) - **O**- Osmolality management (Avoid rapid changes to prevent cerebral edema) - **W** - Water replacement with D5W (When water needs to be replaced without sodium) - **H** - Hyperglycemia correction with 0.45% NaCl (Used in severe cases) - **Y** - Yes to diuretics (May be used to eliminate excess sodium) - **P** - Prescribe Desmopressin (Synthetic ADH for diabetes insipidus) - **E** - Electrolyte balance (Monitor and adjust carefully) - **Nursing Management: \"F.L.U.I.D.S. C.A.R.E.\"** - **F** - Fluid Monitoring (Track intake and output carefully) - **L** - Look for behavior changes (Restlessness, disorientation, lethargy) - **U** - Understand water intake (Ensure patients can drink or receive fluids) - **I** - Intervene with appropriate fluids (Consult for enteral or parenteral routes if needed) - **D** - Daily sodium checks (Monitor serum sodium levels regularly) - **S** - Sodium sources (Review medications and diet for high sodium content) - **C** - Check thirst levels (Evaluate patient\'s ability to perceive thirst) - **A** - Alert for neurological changes (Watch for confusion and neurologic status) - **R** - Rehydrate slowly (Avoid rapid sodium reduction to prevent cerebral edema) - **E** - Ensure water balance (Prevent hypernatremia through regular fluid provision) -- -------------------------- **Potassium Imbalances** -- -------------------------- - Major intracellular electrolyte: 98% of the body's potassium is inside the cells. - Extracellular Potassium (2%): Critical for neuromuscular and cardiac function. - **Influences on skeletal and cardiac muscles**: Alters **myocardial irritability** and **rhythm**. - Normal serum potassium concentration: **3.5 - 5 mEq/L (mmol/L)** - **Potassium Physiology:** - Sodium-potassium pump: Actively pumps potassium into cells, maintaining intracellular concentration. - Potassium imbalances affect neuromuscular and cardiac activity. - **Potassium Regulation:** - Kidneys: Play a major role, excreting 80% of daily potassium through urine. - Potassium is also lost via the bowel and sweat (20%). - Kidneys regulate potassium balance by adjusting excretion through urine, facilitated by the potassium concentration gradient. - Aldosterone: Increases potassium excretion. - Serum potassium increase: Leads to increased excretion through the renal tubules. - In case of potassium deficit, kidneys may continue to lose potassium through urine since they conserve sodium more efficiently than potassium -- ------------------------------------- **Potassium Deficit (Hypokalemia)** -- ------------------------------------- - A condition where the serum potassium level is **less than 3.5 mEq/L (3.5 mmol/L).** - Can cause death through cardiac or respiratory arrest. - **Causes: \"V.D.I.L.V.H.I.D.\"** - **V** - Vomiting and gastric suction - **D** - Diarrhea - **I** - Intestinal suctioning (prolonged) - **L** - Recent ileostomy - **V** - Villous adenoma (intestinal tumor) - **H** - Hyperaldosteronism - **I** - Insulin hypersecretion - **D** - Diabetic ketoacidosis (DKA) - **Clinical Manifestations: \"FAM DAP\"** - **F** - Fatigue (Feeling weak and tired) - **A** - Anorexia (Loss of appetite) - **M** - Muscle weakness (Weakness in the muscles) - **D** - Decreased bowel motility (Slowed movement of food through the digestive system) - **A** - Arrhythmias (Abnormal heart rhythms) - **P** -- Paresthesia (Numbness or tingling sensations) - **Assessment and Diagnostic Findings** - Serum potassium concentration is **less than 3.5 mEq/L (3.5 mmol/L)** - **Electrocardiographic (ECG) changes:** - Flat T waves - Inverted T waves - Depressed ST segments - Elevated U wave ![A graph of a heart beat Description automatically generated](media/image12.png) - **Medical Management** - Oral potassium supplements - IV potassium replacement therapy (in severe cases) - **Dietary intake of potassium-rich foods:** - Fruits (bananas, melon, citrus fruits) - Vegetables (fresh and frozen) - Lean meats - Milk - Whole grains -- ------------------------------------- **Potassium Excess (Hyperkalemia)** -- ------------------------------------- - A condition where the serum potassium level is **greater than 5 mEq/L (5 mmol/L).** - It is usually more dangerous because cardiac arrest is more frequently associated with high serum potassium levels.\" - **Causes: \"DREAM UP\"** - **D** - Decreased renal excretion of potassium - **R** - Rapid administration of potassium - **E** - Extracellular movement of potassium from ICF - **A** - Administration of certain medications (e.g., KCl, heparin, ACE inhibitors, NSAIDs, beta-blockers, cyclosporine, tacrolimus, potassium-sparing diuretics) - **M** - Medications (to emphasize the impact of various drugs) - **U** - Upward shift of potassium from cells (movement to ECF) - **P** - Potassium overload or excess intake - **Clinical Manifestation:** - Muscle weakness - Fatigue - Palpitations - Shortness of breath - Abdominal cramps - **Assessment and Diagnostic Findings:** - Serum potassium concentration is **greater than 5 mEq/L (5 mmol/L)** - **Electrocardiographic (ECG) changes:** - Peaked