Sharjah Maritime Academy Instrumentation and Measurements Student Workbook Fall 2024/2025 PDF

Summary

This student workbook covers instrumentation and measurements for marine engineering technology, including practical training objectives and a table of contents. It is for students at Sharjah Maritime Academy, Fall 2024/2025.

Full Transcript

Shape Description automatically generated **SHARJAH MARITIME ACADEMY** **Department of Marine Engineering Technology** **Instrumentation and Measurements** **MET222** **Student Workbook** ![](media/image2.png) **Fall 2024/2025** **CADET'S PERSONAL DATA** **Student Name**...

Shape Description automatically generated **SHARJAH MARITIME ACADEMY** **Department of Marine Engineering Technology** **Instrumentation and Measurements** **MET222** **Student Workbook** ![](media/image2.png) **Fall 2024/2025** **CADET'S PERSONAL DATA** **Student Name** **Register Number** ------------------ -------------------------- ----------------------- -- **Department** SHARJAH MARITIME ACADEMY **Student Signature** ***OBJECTIVES OF THE PRACTICAL TRAINING*** *The purpose of the practical training is to train the cades intentionally and effectively to cultivate the necessary attribute and ability to be a competent ship\'s engineer.* *The immediate objectives would be set up as follows.* 1. *To cultivate such attributes of the cadets as the adaptability, the discipline, the sense of responsibility, the determination, the endurance, the spirit of cooperation that are indispensable elements for ship\'s engineer.* 2. *To develop the practical knowledge of proficiency of cadets through practical experience which makes integration of their theoretical study, to a desired standard based on the syllabus for the coarse practical CLOs.* ***Bases of course selection:*** *This course is selected to achieve the following:* 1. *The syllabus of the practical training phase.* 2. *The course of an engineering officer in charge of a watch according to (STCW Regulations).* 3. *To match the engineering equipment on board ships.* **[Table of Content]** [Open Loop & Closed Loop Control 7](#open-loop-closed-loop-control) [Specifications of Measuring Instruments 15](#specifications-of-measuring-instruments) [Thermal Sensors PTC & NTC 20](#_Toc175230525) [Sensors 24](#sensors) [Voltage Divider Circuit 33](#voltage-divider-circuit) [Operational Amplifier as Non-Inverting Amplifier 39](#operational-amplifier-as-non-inverting-amplifier) [Operational Amplifier as Inverting Amplifier 45](#_Toc175230529) [Operational Amplifier as Voltage Follower and Voltage to Current Converter 50](#operational-amplifier-as-voltage-follower-and-voltage-to-current-converter) [Operational Amplifier as Summing amplifier 58](#operational-amplifier-as-summing-amplifier) ------------------ ---------------------------------- -------------- ---------------- **Department** Marine Engineering Technology **Semester** Fall 2024/2025 **Course Title** Instrumentation and Measurements **Code** MET222 ------------------ ---------------------------------- -------------- ---------------- **[PRACTICAL GUIDE]** **Experiment** **Marks** **CLO's** ------------------- -------------------------------------------------------------------------------- ------------ ------ **Experiment** **Actual** **1** **Open Loop & Closed Loop Control** CLO4 **2** **Specifications of Measuring Instruments** CLO4 **3** **Electric Resistors PTC, NTC and LDR** CLO4 **4** **Sensors** CLO4 **5** **Voltage Divider Circuit** CLO4 **6** **Operational Amplifier as Non-Inverting Amplifier** CLO4 **7** **Operational Amplifier as Inverting Amplifier** CLO4 **8** **Operational Amplifier as Voltage Follower and Voltage to Current Converter** CLO4 **9** **Operational Amplifier as Summing amplifier** CLO4 **Total Marks** **Lecturer Name** Eng. Ibtihal Ahmed **Experiment** **Experiment** **Mark** **CLO's** ------------------- -------------------------------------------------------------------------------- ---------- ----------- **1** **Open Loop & Closed Loop Control** 4 CLO4 **2** **Specifications of Measuring Instruments** 2 CLO4 **3** **Electric Resistors PTC, NTC and LDR** 3 CLO4 **4** **Sensors** 3 CLO4 **5** **Voltage Divider Circuit** 3 CLO4 **6** **Operational Amplifier as Non-Inverting Amplifier** 3 CLO4 **7** **Operational Amplifier as Inverting Amplifier** 2 CLO4 **8** **Operational Amplifier as Voltage Follower and Voltage to Current Converter** 3 CLO4 **9** **Operational Amplifier as Summing amplifier** 2 CLO4 **Total Marks** **26** **Lecturer Name** Eng. Ibtihal Ahmed **Signature** ![Shape Description automatically generated](media/image1.jpeg) **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Measurement and instrumentation/ MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 mins **Duration** 10:30 -- 12:20 **Time** 4 **Grade** 29/08/2024 **Date** 8 **No. of papers** 11-03 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 1]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **3.5** CLO4 2 **0.5** CLO4 **Total** **4** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 1]** **[Open Loop & Closed Loop Control]** ================================================= **[Objectives:]** - Understand the concept of open loop and close loop system and compare their performance. **[Instruments & Equipment:]** ### PCT 100 **[Theory:]** **Open Loop Control System:** is a system in which the output of the system depends on the input, but it does not use feedback to determine if its output has achieved the desired goal of the input. ​ **Closed Loop Control System: ​**A closed-loop control system is a type of control system in which the controlling action shows dependency on the generated output of the system (use feedback to control states of the system). **PID Controller:** A controller is a device that generates, and output based on the input signal. The input signal is actually an error signal which is a difference between measured value and actual value. ![A diagram of a system Description automatically generated](media/image5.jpg) Proportional-integral-derivative is a controller used to regulate temperature, flow, pressure, speed, and other process variables in industrial control systems. **Proportional** -- sometimes called gain or sensitivity -- is a control action reproducing changes in input as changes in output. **Integral** -- is a control action causing the output signal to change over time at a rate proportional to the amount of error. Integral controller action responds to error accumulated over time, ramping the output signal are far as it needs to go to completely eliminate error. **Derivative** -- is a control action causing the output signal to be offset by an amount proportional to the rate at which the input is changing. Derivative controller action responds to how quickly the input changes over time, biasing the output signal commensurate with that rate of input change. **Overshoot** is the maximum amount by which the response exceeds the final steady state value of the process variable. It is sometimes expressed as a percentage of the final steady state value. **Steady state error** the final difference between the process variable and set point. **Rise Time** is the time taken for the response to increase from 10% of its final steady state value to 90% of its final steady state value. **Settling Time** is the time taken for the response to reach its final steady state value, within some specified tolerance. The diagram above shows the settling time for a 5% tolerance. **Periodic Time** or **Period** is the duration of one complete cycle of oscillation. It can, therefore, be measured as the interval between alternate crossings of the final steady state value or the interval between successive peaks or successive troughs on the response curve. **Frequency** is the reciprocal of the period, i.e. the number of cycles per second which is expressed in Hertz (Hz). Sometimes the frequency is expressed in radians per second and the relationship between the two units is that radians per second equals 2π times the frequency in Hertz. **Transport Delay** is the period during which there is no change in the process variable after a step change has been made to the set point. ### [Procedure:] **Open loop:** **Q1a** ---------- **1.75** 1. Switch on the computer and PCT 100 unit. 2. Open the training program on the computer and select open loop. 3. Set the input to step function with SP = 40% and start the measurement. 4. Save the output after it reaches the steady state. 