Ionic Equilibrium - Medeasy Equilibrium PDF
Document Details
Uploaded by UnderstandableTroll3203
Tags
Summary
This document discusses various topics related to ionic equilibrium, including types of salts, isohydric solutions, solubility and solubility product, and buffer solutions. It also includes examples and calculations. The content appears to be study material, not a past paper.
Full Transcript
# Ionic Equilibrium ## Some Imp points 1. **Types of Salts** * **Normal salts** * NaCl, Na₂SO₄, Na₃PO₄ etc. * **Acid salts** * NaHCO₃, NaHSO₄ * **Basic salts** * Zn(OH)Cl, Mg(OH)Cl etc. * **Double salts** * K₂SO₄. Al₂(SO₄)₃. 24H₂O...
# Ionic Equilibrium ## Some Imp points 1. **Types of Salts** * **Normal salts** * NaCl, Na₂SO₄, Na₃PO₄ etc. * **Acid salts** * NaHCO₃, NaHSO₄ * **Basic salts** * Zn(OH)Cl, Mg(OH)Cl etc. * **Double salts** * K₂SO₄. Al₂(SO₄)₃. 24H₂O Potash alum * **Complex salts** * [Ag(NH₃)₂]Cl, [Cu(NH₃)₄]SO₄, etc. * **Mixed salts** * NaKS, NAKRbPO₄ etc. 2. **Isohydric Sol** * Sol" having same [H] Conc" * [H]₁ = [H]₂ * √Ka₁C₁ = √Ka₂C₂ * [Ka₁C₁ = Ka₂C₂] * Relative strength of acids * R.S = [H]₁/√Ka₁C₁ = [H]₂/√Ka₂C₂ * WA + SB Mixing (K(CH₃C0011) = 10⁻⁵) * Case 1: 75mL of 0.1 M CH₃COOH + 25mL of 0.1 M NaOH * NWA = 75 x 0.1 = 7.5 mmol * MSB = 25 x 0.1 = 2.5 mmol * pH = 7 + [5 + log(25/2)] / 2 = 7 + [5 - 1.3] / 2 = 7 + 1.85 = 8.85 * Case 2: 50 mL of 0.1 M CH₃COOH + 50 mL of 0.1 M NaOH * nWA = 5 * C = 5 / 100 = 1 / 20 * NSB = 5 * pH = 5 + log(25/2) = 5 - log2 = 5 - 0.3 = 4.7 * Case 3: 25mL of 0.1 M CH₃COOH + 75 mL of 0.1 M NaOH * nWA = 2.5; NSB = 7.5 * [OH] = 5 / 100 = 1 / 20 * pOH = -log(1 / 20) = log 20 = 1.3 * [pH = 14 - 1.3 = 12.7] ## Solubility and Solubility Product * Solubility * Max. no. of moles of solute dissolved in a solvent to obtain 1 L sol". * Solubility = S (mol/L) = S (gm/L) / MW salt * Solubility in common ion effect * By adding common ion, solubility of Salt decreases. Solubility ↓ * AgCl Ag⁺ Cl⁻ (aq) (aq) * NaCl Na⁺ Cl⁻ * Q. Find solubility of AgCl (Ksp = 10⁻¹⁰ (mol²/L²)) * (a) In H₂O * (b) In 0.1 M AgNO₃ * Ksp = (0.1) x (S)² * S = 10⁻¹⁰ / 0.1 = 10⁻⁹ (mol/L) * (c) In 0.1 M CaCl₂ * Ksp = (S) x (0.2) = 10⁻¹⁰ * S = 10⁻¹⁰ / 0.2 = 5 x 10⁻¹⁰ (mol/L) * lonic product of salt * ABxA + YB * Kjp = [A]ˣ [B]ʸ * Case 1: Kjp = Ksp: Saturated sol" * Case 2: Kjp > Ksp: ppt occurs * Case 3: Kjp < Ksp: Unsaturated sol" * Q. The ppt of CaF₂ (Ksp = 1.7 x 10⁻²⁰) is obtained when following are mixed. * (A) 10⁻³ M 10⁻⁵ M * (B) 10⁻⁵ M 10⁻³ M * (C) 10⁻² M 10⁻³ M * (D) 10⁻¹ M 10⁻⁴ M * CaF₂ Ca²⁺ + 2F⁻ * (A) Kic=10⁻³ x 10⁻⁵ = 10⁻⁸, Kic < Ksp * (B) Kic = 10⁻⁵ x 10⁻³ = 10⁻⁸, Kic < Ksp * (C) Kic=10⁻² x (2 x 10⁻³)² = 10⁻⁸, Kic < Ksp ## Conjugate acid-base pair * Acid H Conjugate Base * SA H W.C.B * WA H S.C.B * HNO₃→ H⁺ NO₃⁻ * HFH⁺ F⁻ * H₂PO₄⁻ H⁺ HPO₄²⁻ * 1. Acid base theory # Buffer Solutions * The solutions which resist the change in pH by adding small amount of strong acid or strong base * CH₃COOH + CH₃COONa (WA+ Salt of WA with SB) * Acidic buffer * NH₄OH + NH₄Cl (WB + Salt of SA with WB) * Basic Buffer * Acidic buffer can be prepared by three ways * 1. CH₃COOH + CH₃COONa * WA (Salt of WA SB) * 2. WA is mixed with SB (NWA > NSB) * CH₃COOH + NaOH = CH₃COONa + H₂O * Calculation of pH of Buffer Solutions * Q. 50 mL of 2M CH₃COOH mixed with 10 mL of 1M CH₃COONa will have an approx pH of (K = 10⁻⁵) * pH = 5 + log(nsalt/nacid) = 5 + log(50 x 2 / 10 x 1) = 5 + log(10) = 5 - log 10 = 5 - 1 = 4 * Q. 0.05M NH₄OH solution is dissolved in 0.001M NH₄Cl solution find PH (Kb = 10⁻⁵) * pH = 5 + log(0.001 / 50) = 5 - log 50 = 5 - 1.7 = 3.3 * Q. When 75% of titration is over then find PH. [CH3COOH + NaOH = CH3COONa + H₂O] (K = 10⁻⁵) * pH = pKa + log(25 / 75) = 5 + log 3 = 5 + 0.48 = 5.48 # Calculation of Kp if pressure is given. * Q. In the Rxn the eq" pressure is 12 atm. If 50% CO₂ reacts find Kp * C(s) + CO₂(g) ⇌ 2CO (g) * Pea = Po - Px * Peq = Po - 2Px * Pea = Po - 2x² * Peq = Po / 2 * D.O.D of CO₂ = Px / Po = 1 / 2 * Po = 12; Peq = 3Po / 2 = 12; Po = 8 * Kp = (P/2)² = 2P = 2 x 8 = 16 (atm) * Q. For the rxn, the observed pressure is 1.12. atm find Kp? * NH4HS (s) ⇌ NH3(g) + H2S(g) * 2P = 1.12 * P = 0.56 * Kp = Px x Px = 0.56 x 0.56 = 0.3136 (atm)² # Relation b/w D.O.D and Vapour density * α = D.O.D = (D - d) / d(n - 1) * D = V.D of Reactant. * d = V.D of Rxn mix # Significance of n * PCl₅ ⇌ PCl₃ + Cl₂ * n = moles of products = 2 * 2NH₃⇌ N₂ + 3H₂ * n = 1 + 3 = 4 # Le-chatelier's principle 1. **Effect of conc"** * R ⇌ P; [R]↑ →; [P]↑ ← * R ⇌ P; [R] ↓ ←; [P] ↓ → 2. **Effect of