T waves - Widened QRS complex - Prolonged PR interval - **Arterial blood gas (ABG) values:** - Elevated bicarbonate levels - Elevated pH levels A graph of a heart beat Description automatically generated with medium confidence - **Medical Management:** - Restriction of dietary potassium and potassium-containing medications - Administration of potassium-lowering medications (e.g. calcium gluconate, insulin, glucose) - Hemodialysis (in severe cases) - **Causes of Pseudohyperkalemia:** - Potassium leaks out of red blood cells (RBCs) while the blood is awaiting analysis - Lack of awareness of these causes can lead to aggressive treatment of a nonexistent hyperkalemia - **Clinical Manifestations:** - [Cardiac effects:] - Peaked, narrow T waves - ST-segment depression - Shortened QT interval - Prolonged PR interval - Disappearance of P waves - Decomposition and widening of the QRS complex - Ventricular arrhythmias and cardiac arrest may occur - **Assessment and Diagnostic Findings:** ------------------------------------------- -------------------------------------------------------------------------------- ---------- **TABULAR NOTES ( Insert Tab \> Table )** **INFO** **INFO** **Diagnostic Finding** **Description** **Serum Potassium Level** **Crucial to the diagnosis of hyperkalemia** **ECG Changes** **Peaked, narrow T waves, ST-segment depression, shortened QT interval, etc.** **ABG Analysis** **May reveal metabolic or respiratory acidosis** ------------------------------------------- -------------------------------------------------------------------------------- ---------- - **Medical Management: \"CIGS B\"** - **C** - Calcium Gluconate (IV): Antagonizes hyperkalemia effects on the heart. - **I** - Insulin (Regular): Causes a temporary shift of potassium into cells. - **G** - Glucose (Hypertonic Dextrose Solution): Also shifts potassium into cells. - **S** - Sodium Bicarbonate: Alkalinizes plasma to help shift potassium into cells. - **B** - Beta-2 Agonists: Decrease potassium levels but may cause side effects. - **Nursing Management: \"I\'M VIBRANT\"** - **I** - Identify patients at risk: Closely monitor those at risk for potassium excess. - **M** - Monitor I&O: Keep track of intake and output. - **V** - Vital signs: Measure vital signs, especially apical pulse. - **B** - Be alert for muscle weakness: Observe for signs of muscle weakness and arrhythmias. - **R** - Recognize the presence of tingling or numbness. - **A** - Assess GI symptoms: Watch for nausea and intestinal cramping. - **N** - Note laboratory values: Monitor serum potassium, BUN, serum creatinine, serum glucose, and ABG values. - **T** - Take action: Implement appropriate interventions based on findings. -- ------------------------ **Calcium Imbalances** -- ------------------------ - **Calcium** is a major component of bones and teeth - Plays a crucial role in transmitting nerve impulses - Regulating muscle contraction and relaxation - Blood coagulation - **Normal Calcium Levels:** - Total serum calcium: **8.8 to 10.4 mg/dL** (2.2 to 2.6 mmol/L) - Ionized serum calcium: **4.5 to 5.1 mg/dL** (1.1 to 1.3 mmol/L) - **Forms of Calcium in Plasma:** - Ionized (physiologically active) - Bound (to serum proteins, primarily albumin) - Complex (combined with nonprotein anions: phosphate, citrate, and carbonate) - **Calcium Absorption and Excretion** - **Absorption:** Calcium is absorbed from foods through the gastrointestinal (GI) tract, but this requires: - Normal gastric acidity - Vitamin D - **Excretion**: - Primarily excreted through feces. - The remainder is excreted through the urine. - **Hormonal Control of Calcium Levels** - Calcium regulation in the blood is primarily controlled by two hormones: - **Parathyroid Hormone (PTH)**: Secreted by the parathyroid glands in response to low calcium levels. - **Calcitonin**: Secreted by the thyroid gland when calcium levels are too high. - **Mechanism of Action of PTH (Parathyroid Hormone)** - When ionized serum calcium levels decrease in the bloodstream: - PTH is released from the parathyroid glands. - PTH increases calcium levels by: - **Increasing calcium absorption in the GI tract**: This enhances calcium uptake from food. - **Increasing calcium reabsorption in the kidneys**: Less calcium is lost through urine. - **Stimulating bone resorption**: Calcium is released from bones into the bloodstream. - As calcium levels rise, the parathyroid glands **reduce PTH secretion** to maintain balance. - **Mechanism of Action of Calcitonin** - When calcium levels increase excessively in the bloodstream: - The **thyroid gland releases calcitonin**. - Calcitonin **lowers serum calcium** by: - **Inhibiting bone resorption**: Prevents the release of calcium from bones. - **Reducing calcium reabsorption in the kidneys**: This allows more calcium to be excreted in the urine. -- ------------------------------------ **Calcium Deficit (Hypocalcemia)** -- ------------------------------------ - Condition where the serum calcium level falls **below 8.8 mg/dL.