5. From the result find the below parameters: (0.75 Mark) Rising time: 2.1 -- 0.5= 1.6 L/min Settle time: 6.3 s Steady State Error: zero 6. Draw the time response for open loop controller. ![A graph with a green line Description automatically generated](media/image7.png) 7. Draw the block diagram for open loop showing the used component, and briefly describe each parameter and describe the open loop process. A blue rectangle with white text Description automatically generated **Input, setpoint:** is the required flow rate. **Controller:** generates a signal to control the valve opening and DC motor speed according to the required rate without measuring the output. **Actuator:** Open and close the valve according to the controller signal. Also, the motor speed adjusted to operate the pump based on the controller's signal. **Output:** Actual flow rate. **Process:** control the flow rate and filling the tank. **Close loop:** **Q1b** ---------- **1.75** 8. Close the open loop and set the system to close loop which is flow control in PCT unit. 9. Set the value of PG to 4 and SP to 1.5. 10. Disable I & D parameters. 11. Start measurement and save the graph. 12. From the graph get the below values: (0.75 Mark) Overshooting: 1.63 -- 1.5=0.13 L/min Settle time: 5.2 s Steady State Error: 1.5 -- 1.4= 0.1 L/min 13. Draw the time response for close loop controller. ![](media/image9.png) 14. Draw the block diagram for close loop, briefly describe each parameter and the system operation. A diagram of a flowchart Description automatically generated **Input, setpoint:** is the required flow rate. **PID Controller:** compares the setpoint to the actual output measured by sensor and generates the control signal based on the error between setpoint and actual output to minimize the error. Open and close the valve according to the controller signal. Also, the motor speed adjusted to operate the pump based on the controller's signal. **Output:** Actual flow rate. **Process:** control the flow rate and filling the tank. Sensor: flow rate sensor 15. Comparing open and close loop in term of: (0.5 Mark) **Q2** --------- **0.5** **Basic difference** **Open loop** **Close loop** ---------------------- --------------------------- ---------------------------------- Control action Independent of the output Depend on the output Complexity simple Complex Main component Controller+valve+dc motor Controller+valve+dc motor+sensor Disturbance effect Affected Not affected ![Shape Description automatically generated](media/image1.jpeg) **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Measurement and instrumentation/ MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 mins **Duration** **Exam Time** 2 **Grade** **Day & Date** 5 **No. of papers** 11-11 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 2]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **1** CLO4 2 **1** CLO4 **Total** **2** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 2]** **[Specifications of Measuring Instruments]** ========================================================= **[Objective]** - Measuring the resistor using current and voltage circuits. **[Instruments & Equipment:]** 1. ### Electronic Circuits Board 2. ### Resistors 3. ### Multimeter ### ### ### **[Theory:]** For measuring the basic electrical quantities of voltage [*U*]{.math.inline} and current [*I*]{.math.inline} we need to connect measuring devices to the circuit. For voltage measurement, the voltmeter is connected in **parallel** to the consumer. For current measurement we need to disconnect the circuit to connect the ammeter in **series** to the consumer. This ensures that the same current flows through consumers and measuring devices. In a current circuit, the ammeter shows the current flowing on the internal resistance of the voltmeter and in the resistor [*R*]{.math.inline}. \ [\$\$\\mathbf{I}\_{\\mathbf{R}}\\mathbf{= I \\times}\\frac{\\mathbf{R}\_{\\mathbf{i}}}{\\mathbf{R}\_{\\mathbf{i}}\\mathbf{+ R}}\$\$]{.math.display}\ **Current Circuit** Using the voltage circuit, the voltmeter will measure the voltage drop on the voltage divider created by the consumer and the ammeter\'s [*R*~*i*~]{.math.inline}. \ [\$\$\\mathbf{V}\_{\\mathbf{R}}\\mathbf{= U \\times}\\frac{\\mathbf{R}}{\\mathbf{R}\_{\\mathbf{i}}\\mathbf{+ R}}\$\$]{.math.display}\ ![A diagram of a circuit Description automatically generated](media/image12.png) **Voltage Circuit** **Measurement error** is the difference between a measured value, derived from the sample, and the true value. **Precision** is expressed the difference between a measured value and the arithmetic mean value. **[Procedure:]** 1. Connect the circuit according to Figure below. Set U = 5 V on the output of the adjustable voltage source. [*R*= 33*Ω* & *R* = 22KΩ]{.math.inline}. (R~I~ is the internal resistor of DMM) **Q1** -------- **1** 2. Measure the value of R using multimeter and enter readings in the table. 