Pressure** * (1) N₂(g) + 3H₂(g) ⇌ 2NH₃(g) * (2) 2SO₃(g) ⇌ 2SO₂(g) + O₂(g) * (3) H₂(g) + I₂(g) ⇌ 2HI(g) * Δn = 0 No. effect of pressure change 3. **Effect of temp** * (a) Endothermic Rxn * R + Heat ⇌ P * T↑ ↓ ←, ΔH = +ve * (b) Exothermic Rxn * R ⇌ P + Heat * T↑ T↓ → , ΔH = -ve 4. **Effect of Catalyst** * Does not affect the eq" 5. **Effect of addition of inert gas** * Case 1: at const volume * Does not affect the eq" * Case 2: at const pressure * Rxn will shift in that direc" where no. of moles increases. # Reaction Quotient * aA(g) + bB(g) ⇌ yC (g) + sD (g) * Qc = [C]ʸ[D]ˢ / [A]ᵃ[B]ᵇ * Qc = [C]ʸ[D]ˢ / [A]ᵃ[B]ᵇ * not at eq" * Case 1: Qc = Kc; eq" * Case 2: Qc > Kc; B.W.R. * Case 3: Qc < Kc; F.W.R. # Degree of Dissociation * D.O.D = No. of moles dissociated / Initial moles taken * Case 1: n₁ 2 0 * A ⇌ 2B * n₂ 2 - x x * D.O.D of A = X / 2 * Case 2: n₁ 2 0 * 2A ⇌ B * n₂ 2- 2x x * D.O.D of A = 2x / 2 = x * Case 3: n₁ 2 3 0 * A + 2B ⇌ C * n₂ 2- x 3- 2x x * D.O.D of A = X / 2 * D.O.D of B = 2x / 3 * Case 4: n₁ 2 3 0 * 2A + 2B ⇌ 3C * n₂ 2 - 2x 3 - 2x 3x * D.O.D of A = 2x / 2 = x * D.O.D of B = 2x / 3 * Case 5: n₁ 5 8 0 * N₂ + 3H₂ ⇌ 2NH₃ * n₂ 5 - x 8 - 3x 2x * D.O.D of N₂ = X / 5 * D.O.D of H₂ = 3x / 8 * Case 6: n₁ 4 0 0 * 2SO₃⇌ 2SO₂ + O₂ * n₂ 4 - 2x 2x x * D.O.D of SO₂ = 2x / 4 = x / 2 * Case 7: n₁ 6 7 3 0 * 4NH₃ + 5O₂ ⇌ 4NO + 6H₂O * n₂ 6 - 4x 7 - 5x 4x 6x * D.O.D of NH₃ = 4x / 6 = 2x / 3 * D.O.D of O₂ = 5x / 7 * **Apps of D.O.D** * To Find Eq" constants * Case 1: Calculation of Kc * n₁ a b 0 * A(g) + B(g) ⇌ C(g) * n₂ a - x b - x x * Ca(g) Cb(g) Cc(g) * Kc = (x) / (a - x)(b - x) # Lewis Theory * LA * Lone Pair acceptor * H⁺, CO₂, SF₆ PF₅, BCl₃, AlCl₃, FeCl₃ etc. * LB * Lone Pair donor * XO⁻, OH⁻, NH₃, H₂O" etc. * HCO₃⁻ H⁺ CO₃²⁻ * CO₃²⁻ H⁺ HCO₃⁻ * H₂PO₄⁻ H⁺ HPO₄²⁻ * HPO₄²⁻ H⁺ PO₄³⁻ * H₂PO₄⁻ H⁺ HPO₄²⁻ * H₃PO₂ X * H₃PO₄ H⁺ H₂PO₄⁻ * H₂PO₄⁻ H⁺ HPO₄²⁻ * HPO₄²⁻ H⁺ PO₄³⁻ # Acid Base Theory * Base + H Conjugate Acid * WB SCA * SB WCA * NO₃⁻ + H⁺ HNO₃ * HCO₃⁻ + H⁺ H₂CO₃ * WB SCA * SB WCA # PH Calculation * pH = -log[H⁺] * pOH = -log[OH⁻] * pH + pOH = 14 at 25°C * [H⁺] x [OH⁻] = 10⁻¹⁴ at 40°C * T↑ kw↑ [H⁺] x [OH⁻] * Case 1: Strong acid/Base * (1) [H⁺]≥ 10⁻⁶ M * Q. Find pH of 10⁻³ M HCl * [H⁺] = 10⁻³ M * pH = -log 10⁻³ = 3 * pH = 3 * (2) [H⁺] < 10⁻⁶ * (-log (a x 10⁻ᵇ) = b - loga * Q. Find pH of 10⁻⁸ M HCl * [H⁺] = 10⁻⁸ M * pH = -log 10⁻⁸ = 8 * [H⁺]net = [H⁺]from acid + [H⁺]from H₂O * = 10⁻⁸ + 10⁻⁷ = 11 x 10⁻⁸ * pH = -log(11 x 10⁻⁸) = 8 - log 11 * pH = 6.9 * Case 2: pH of mix of two SA & SB * [H]/[OH] = [N₁V₁ ± N₂V₂] / V₁ + V₂ * = [M₁V₁nf₁ + M₂V₂nf₂] / V₁ + V₂ * Q. Find PH * 50 mL of HCl + 50 mL of H₂SO₄ * [H] = [M₁V₁nf₁ + M₂V₂nf₂] / V₁ + V₂ * = (1 x 50 x 1 + 1 x 50 x 2) / 50 + 50 * = 10/100 = 20/100 = 2 x 10⁻² * pH = -log(2 x 10⁻²) = 1 - log2 = 1 - 0.3 * PH = 0.7 * Q. Find pH * 75 mL of M Ba(OH)₂ + 25 mL of M HCl * Case 3: pH of weak monobasic acid * Weak monoacidic base * H ⇌ A + H⁺, Kₐ * K = [H +]² / [HA] * α² = [H⁺] / [HA] * [H⁺] * K = [H⁺]^2 / [H⁺] * [H⁺] = (K * C) ^ (1/2) * Case 4: pH of weak poly basic acid * Weak poly acidic base * H₃PO₄ H⁺ + H₂PO₄⁻ * H₂PO₄⁻ H⁺ + HPO₄²⁻ * HPO₄²⁻ H⁺ + PO₄³⁻ * Ka₁ > Ka₂ > Ka₃ * α < 1; [H⁺] = Ka₂C = [H₃PO₄] * [H₂PO₄⁻] = Ka₂ * Case 5: PH of mix of two weak acid or two weak bases * [H⁺] = √Ka₁C₁ + Ka₂C₂ * or * [OH⁻] = √Kb₁C₁ + Kb₂C₂ * C1 & C2 conc" after mixing * Q. Find Pt of Soln obtained by mixing equal volumes of 0.02 M HOCI (Ka₁ = 2 x 10⁻⁸) and 0.2 M CH₃COOH (Ka₂ = 2 x 1.0⁻⁵) * C₁= 0.02 / 2= 0.01; C₂ = 0.2 / 2 = 0.1 * [H] = √2x10⁻⁸x10⁻² + 2x10⁻⁵x10⁻¹ * = 2x10⁻¹⁰ + 2x1.0⁻⁶ * = 2 x 10⁻³ * pH = -log(2 x 10⁻³) = 3 - log 2 = 3 - 0.3 * P = 2.7 * Case 6: PH of mix of WA and SA or WB and SB * WA * C₁ * Ka₁ * SA * C₂ * [H⁺] = ( -C₂+ c₂+ 4Ka₂C₂ ) / 2 * Q. Find Pt of mix of 10⁻¹ M HCl & 10⁻² M CH₃COOH (K = 2 × 10⁻⁵) * -10 ± √(10⁻¹)² + 4 x 2 x 10⁻⁵ x 10⁻² * [H†] = * = 2 * -10 ± √ 10⁻² + 8 x 10⁻⁷ ) / 2 * -10 + √ 81 x 10⁻⁸) / 2 * -10 + 9 x 10⁻⁴) / 2 * 8 x 10⁻⁴ / 2 = 4 x 10⁻⁴ * pH = -log(4 x 10⁻⁴) = 4 - log 4 = 4 - 0.6 = 3.4 * Case 7: Ph of Amphiprotic species * HCO₃⁻ / H₂CO₃ * [PH H⁺ / H₂CO₃ * H₂PO₄⁻ / HPO₄²⁻ * [PH H⁺ / H₂PO₄⁻ * H₂PO₄⁻ / PO₄³⁻ * Q. Find Pt of * a) 0.01 M NaH₂PO₄ * b) 0.1 M Na₂HPO₄ * for H₃PO₄ K₁ = 10⁻³ * Ka₂ = 10⁻⁸ * Ka₃ = 10⁻¹³ * a) pH = 3 + 8 / 2 = 11 / 2 = 5.5 * b) pH = 8 + 13 / 2 = 21 / 2 = 10.5 * Salt hydrolysis * WA + SB (CHCOONa) * CH₃COO⁻ + H₂O ⇌ CH₃COOH + OH⁻ (KH) * (1) Anionic hydrolysis * (2) KH= K_w/ K_a * (3) h = (K_h)^(1/2) / C * (4) PH = 7 + [PK_h + log C] / 2 * PH > 7 Nature of sol" after hydrolysis is basic * SA + WB (NH₄Cl)