** - A person can have low calcium in their bones (e.g., osteoporosis) but still present with a normal serum calcium level. - Indicates that hypocalcemia is not always directly reflective of the body's overall calcium stores, as calcium may be depleted from bones without immediately lowering serum calcium. - **Risk factors:** - Older adults and individuals with disabilities - Immobility - **Causes:** - **Hypoparathyroidism (both primary and surgical)** is a major cause of hypocalcemia. - Massive Administration of Citrated Blood - During **massive hemorrhage and shock**, citrated blood is used, which can bind to **ionized calcium**, removing it temporarily from circulation. - Pancreatitis - **Excess glucagon** from the inflamed pancreas increases **calcitonin secretion**, which lowers calcium levels. - Acute Kidney Injury (AKI) - Often have **elevated serum phosphate** levels (**hyperphosphatemia**) that can cause **reciprocal drop** in serum calcium. - **Predisposing factors:** - Inadequate vitamin D intake - Magnesium deficiency - Medullary thyroid carcinoma - Low serum albumin - Alkalosis - Alcohol abuse - Medications (Antacids, Antibiotics, Chemotherapy Agents, Corticosteroids, Diuretics, and Caffeine) - **Clinical Manifestations: \"TENTC BO\"** - **T**: Tetany (Muscle cramps, spasms, and weakness) - **E**: ECG changes (Prolonged QT, Torsades de pointes) - **N**: Neurological symptoms (Seizures, Mental changes) - **T:** **Trousseau sign** (Twitching of facial muscles upon tapping the facial nerve). - **C**: **Chvostek sign** (Carpal spasm elicited by inflating a blood pressure cuff). - **B**: Breathing difficulties (Dyspnea, Laryngospasm) - **O**: Osteoporosis ![A close-up of a child\'s face Description automatically generated](media/image14.png) - **Diagnostic Evaluation** - **Serum Calcium & Albumin Assessment:** - Normal Serum Albumin: **4 g/dL** - For every decrease of 1 g/dL albumin: Serum calcium is underestimated by **0.8 mg/dL.** - **Corrected Serum Calcium Formula:** - Corrected Calcium=Reported Calcium+\[0.8×(4 - Serum Albumin)\] - **pH Effect on Calcium** - **Alkalosis**: Increases calcium binding to proteins, decreasing ionized calcium → Symptoms of hypocalcemia. - **Acidosis:** Less calcium binds to proteins, increasing ionized calcium. - **Medical Management: "CALCIUM"** - **C**hoose gluconate (less irritant) - **A**void NaCl and phosphate solutions - **L**ook for digitalis toxicity (during Ca therapy) - **C**ontrol IV infusion rate - **I**nfuse slowly (risk of cardiac arrest) - **U**se D5W for dilution - **M**onitor BP & IV site (WOF: risk of extravasation) - **Nutritional Therapy: "VIT-CALM"** - **V**itamin D aids absorption - **I**ntake 1000-1500 mg/day - **T**ake calcium in divided doses - **C**hoose leafy greens & dairy (Milk, leafy greens, canned salmon/sardines, oysters) - **A**void high alcohol & caffeine (increase calcium excretion) - **L**ook out for smoking effects (increase calcium excretion) - **M**onitor phosphorus in chronic kidney disease patients - **Nursing Management: "SAFE-CAL"** - **S**eizure precautions - **A**irway monitoring (laryngospasm) - **F**ocus on calcium diet - **E**ducating patients on supplements - **C**aution with laxatives & phosphorus (decrease calcium absorption) -- ------------------------------------ **Calcium Excess (Hypercalcemia)** -- ------------------------------------ - Serum calcium **\> 10.4 mg/dL (2.6 mmol/L).** - **Causes**: - Malignancies (breast, lung, renal, multiple myeloma) - Vitamin intoxication (A & D) - Hyperthyroidism (increased PTH → increased calcium release) - Diuretics (thiazide) - **Pathophysiology:** - **Calcium-Phosphorus Relationship:** High calcium can lead to calcifications if calcium × phosphorus \> 70 mg/dL. - **Neuromuscular Effects:** Hypercalcemia reduces neuromuscular excitability - **Clinical Manifestations: "CLAMPS"** - **C**onfusion - **L**ethargy - **A**bdominal cramps - **M**uscle weakness - **P**olyuria - **S**evere thirst - **Diagnostic Evaluation:** - Serum calcium **\> 10.4 mg/dL (2.6 mmol/L).** - **ECG changes:** arrhythmias, shortened QT interval, possible heart blocks. - **PTH Test:** Increased in hyperparathyroidism, suppressed in malignancy. - **Medical Management:** - **Goals:** Decrease serum calcium, treat underlying cause. - **Pharmacologic Therapy:** - **Hydration:** IV fluids (0.9% NaCl) to dilute and promote calcium excretion. - **Calcitonin:** Reduces serum calcium levels, especially in cardiac/renal patients. - **Bisphosphonates:** (pamidronate, ibandronate) inhibit osteoclasts. - **Mithramycin:** Lowers serum calcium but has significant side effects. - **Nursing Management:** - Monitor at-risk patients. - Encourage mobility and hydration (2.8 to 3.8 L daily). - Dietary fiber for constipation. - Assess for digitalis toxicity if on digitalis medications. - Monitor ECG for arrhythmias. -- -------------------------- **Magnesium Imbalances** -- -------------------------- - Abundant intracellular cation. - Activates many intracellular enzyme systems. - Involved in carbohydrate and protein metabolism. - Normal Serum Magnesium Levels: **1.8 to 2.6 mg/dL** (0.74 to 