3. Measure current and voltage for both consumers and enter your readings in the following Table. ------------------------------------------------------------------------------------------------------------------------- **R measured** **I (mA)** **V (V)** **R arithmetically (V/I)** \ **Error** [*Δ***R**]{.math.display}\ ------------------------- ------------ ----------- ---------------------------- ----------------------------- ----------- 33 [*Ω*]{.math.inline} 147.5 4.8 32.5 0.5 1.15% \ 0.22 4.99 22.68 0.68 0.003% [22KΩ]{.math.display}\ ------------------------------------------------------------------------------------------------------------------------- 4. Connect the circuit according to Figure below. Set U = 5V on the output of the adjustable voltage source. [*R*= 33*Ω* & *R* = 22KΩ]{.math.inline}. ![A diagram of a circuit Description automatically generated](media/image12.png) 5. Measure the value of R using multimeter and enter readings in the table. 6. Measure current and voltage for both consumers and enter your readings in the following Table. ------------------------------------------------------------------------------------------------------------------------- **R measured** **I (mA)** **V (V)** **R arithmetically (V/I)** \ **Error** [*Δ***R**]{.math.display}\ ------------------------- ------------ ----------- ---------------------------- ----------------------------- ----------- 33 [*Ω*]{.math.inline} 147.3 4.97 34.75 1.75 5.3% \ 0.22 4.99 22.68 0.68 0.003% [22KΩ]{.math.display}\ ------------------------------------------------------------------------------------------------------------------------- 7. Which circuit is better at calculating the value of the low resistor (33 Ω) more exactly because the readings are more accurate? Current circuit gives smaller error compared to voltage circuit. 8. Does the resistor value comply with the tolerance of 2%? For the first current circuit, the error is less than 2%, so the value complies with tolerance. For the second measurement it's higher than acceptable tolerance. 9. Which circuit is better at calculating the value of the high resistor (22 KΩ) more exactly because the readings are more accurate. Both values are small compared to error for low resistance 33. Current and voltage circuit give the same error value. 10. Does the resistor value comply with the tolerance of 2%? For both methods it's less than 2%, so both readings are acceptable. 11. Using current circuit and 22Ω as load vary the input voltage as given in the table and measure the current and voltage readings. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- **Input voltage (V)** \ \ \ **Precision** [**I**~**R**~]{.math.display}\ [**V**~**R**~]{.math.display}\ [\$\$\\mathbf{R =}\\frac{\\mathbf{V}\_{\\mathbf{R}}}{\\mathbf{I}\_{\\mathbf{R}}}\$\$]{.math.display}\ ----------------------- --------------------------------- --------------------------------- -------------------------------------------------------------------------------------------------------- --------------- 1 43.5 0.95 21.84 0.03 2 86.8 1.892 21.79 -0.02 3 130 2.83 21.77 -0.04 4 173.2 3.78 21.82 0.01 5 216.3 4.72 21.82 0.01 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- **Q2** -------- **1** Mean value [\$= \\frac{21.84 + 21.79 + 21.77 + 21.82 + 21.82}{5} = 21.81\$]{.math.inline} The worse precise measurement: the worse precision at 3V, the value is 21.77 ohm Shape Description automatically generated **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Measurement and instrumentation/ MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 mins **Duration** **Exam Time** 3 **Grade** **Day & Date** 4 **No. of papers** 11-11 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 3]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **1** CLO4 2 **1** CLO4 3 **1** CLO4 **Total** **3** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 3]** **[Resistors Sensors]** **[PTC, NTC and LDR ]** **[Objective]** - To study and analyze the characteristics of NTC and PTC thermistor resistors. - To study and analyze the characteristics of LDR resistor. **[Instruments & Equipment:]** 1. ### Electronic Circuits Board 2. ### NTC & PTC resistors 3. ### LDR resistor 4. ### Multimeter ### ### ### ### **[Theory:]** **NTC (Negative Temperature Coefficient Commonly) used names: NTC** resistor, thermistor. Resistors with a negative temperature coefficient are manufactured such that their resistance decreases as the temperature rises. Their conductivity improves when they are \"hot.