Moaser Test Yasmin - Complex Numbers PDF
Document Details
Uploaded by PoshKremlin9188
Tags
Summary
This document is a set of complex number questions. The document covers various aspects of complex numbers, including operations, forms, and properties of complex numbers. The examples demonstrate the application of complex numbers to different problems.
Full Transcript
## Unit 1: Complex Numbers ### Remember * The square of an imaginary number is a real number. * The sum and product of two complex numbers are complex numbers. * The conjugate of sum of two complex numbers is the sum of conjugates of the two complex numbers. * The conjugate of product of two compl...
## Unit 1: Complex Numbers ### Remember * The square of an imaginary number is a real number. * The sum and product of two complex numbers are complex numbers. * The conjugate of sum of two complex numbers is the sum of conjugates of the two complex numbers. * The conjugate of product of two complex numbers is the product of conjugates of the two complex numbers. ### Understand * Complex numbers can be represented in the form $ a+bi$ where a and b are real numbers, and $i$ is the imaginary unit. * The real part of $a+bi$ is $a$ and the imaginary part of $a+bi$ is $b$. * The conjugate of $a+bi$ is $a - bi$. * The absolute value of $a+bi$ is $\sqrt{a^2 + b^2}$. ### Exercise 1 **Multiple Choice Questions** 1. Which of the following is an imaginary number? * a) π * b) √15 * c) √(-5) * d) i² 2. i²⁴ = * a) -1 * b) i⁹ * c) -i * d) 1 3. The simplest form of the imaginary number i⁴⁵ is: * a) i * b) -1 * c) -i * d) 1 4. i⁻³⁰ = * a) 1 * b) -1 * c) -i * d) i 5. i¹⁹⁹ = * a) i * b) -i * c) i * d) -1 6. i²⁶ + i²⁸ = * a) i⁵⁴ * b) -i * c) zero * d) 2 7. i²¹ = * a) i²⁴ * b) 2 i * c) -2 i * d) -i 8. 5i⁷ + 4i¹⁸ = * a) 9i * b) -9i * c) i * d) -i 9. 1 + i + i² + i³ + i⁴ = * a) 4i + 1 * b) -1 * c) 1 * d) 5 10. If n ∈ Z, then i⁸ⁿ⁻³ = * a) i * b) -i * c) -1 * d) 1 11. If n ∈ Z, then i⁴ⁿ⁺⁴² = * a) 1 * b) -1 * c) -i * d) i 12. The additive inverse of the complex number (4 - 7i) is: * a) 4 + 7i * b) -4 + 7i * c) -4 - 7i * d) 4 - 7i 13. The conjugate of the number (3i + 4) is: * a) 3i + 4 * b) -3i - 4 * c) -3i + 4 * d) 3i - 4 14. The conjugate of the number (i - i²) is: * a) 1 - i * b) 1 + i * c) -i - 1 * d) i - 1 15. The conjugate of the number (-8) is: * a) 8i * b) -8i * c) -8 * d) 8 16. The conjugate of the number (2 + i)² is: * a) 2 + i * b) (2 + i)⁻¹ * c) 3 + 4i * d) 3 - 4i 17. √(-2 × 1 - 8) = * a) i * b) -2i * c) 4i * d) -4i 18. √(-15) × √(-12) = * a) 6√6 * b) -2i * c) 4i * d) -4i 19. √(-9) × √(i) = * a) 6√6 * b) -6√6 * c) -6√6i * d) -6√6i 20. (-4)(-6) = * a) -10i * b) 24i * c) -24i * d) -24 21. (-2i)³(-3i)² = * a) -72i * b) 72i * c) 72 * d) -72 22. (3 + 2i) + (2 - 5i) = * a) 5 + 2i * b) 5 - 3i * c) 3 - 5i * d) 5 + 3i 23. If X, y are real numbers and (2 + 5i) - (4 - 2i) = X + yi, then X + y = * a) 9 * b) -1 * c) 1 * d) 5 24. (12 - 5i√17) - (7 - i√81) = * a) 5 - 4i * b) -5 + 4i * c) 5 + 4i * d) -5 - 4i 25. 2 - (1 - 2i) + ( 4 - 5i) - (1 - 3i) = * a) 4i * b) -5i * c) 7i * d) 4 26. (4 - 3i)(4 + 3i) = * a) 25i * b) 14 * c) 14i * d) 25 27. If X, y are real numbers and (1 + i)(1 - i) = X + yi, then X + y = * a) 4 * b) 3 * c) 2 * d) 1 28. If X, y are real numbers and X + yi = 14√3 + 3i - 4, then X + y = * a) 3 * b) 5 * c) 3 + 2i * d) 5i 29. If X + yi = 1/i where X, y ∈ R, then X + y = * a) zero * b) 1 * c) -1 * d) 2 30. If 12 + 3ai = 4b - 27i, then a + b = * a) -9 * b) 1 * c) -6 * d) 6 31. If X, y are real numbers and 3X - 2yi = (5 - 2i)², then y - X = * a) 17 * b) -3 * c) 3 * d) 21 - 20i 32. The solution set of the equation : 9X² + 4 = 0 in the set of complex numbers is: * a) { } * b) {2/3 i, -2/3 i} * c) { i/3, -i/3} * d) { √2/3 i, -√2/3 i} 33. If X,y are real numbers and X - 2i√3 + yi = 3 - yi, then the conjugate of the number X+ yi is: * a) 3 - 2i * b) 3 + 2i * c) -3 - 2i * d) -3 + 2i 34. If x² - 2x + 2 = 0, then X = * a) 2 ± 2i * b) 2 ± i * c) 1 ± i * d) 1 ± 2i 35. The multiplicative inverse of the number i/2i +1 is: * a) -2 + i * b) -2 - i * c) 2 - i * d) 2 + i 36. If Z, is the conjugate of the number Z₂, then Z₁Z₂ + (Z₁ + Z₂) is: * a) a real number * b) an imaginary * c) complex, not real * d) undetermined. 37. All of the following are imaginary numbers except * a) √(-1) - 18 * b) i¹⁹ * c) (2 + 2i)⁴ * d) (1 + i)⁶ 38. All the following are not real numbers except * a) (1 + i)⁴ * b) √(-8) * c) i³ * d) √(-π) 39. 3 + 3i + 3i² + 3i³ = * a) zero * b) 3 * c) 12 * d) 12i ### Exercise 2 * An introduction to complex numbers **Multiple Choice Questions** 1. Which of the following is an imaginary number? * a) π * b) √15 * c) √(-5) * d) i² 2. i24 = * a) -1 * b) i⁹ * c) -i * d) 1 3. The simplest form of the imaginary number i45 is: * a) i * b) -1 * c) -i * d) 1 4. i⁻³⁰ = * a) 1 * b) -1 * c) -i * d) i 5. i¹⁹⁹ = * a) 1 * b) -i * c) i * d) -1 6. i²⁶ + i²⁸ = * a) i⁵⁴ * b) -i * c) zero * d) 2 7. i²¹ = * a) i²⁴ * b) 2 i * c) -2 i * d) -i 8. 5i⁷ + 4i¹⁸ = * a) 9i * b) -9i * c) i * d) -i 9. 1 + i + i² + i³ + i⁴ = * a) 4i + 1 * b) -1 * c) 1 * d) 5 10. If n ∈ Z, then i⁸ⁿ⁻³ = * a) i * b) -i * c) -1 * d) 1 11. If n ∈ Z, then i⁴ⁿ⁺⁴² = * a) 1 * b) -1 * c) -i * d) i