1.07 mmol/L) - **Distribution of Magnesium**: - One-third bound to protein (e.g., albumin). - Two-thirds as free cations (active component: Mg++). - **Neuromuscular Function**: - Influences excitability of muscle cells: - **Excess Mg**: Decreases muscle excitability. - **Deficit Mg:** Increases neuromuscular irritability and contractility. - Acts at the myoneural junction by inhibiting acetylcholine release. - Increases stimulus threshold in nerve fibers. - **Effects on the Cardiovascular System**: - Produces vasodilation. - Decreases peripheral resistance. - **Magnesium Storage**: - Most stored in bone; blood magnesium is either bound to protein or free as Mg++ ions. -- ---------------------------------------- **Magnesium Deficit (Hypomagnesemia)** -- ---------------------------------------- - Below-normal serum magnesium concentration; often associated with hypokalemia and hypocalcemia. - Less than **1.8 mg/dL** (0.74 mmol/L) - **Causes**: "**GAMMA"** - **G**I losses - **A**lcohol withdrawal - **M**alabsorption - **M**edications - **A**bnormal conditions (e.g., DKA) - **Clinical Manifestations:** - **Neuromuscular:** Muscle weakness, Chvostek's sign, Trousseau's sign. - **Psychological:** Apathy, confusion, agitation, hallucinations. - **Cardiac:** ECG changes (prolonged QRS, ST segment depression), arrhythmias (torsades de pointes). - **Diagnostic Evaluation:** - **Serum magnesium:** less than 1.8 mg/dL. - Urine magnesium levels post-loading dose to identify depletion causes. - **Advanced techniques:** NMR spectroscopy and ion-selective electrodes for ionized magnesium. - **Medical Management:** - **Dietary Sources:** - Green leafy vegetables, nuts, legumes, bananas, whole grains. - **Oral Supplements:** Magnesium oxide or gluconate (can cause diarrhea). - **IV Magnesium:** Necessary for parenteral nutrition or severe hypomagnesemia. - **Nursing Management:** - **Monitoring:** - **Vital signs:** Check for changes in cardiac rhythm, hypotension. - **Urine output:** Monitor for less than 100 mL in 4 hours. - Patients on digitalis should be closely observed for toxicity. - **Education**: Teach patients about magnesium-rich foods. -- ---------------------------------------- **Magnesium Excess (Hypermagnesemia)** -- ---------------------------------------- - Serum magnesium level higher than **2.6 mg/dL** (1.07 mmol/L). - **Causes**: - Kidney injury (most common) - Untreated DKA (diabetic ketoacidosis) - Excess magnesium (e.g., in pregnancy or hypomagnesemia treatment) - Adrenocortical insufficiency (e.g., Addison\'s disease) - Medications: Magnesium-based antacids/laxatives, opioids, anticholinergics - Lithium intoxication - Soft tissue injury (trauma, shock, sepsis, burns) - **Pathophysiology:** - Elevated magnesium levels lead to: - CNS depression - Neuromuscular junction depression - **Serious consequences**: Coma, heart block, cardiac arrest when levels exceed **10 mEq/L** (5 mmol/L). - **Clinical Manifestations: "HARD CUES"** - **H**ypotension - **A**rrhythmias (bradycardia, heart block) - **R**espiratory depression - **D**ecreased DTRs - **C**onfusion (altered LOC) - **U**nable to respond (weakness) - **E**CG changes (prolonged intervals) - **S**hallow respirations - **Diagnostic Evaluation:** - **Serum Magnesium:** \> 2.6 mg/dL (1.07 mmol/L) - Increased Potassium and Calcium - **ECG changes:** PR interval, T waves, QRS, QT interval prolongation, AV block. - **Medical Management:** - Avoid magnesium in patients with kidney injury. - Discontinue all magnesium in severe cases. - Emergency treatments: - IV calcium (antagonist) - Ventilatory support if needed - Hemodialysis with magnesium-free dialysate - **Nursing Management: "VITALS"** - **V**ital signs monitoring: BP, RR - **I**nformation on medications - Avoid magnesium-containing medications with kidney issues - Consult primary providers for OTC supplements - **T**est for DTRs (deep tendon reflexes) - Neuromuscular status muscles strength - **A**rrhythmias awareness - **L**iquid intake/output monitoring - **S**afety precautions (patient education) -- --------------------------- **Phosphorus Imbalances** -- --------------------------- - Critical for all body tissues. - Abundant in developed countries\' diets. - Normal Serum Phosphorus Levels: **2.7 to 4.5 mg/dL** (0.87 to 1.45 mmol/L) in adults. - **Essential for:** - Muscle and RBC function - Formation of ATP and 2,3-diphosphoglycerate (facilitates oxygen release from hemoglobin) - Maintenance of acid-base balance - Nervous system function - Intermediary metabolism of carbohydrates, proteins, and fats - **Major structural component of:** - Bones and teeth - Cell membranes (phospholipids) - Nucleotides and nucleic acids (DNA and RNA) - **Distribution:** - 85% in bones and teeth - 14% in soft tissues - \ - **Homeostasis Regulation:** - Absorption: GI tract - Excretion: Kidneys - Bone Interaction: Shifts into/out of bones - **Hormonal Regulation:** - **Parathyroid Hormone (PTH):** Increases phosphate reabsorption in kidneys; shifts phosphate from bone to plasma. - **Vitamin D:** Aids in phosphate homeostasis. -- ------------------------------------------- **Phosphorus Deficit (Hypophosphatemia)** -- ------------------------------------------- - A condition characterized by serum phosphorus levels below **2.7 mg/dL (0.87 mmol/L).