\" The resistor material heats up or cools down because of the ambient temperature and the power loss generated by current flow and dissipated as heat on the resistor itself. **PTC (Positive Temperature Coefficient Commonly) used names:** PTC resistor Resistors with a positive temperature coefficient are manufactured such that their resistance increases as the temperature rises. Their conductivity improves when they are \"cold.\" The resistor material heats up or cools down because of the ambient temperature and the power loss generated by current flow and dissipated as heat on the resistor itself. **Photoresistors, Light Dependent Resistor (LDR):** Photoresistors reduce their resistance as the intensity of the light incidence increases. They are used wherever clear differences in luminance intensity need to be detected electronically, e.g., fire detectors. An LDR consists of a special semiconductor material. In total darkness, it has a so called \"**dark resistance**\" of more than 10MW. If the material of the device absorbs light energy, it will increasingly release charge carriers enabling current to flow and hence increasing the material\'s conductivity. ![A diagram of a light source Description automatically generated](media/image13.jpg) **[Procedure:]** 1. Connect the circuit as shown below: A diagram of a circuit Description automatically generated **Q1** -------- **1** 2. Set the voltage values given in the following reading table one after another. Wait for approx. one minute after adjusting a new voltage value for the current flow to stabilize. **U (V)** **3** **4** **5** **6** **7** **8** **9** **10** ----------------------------------------- ------- ------- ------- ------- ------- ------- ------- -------- **I (mA)** 0.36 0.5 0.63 0.77 0.92 1.07 1.23 1.41 [**R**~NTC~]{.math.inline} **\[k Ω\]** 8.11 7.78 7.71 7.57 7.38 7.25 7.09 6.87 3. Draw the R-U & I-U curves. ![](media/image15.png) 4. Comment on the output response in terms of variation. As the current increases, temperature increases. As the current and temperature are increasing the NTC decreases. 5. Connect the circuit as shown below: A diagram of a circuit Description automatically generated **Q2** -------- **1** 6. For data recording, set the voltage values given in the following reading table one after another. Wait for approx. one minute after adjusting a new voltage value for the current flow to stabilize. **U (V)** **2** **4** **6** **8** **10** **12** **14** **16** ----------------------------------------- ------- ------- ------- ------- -------- -------- -------- -------- **I (mA)** 0.49 0.98 1.45 1.92 2.37 2.81 3.24 3.64 [**R**~PTC~]{.math.inline} **\[k Ω\]** 3.86 3.86 3.91 3.94 3.99 4.05 4.1 4.17 7. Draw the R-U & I-U curves. ![](media/image17.png) 8. Comment on the output response in terms of variation. As the current increases, temperature increases. As the current and temperature are increasing the PTC increases. 9. Connect the circuit as shown below: A diagram of a device Description automatically generated **Note:** The negative pole of the fixed D.C. voltage +15V is the device ground \"GND.\" 10. For data recording, set the voltage values given in the following reading table one after **Q3** -------- **1** 11. another. Using multimeter find the voltage and current for LDR and finally calculate the LDR resistance value. **U (V) (DC source)** **0** **3** **6** **9** **12** ----------------------------------------- ------- ------- ------- ------- -------- **I (mA)** 2.21 11.58 25.5 29.03 30.82 **V (V)** 14.32 11.33 6.75 5.6 5 [**R**~LDR~]{.math.inline} **\[k Ω\]** 6.48 1.02 0.24 0.19 0.16 12. Draw the R-U curve ![](media/image19.png) 13. Comment on the output response in terms of variation. As the voltage increases the current increases and the light intensity from the source increases. As the light intensity increases the LDR resistance decreases. Shape Description automatically generated **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Measurement and instrumentation/ MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 mins **Duration** **Exam Time** 3 **Grade** **Day & Date** 9 **No. of papers** 11-11 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 4]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **3** CLO4 **Total** **3** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 4]** **[Sensors]** ========================= **[Objectives]** - To study the characteristics of level, flow and temperature transducers. **[Instruments & Equipment:]** 1. Multimeter 