** - **Causes:** - Inadequate intake - Excess excretion (renal phosphate wasting) - Shift from extracellular to intracellular spaces - Decreased intestinal absorption - **Pathophysiology:** - **Commonly occurs in:** - GI malabsorption disorders (e.g., Crohn\'s disease) - Eating disorders (anorexia, bulimia) - Vitamin D deficiency (reduces absorption) - Antacid use (high in calcium, magnesium, aluminum) - **Key conditions**: - Severe malnutrition - Alcoholism - Hyperparathyroidism - **Clinical Manifestations:** - Muscle weakness and pain - Bone pain - Altered mental status - Seizures - Heart failure - **Diagnostic Evaluation:** - **Serum Phosphorus:** Less than 2.7 mg/dL (0.87 mmol/L) - **Considerations:** - Insulin/glucose administration may lower phosphorus - Elevated PTH may indicate renal phosphate wasting - 24-hour urine collection for phosphorus if renal issues are suspected - **Medical Management:** - **Goals**: - Prevention of hypophosphatemia - Treat underlying cause - Mild cases: Oral phosphate supplements (dairy, meats, beans) - Severe cases: Aggressive IV phosphorus correction if levels \ - **Nursing Management:** - Monitor at-risk patients (e.g., those on parenteral nutrition) - Gradually introduce calories to avoid rapid shifts - Encourage phosphorus-rich foods (milk, organ meats, beans) - Monitor serum calcium and phosphate levels during IV therapy -- ------------------------------------------- **Phosphorus Excess (Hyperphosphatemia)** -- ------------------------------------------- - Serum phosphorus level \ **4.5 mg/dL** (1.45 mmol/L). - **Causes:** - Kidney injury (most common) -- reduced phosphate excretion. - Increased intake of phosphorus. - Shift from intracellular to extracellular space. - **Other conditions:** - Excessive vitamin D, - Hypoparathyroidism, - Chemotherapy, - Total parenteral nutrition (TPN). - **Pathophysiology:** - Kidney dysfunction (renal function ↓ 40-50%) → phosphate retention. - Hypoparathyroidism → kidneys fail to inhibit phosphate reabsorption. - Risk of soft tissue calcification (e.g., organs, joints, arteries). - **Clinical Manifestations:** - Tetany (muscle cramping) due to low calcium (hypocalcemia). - Soft tissue calcifications in patients with reduced glomerular filtration rate (GFR). - Hypocalcemia → neuromuscular irritability (muscle spasms). - **Long-term effects:** - Pruritus (itching), - Decreased urine output, - Vision impairment, - Palpitations. - **Diagnostic Evaluation:** - **Serum phosphorus** \ 4.5 mg/dL (1.45 mmol/L). - **Low serum calcium** (due to reciprocal relationship). - **X-rays**: Skeletal changes, abnormal bone development. - **PTH levels decreased** in hypoparathyroidism. - **BUN and creatinine:** Assess renal function. - **Medical Management:** - Reduce phosphate intake (low-phosphate diet). - **Phosphate binders with meals:** - Calcium carbonate/citrate (monitor for hypercalcemia), - Sevelamer (calcium-free binder), - Lanthanum or Sucroferric oxyhydroxide. - **Diuresis:** Forced saline diuresis with loop diuretics (if normal renal function). - **Hemodialysis**: Lowers phosphorus in severe cases. - **Nursing Management:** - Monitor for signs of hypocalcemia (e.g., muscle cramping). - Educate patients on low-phosphorus diet: - Avoid foods like **cheese, nuts, meats, whole grains, sardines, dairy**. - Monitor urine output during diuresis. - Educate about avoiding phosphate-containing laxatives/enemas. - Monitor calcium levels when administering phosphate binders. -- ------------------------- **Chloride Imbalances** -- ------------------------- - **Major anion of ECF:** Maintains water and acid--base balance. - **Key electrolyte:** Works with sodium to maintain osmotic pressure. - **Involved in:** Gastric acid (HCl), pancreatic juices, sweat, bile, and saliva production. - Normal serum chloride: **97--107 mEq/L** (97--107 mmol/L); intracellular level is 4 mEq/L. - **Chloride balance:** Dependent on dietary intake, kidney excretion, and reabsorption. - **Chloride Regulation:** - **Direct link to sodium:** Changes in serum chloride mirror sodium levels. - **Aldosterone:** Increases sodium reabsorption, enhancing chloride reabsorption. - **Chloride shift:** Movement of chloride into RBCs in exchange for bicarbonate (inverse relationship). - **Chloride's Role in the Body:** - **Cerebrospinal fluid:** Sodium and chloride attract water to form fluid. - **Acid--base balance:** Assists in buffering oxygen and CO₂ exchange in RBCs. - **Dietary source:** Primarily from table salt. -- -------------------------------------- **Chloride Deficit (Hypochloremia)** -- -------------------------------------- - **Serum chloride level \< 97 mEq/L.