2. PCT- 100 **[Theory:]** **Temperature Measurement** On the PCT-100 temperatures typically range between about 10C and 60C so platinum resistance thermometers have been used. The PRT operates on the basis that the electrical resistance of platinum wire (as all metals) changes with temperature. The electrical resistance of platinum increases approximately linearly with absolute temperature. The resistance of a wire of the material is measured by passing a current through it and measuring the voltage across it with a suitable voltmeter. The reading is converted to temperature using a calibration equation. **Flow Measurement:** In PCT the flow rate of the water is measured by a turbine flow rate sensor. The mechanical part of the Turbine Flow Meter has a turbine rotor placed in the path of flowing water. The moving part of the Turbine Meter is the mechanical rotor. The rotational speed of the rotor depends upon the flow velocity. As the rotor spins, the passage of each rotor blade past a pickup point will generate an electrical pulse. In most Turbine Flow Meters, magnets are fitted to the blades, and a magnetic pickup sensor is used to create the pulses. The higher the rate of flow, the faster the rotor turns and the greater the number of pulses. ![](media/image20.png) Turbin flow meter **Level Measurement** Level measurement on the PCT-100 is achieved using a magnetostrictive transducer. In the typical magnetostrictive level transmitter a float, appropriately sized for the specific fluid density, is mounted on the level transmitter stem such that the float will travel up and down. The float contains a magnetic element. On the top, there is an electronic circuit that sends a short current pulse with a specific frequency, setting up a magnetic field along its entire length. This field interacts immediately with the field generated by the magnet contained within the float. As a result, a torsional force is produced in the wire, and travels back to the magnetostrictive level transmitter electronics. A timing circuit exists within the electronics which measures the time-of-flight (TOF) between the start of the current pulse and the return signal. In this manner the float's location is precisely determined and presented as a level signal by the magnetostrictive level transmitter. A close-up of a machine Description automatically generated **Description of PCT 100 unit:** A diagram of the PCT- 100 is presented in the figure below. The PCT-100 includes the following elements: ![](media/image22.png) 1\. Process tank 2\. Digital LCD displays 3\. Indicator lights 4\. Heater 5\. Pressure relief valve 6\. One way check valve 7\. Needle valve 8\. 2/2 Proportional drain valve 9\. Sump tank 10\. Float switch 11\. Pressure transducer 12\. Level sensor 13\. Overflow/Vent valve 14\. Flow rate sensor 15\. Cooler Unit 16\. 2/2 Proportional control valve 17\. 3/2 Diverter valve 18\. Variable speed pump with filter and pressure switch 19\. Sump tank temperature sensor (PRT) **[Procedure:]** A. **Level Sensor:** - Switch on the computer and PCT 100 unit. - Open the training program on the computer and select manual control. - Set the pump control and flow control to 100%, the tank liquid level starts to increase. - When the liquid level reaches the required level press the F2 to close pump control and the liquid level should stop increasing. - Measure the output voltage using multimeter. - Record the value in the table. - Press F2 to open pump control valve. - Using F2 to open and close the control pump while recording your results. - Draw the level-voltage curve. **Q1** -------- **1** **Level (%)** **0** **25** **50** **75** **90** ----------------- ------- -------- -------- -------- -------- **Voltage (V)** 0.105 2.56 5.02 7.4 8.89 ![](media/image24.png) **Comment on the graph:** Linear relation between level and voltage, as the level increase the voltage increases. Consider two points in the linear graph relation and find the voltage at 85%. B. **Flow Sensor:** - Switch on the computer and PCT 100 unit. - Open the training program on the computer and select manual control. - Set the flow control to 100% and drag the pump control slider to get the flow rate in the table. - Measure the output voltage using multimeter. - Record the value in the table. - Draw the flow rate-voltage curve. **Q2** -------- **1** **Flow rate (L/m)** **0** **0.5** **1** **1.5** **2** **2.5** --------------------- ------- --------- ------- --------- ------- --------- **Voltage (V)** 