** - **Causes:** - GI losses (tube drainage, gastric suction, vomiting, diarrhea) - Chloride-deficient IV fluids - Low sodium, DKA, respiratory acidosis, blood transfusions, diuretics - SIADH, burns, sweating, fever - Medications: Aldosterone, ACTH, corticosteroids, bicarbonates, diuretics, laxatives - **Clinical Manifestations: \"TWITCH\"** - Associated with hyponatremia, hypokalemia, metabolic alkalosis. - **T**etany - **W**eaknesses - **I**rregular heartbeat (arrhythmias) - **T**witching - **C**ramps - **H**yper DTRs - **Diagnostic Evaluation: \"CUPS\"** - **C**hloride levels low - **U**rine chloride decreases - **P**otassium/Sodium loss - **S**erum bicarbonate increase (metabolic alkalosis) - **Medical Management: \"SALT\"** - **S**aline IV (Chloride replacement) - **A**mmonium chloride (for alkalosis) - Contraindicated: Liver/renal impairment. - **L**ower diuretics/Restricted - **T**reatment of underlying cause - **Nursing Management:** - **Monitor:** - I&O, ABG, serum electrolytes - LOC, muscle strength/movement, vital signs, respiratory status - **Educate on high chloride foods:** - Tomato juice, bananas, dates, eggs, cheese, milk, salty broth, canned veggies, processed meats - Avoid excess water intake without electrolytes (e.g., bottled water). -- -------------------------------------- **Chloride Excess (Hyperchloremia)** -- -------------------------------------- - **Serum chloride \> 107 mEq/L (107 mmol/L)**. - Often accompanied by **hypernatremia**, **bicarbonate loss**, and **metabolic acidosis**. - **Pathophysiology:** - **Usually caused by iatrogenic (medical treatment) factors like:** - Excessive chloride administration (e.g., 0.9% saline, 0.45% saline, or Lactated Ringer\'s). - Bicarbonate loss (via kidneys or GI tract) increases chloride ions. - **Acidosis** develops as chloride accumulates and bicarbonate decreases. - **Causes:** - Head trauma - Excess adrenocortical hormone production - Increased perspiration - Decreased glomerular filtration - **Clinical Manifestations: \"TWIRL\"** - **T**achypnea - **W**eaknesses - **I**mpaired cognition - **R**apid breathing (deep) - **L**ethargy/Low cardiac output - **Diagnostic Evaluation: \"CHOPS\"** - Chloride **\> 108 mEq/L** - Hypernatremia **\> 145 mEq/L** - Urine chloride increased - **PH \< 7.35** (acidosis) - Serum bicarbonate **\< 22 mEq/L** - **Medical Management:** - Correct the underlying cause. - **Hypotonic IV solutions** to restore fluid and electrolyte balance. - **Lactated Ringer\'s** to convert lactate to bicarbonate (correct acidosis). - **IV sodium bicarbonate** increases bicarbonate and promotes renal chloride excretion. - **Diuretics** to eliminate chloride. - Restrict sodium, chloride, and fluids. - **Nursing Management:** - Monitor vital signs, ABG values, and I&O. - Document changes in respiratory, neurologic, and cardiac status. - Educate on proper diet and hydration to manage hyperchloremia. -- ------------------------------- **🌊 Acid--Base Disturbances** -- ------------------------------- - **pH** is an indicator of H+ concentration in blood. - Normal pH range: **7.35--7.45** - **\7.45**: Alkalosis - **Key Systems for Acid--Base Balance** - **Buffer Systems** - **Bicarbonate--Carbonic Acid System:** - Normal ratio: 20 HCO3⁻ (Bicarbonate) to 1 H2CO3 (Carbonic acid) **\[20:1\]** - If ratio changes, pH imbalance occurs. - **CO2 + H2O → H2CO3 → H+ + HCO3⁻** - **Kidneys** - Regulate bicarbonate (HCO3⁻) in ECF. - Acidosis: Kidneys excrete H+ and conserve HCO3⁻. - Alkalosis: Kidneys retain H+ and excrete HCO3⁻. - Slow response: Takes hours to days. - **Lungs** - Control CO2 (and thus carbonic acid) by adjusting ventilation. - High CO2 (PaCO2 \> 45 mmHg): Stimulates respiration. - **Acidosis**: Increased breathing rate → Eliminates CO2 (reducing acid load). - **Alkalosis**: Decreased breathing rate → Retains CO2 (increasing acid load). - **Arterial Blood Gas (ABG) Normal Values** - pH: **7.35--7.45** - PaCO2: **35--45 mmHg** - **\45:** Respiratory Acidosis - HCO3⁻: **22--26 mEq/L** - **\26:** Metabolic Alkalosis - PaO2: **\>80 mmHg** (Oxygenation) - Oxygen saturation (SaO2): **\>94%** - **Respiratory and Metabolic Responses:** - **Metabolic Acidosis:** - Lungs compensate by **increasing respiratory rate** (eliminates CO2). - **Metabolic Alkalosis**: - Lungs compensate by **decreasing respiratory rate** (retains CO2). - **Respiratory Acidosis** (hypoventilation): - **CO2 retention** → Increased H+ → Acidosis. - **Respiratory Alkalosis** (hyperventilation): - **CO2 loss** → Decreased H+ → Alkalosis. - **\"ROME\"**: - **Respiratory Opposite** (pH ⬆, CO2 ⬇ = Alkalosis; pH ⬇, CO2 ⬆ = Acidosis) - **Metabolic Equal** (pH ⬆, HCO3 ⬆ = Alkalosis; pH ⬇, HCO3 ⬇ = Acidosis). -- ------------------------ **Metabolic Acidosis** -- ------------------------ - A clinical disturbance characterized by low pH and decreased bicarbonate concentration - **Forms**: - High Anion Gap Metabolic Acidosis (HAGMA) - Normal Anion Gap Metabolic Acidosis (NAGMA) - **Anion Gap Calculation:** - **Formula:** Anion Gap=Na+−(Cl−+HCO3−) - **Normal Values**: - Without Potassium: **8-12 mEq/L** - With Potassium: **12-16 mEq/L** - **Interpretation**: - Normal Anion Gap (NAGMA): **8-12 mEq/L** - High Anion Gap (HAGMA): **\> 16 mEq/L** - **Pathophysiology:** - **Normal Anion Gap Metabolic Acidosis:** - Causes: Direct loss of bicarbonate (e.g., diarrhea, renal insufficiency, diuretics). - **High Anion Gap Metabolic Acidosis**: - Causes: Accumulation of acids (e.g., lactic acidosis, renal failure, DKA). - **Clinical Manifestations: \"HANDS\"** - **H**eadache - **A**rrhythmias - **N**ausea/Vomiting - **D**rowsiness - **S**kin cold and clammy - **Diagnostic Evaluation:** - **ABG Values:** - Low bicarbonate: **\< 22 mEq/L** - Low pH: **\< 7.35** - **Potassium Levels:** Elevated initially (due to H⁺ shift), then may cause hypokalemia after correction. - **Medical Management: \"CAMP\"** - **C**orrect the cause - **A**dminister bicarbonate (if indicated) - Avoiding excessive chloride intake - **M**onitor potassium levels - **P**rovide supportive care (dialysis if needed -- ------------------------- **Metabolic Alkalosis** -- ------------------------- - A clinical disturbance characterized by high pH and increased bicarbonate concentration - **Causes:** - **Loss of H⁺ ions:** - Severe vomiting or gastric suction (loss of HCl) - Pyloric stenosis - **Gain of bicarbonate**: - Excessive alkali ingestion (e.g., antacids, sodium bicarbonate) - **Diuretic therapy** (promotes potassium loss): - Thiazides - Furosemide - **Hormonal disorders**: - Hyperaldosteronism - Cushing\'s syndrome - **Pathophysiology:** - **Loss of H⁺ ions lead to:** - Decreased H⁺ in blood → alkalosis - Decreased free Ca²⁺ (hypocalcemia) → neuromuscular symptoms (tingling, dizziness, tetany) - **Clinical Manifestations:** - **Symptoms of hypocalcemia:** - Tingling of fingers and toes - Dizziness - Tetany (muscle cramps) - **ECG changes**: - Prominent U wave - Ventricular rhythm disturbances (e.g., PVCs) - **Diagnostic Evaluation:** - **Arterial Blood Gases (ABGs):** - pH **\> 7.45** - HCO₃⁻ **\> 26 mEq/L** - **Increased PaCO₂** (due to respiratory compensation) - **Urine chloride levels**: - **\< 25 mEq/L**: vomiting or diuretic therapy - **\> 40 mEq/L:** mineralocorticoid excess or alkali loading - **Medical Management:** - **Restore normal fluid volume:** Administer normal saline - **Replace potassium**: Potassium chloride (KCl) - **Reduce gastric HCl production**: Proton pump inhibitors (e.g., omeprazole) - **Enhance bicarbonate excretion**: Carbonic anhydrase inhibitors (e.g., acetazolamide) -- -------------------------- **Respiratory Acidosis** -- -------------------------- - Clinical disorder with **pH:** \< 7.35 and **PaCO2:** \> 45 mm Hg - **Pathophysiology:** - Inadequate CO2 excretion due to: - Inadequate ventilation - Elevated plasma CO2 → Increased carbonic acid - **Acute Causes: "PASTE"** - **P**ulmonary edema - **A**spiration (foreign object) - **S**edative overdose - **T**ension pneumothorax - **E**xacerbation of COPD - **Chronic Causes:** - Diseases like COPD, sleep apnea, obesity hypoventilation - **Clinical Manifestations:** - **Acute Symptoms: "COFFEE"** - **C**onfusion - **O**ut of breath (tachypnea) - **F**ibrillation (ventricular) - **F**ast pulse and blood pressure - **E**levated PaCO2 (\>60 mm Hg) - **E**levated intracranial pressure - **Chronic Symptoms:** - Asymptomatic unless there is a rapid increase in PaCO2 - **Diagnostic Evaluation:** - **ABG Findings:** - pH: **\< 7.35** - PaCO2: **\> 45 mm Hg** - Bicarbonate: Variable; may normalize with compensation - **Other Diagnostics:** - Serum electrolyte levels - Chest X-ray - Drug screen if overdose suspected - **Medical Management:** - **Goals:** Improve ventilation and treat underlying causes - **Pharmacological Treatments: "BAT"** - **B**ronchodilators (reduce spasm) - **A**ntibiotics (for infections) - **T**hrombolytics/anticoagulants (for pulmonary emboli) - **Supportive Treatments:** - Hydration: 2-3 L/day - Nebulizer treatments for mucus clearance - Low-concentration oxygen supplementation - **Mechanical Ventilation:** Caution to avoid rapid CO2 loss leading to alkalosis -- --------------------------- **Respiratory Alkalosis** -- --------------------------- - A condition characterized by: Arterial pH **\> 7.45** and PaCO2 **\< 35 mm Hg** - **Pathophysiology:** - **Cause:** Hyperventilation → Excessive loss of CO2 → Decreased plasma carbonic acid. - **Chronic:** Chronic hypocapnia → Decreased H+ ions → Alkalosis. - **Causes:** - Anxiety (panic disorder) - Hypoxemia - Salicylate intoxication - Gram-negative sepsis - Inappropriate ventilator settings - **Clinical Manifestations:** - Cerebral Effects: Lightheadedness, inability to concentrate (vasoconstriction). - Neurological Effects: Numbness and tingling (decreased calcium ionization), tinnitus. - Cardiac Effects: - Tachycardia - Arrhythmias (ventricular and atrial) - **Diagnostic Evaluation:** - **ABGs:** - **Acute:** pH \> 7.45, PaCO2 \< 35 mm Hg, normal bicarbonate. - **Chronic:** pH \> 7.45, low bicarbonate (compensation). - **Electrolytes:** - Decreased potassium (due to H+ exchange). - Decreased calcium (carpopedal spasms, tetany). - Decreased phosphate (increased cellular uptake). - **Toxicology Screen:** Rule out salicylate intoxication. - **Medical Management: "A SMART"** - **A**nxiety management - **S**low breathing - **M**edications (Antianxiety agents) - **A**ddress cause (treat underlying cause) - **R**ebreather (CO2 rebreather mask (paper bag) - **T**reatment -- -------------------------------- **Mixed Acid--Base Disorders** -- -------------------------------- - Simultaneous occurrence of two or more independent acid-base disorders. - Normal pH with changes in PaCO2 and plasma HCO3− suggests mixed disorder. - **Example**: Metabolic acidosis (e.g., lactic acid accumulation) + respiratory acidosis (e.g., hypoventilation) → excessive acid accumulation. - **Compensation Mechanisms:** - **Pulmonary & Renal Compensation:** Systems work together to normalize pH. - **Single Acid-Base Disorder:** The non-affected system compensates for maintaining the bicarbonate to carbonic acid ratio (20:1). - **Lung Compensation**: - **Metabolic disturbances**: - Hypoventilation → CO2 accumulation - Hyperventilation → CO2 loss - **Kidney Compensation:** - **Respiratory disturbances**: - Alter bicarbonate reabsorption and H+ secretion. - **Compensation Examples**: - **Respiratory Acidosis**: - Excrete excess H+ in urine, conserve HCO3−. - **Respiratory Alkalosis**: - Increase bicarbonate excretion, retain H+. - **Metabolic Acidosis**: - Increase ventilation, retain bicarbonate. - **Metabolic Alkalosis**: - Decrease ventilation to conserve CO2. - **Blood Gas Analysis (ABG)** - **Purpose:** Identify acid-base disturbance and compensation degree. - **Sample Type:** Arterial blood sample preferred; mixed venous sample if unavailable. - **Parameters Evaluated:** - Alveolar ventilation - Oxygenation - Acid-base balance - Serum electrolytes (Na, K, Cl) - Evaluate health history, physical examination, previous blood gas results, and serum electrolytes to avoid interpretation errors. - Treatment of the underlying condition usually corrects acid-base disorders. -- ----------------------------------- **Arterial Blood Gas Assessment** -- ----------------------------------- - **Key Normal Values:** - pH: **7.35--7.45** - PaCO2: **35--45 mm Hg** - HCO3−: **22--26 mEq/L** - **Steps for Evaluation:** 1. **Assess pH:** - **Normal pH (7.4):** May indicate normal gases or compensated imbalance. - **pH \> 7.45:** Alkalosis - **pH \< 7.35:** Acidosis 2. **Determine Primary Cause:** - **For alkalosis:** - **PaCO2 \< 35 mm Hg:** Respiratory alkalosis (hyperventilation) - **HCO3− \> 26 mEq/L:** Metabolic alkalosis (excess bicarbonate) - **For** **acidosis:** - **PaCO2 \> 45 mm Hg:** Respiratory acidosis (hypoventilation) - **HCO3− \< 22mEq/L:** Metabolic acidosis (bicarbonate loss or acid gain) 3. **Check for Compensation:** - If the non-primary value moves in the same direction as the primary: - Compensation is occurring. - Example of values: - **Acute Respiratory Acidosis**: - pH: 7.2, PaCO2: 60 mm Hg, HCO3−: 24 mEq/L (no compensation) - **Chronic Respiratory Acidosis:** - pH: 7.4, PaCO2: 60 mm Hg, HCO3−: 37 mEq/L (compensation) 4. **Identify Simultaneous Disturbances:** - **If pH does not explain one of the changes:** - PaCO2 ↑ and HCO3− ↓: Respiratory acidosis + Metabolic acidosis - PaCO2 ↓ and HCO3− ↑: Respiratory alkalosis + Metabolic alkalosis 5. **Calculate Anion Gap (if metabolic acidosis is present):** - AG = Na⁺ − (Cl⁻ + HCO3⁻) - Normal AG: 10--14 mmol/L 6. **Evaluate Clinical Signs and Symptoms:** - Confirm if compatible with the acid-base analysis. -- ----------------- **Burn Injury** -- ----------------- - Burn injuries can lead to pain, high costs, disfigurement, and long-term disability. - They involve complex, multisystem pathophysiology, challenging health systems despite advances in treatment. - Significant improvements in care for severe burns include: - Critical-care management - Fluid resuscitation - Nutrition - Surgical debridement - Wound coverage - Antimicrobial therapies - **Education** is vital in preventing burn injuries: - Keep matches and lighters away from children. - Never leave children unattended near fire or in bathrooms. - Install and maintain smoke and CO detectors. - Conduct home exit fire drills. - Set water heater temperatures below 48.9°C (120°F). - Warn against smoking in bed or while using oxygen. - Avoid using flammable liquids for fires. - Educate on the dangers of hot car engines and overhead wires. - Keep hot appliances out of reach children. - Store flammable liquids safely. - Ensure awareness of loose clothing when cooking. - Have a working fire extinguisher and know how to use it. - **Factors influencing burn severity:** - **Patient age:** Young children and older adults face higher morbidity and mortality**.** - Burn depth and surface area burned. - Inhalation injuries and comorbid conditions**.** - **Location of injury** (e.g., face, hands, perineum). - **Burn Depth Classification** - **First-degree burns:** Superficial, painful, and erythematous; intact epidermis (e.g., sunburn). - **Second-degree burns:** Partial thickness; involves the entire epidermis and part of the dermis, causing blisters; healing takes 2-3 weeks. - **Third-degree burns:** Full thickness; des