0.006 1.3 3.48 5.24 7.06 8.61 **Comment on the graph:** Linear relation between flow rate and voltage, as the flow rate increase the voltage increases. Consider two points in the linear graph relation and find the voltage at 1.25 L/min. C. **Temperature Sensor:** - Switch on the computer and PCT 100 unit. - Open the training program on the computer and select manual control. - Set the pump control and flow control to 100%, the tank liquid level should start to increase. - When the liquid level reaches 40% level press the F2 to close pump control and the liquid level should stop increasing. - Open the heater and monitor the temperature readings. - Measure the output voltage when the temperature reaches the required level. - Record the value in the table. - Draw the temperature-voltage curve. **Q3** -------- **1** **Temperature** **22** **26** **28** **30** **32** **34** ----------------- -------- -------- -------- -------- -------- -------- **Voltage** 2 2.3 2.55 2.71 2.9 3.01 ![](media/image26.png) **Comment on the graph:** Linear relation between temperature and voltage, as the temperature increase the voltage increases. Consider two points in the linear graph relation and find the temperature at 40C? Compare using sensors for manual control to automatic in terms of: Manual Automatic ---------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------------- **Control Mechanism** Requires human intervention to perform actions Uses sensors and actuators to detect and controller provide the control signal **Accuracy and Precision** Subject to human error High precision **Response Time** Slower response Fast response **Cost** Low initial cost, high cost in long term due to salary and human error cost High initial cost, but low long-term operation cost **Scalability** Limited as human can monitor limited number of parameters at once Highly scalable, the same system can be used to monitor large number of processes **Safety** Risky in hazard environment Can be implemented whether in safe or risky operations Shape Description automatically generated **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Measurement and instrumentation/ MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 mins **Duration** **Exam Time** 3 **Grade** **Day & Date** 6 **No. of papers** 11-11 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 5]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **1** CLO4 2 **1** CLO4 3 **1** CLO4 **Total** **3** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 5]** **[Voltage Divider Circuit]** ========================================= **[Objective]** - Examine the connection and explore the function of the potentiometer and voltage divider circuit. **[Instruments & Equipment:]** 1. ### Electronic Circuits Board 2. ### Resistors 3. ### Multimeter 4. ### Potentiometer ### ### ### ### **[Theory:]** A voltage divider is a simple electronic circuit that divides a voltage into two or more parts. It consists of resistive elements connected in series, and the voltage across each resistor is proportional to its resistance in relation to the total resistance of the divider. A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. It allows for manual adjustment of the electrical resistance between its two fixed terminals. A potentiometer acts as an adjustable voltage divider. ![A diagram of a circuit Description automatically generated](media/image27.png) A diagram of a device Description automatically generated Voltage divider Potentiometer The output voltage is a function of the input voltage, and the ratio of resistor values can be represented as: \ [\$\$V\_{\\text{out}} = V\_{\\text{in}} \\times \\left( \\frac{R\_{2}}{R\_{1} + R\_{2}} \\right)\$\$]{.math.display}\ [\$V\_{\\text{out}} = V\_{\\text{in}} \\times \\left( \\frac{R\_{n}}{R\_{1} + R\_{2} + \\ldots + R\_{n}} \\right)\$]{.math.inline} , For n resistors **[Procedure:]** 1. Connect the circuit as shown in the below Figure: ![A diagram of a circuit Description automatically generated](media/image29.png) *Take photo of the connection and share it* 2. Turn on Supply on the specified voltage in the circuit diagram shown, and then use the available multimeter to measure following voltages: (0.5 Mark) **Q3** -------- **1** ### [*V*~680*Ω*~ = 1.896*V*]{.math.inline} {#v_680omega-1.896v} ### [*V*~4.7*KΩ*~ = 2.3*V*]{.math.inline} {#v_4.7komega-2.3v} ### [*V*~1000*Ω*~ = 2.3*V*]{.math.inline} {#v_1000omega-2.3v} ### [*V*~1000*Ω*~ = 2.78*V*]{.math.inline} {#v_1000omega-2.78v} ### [*I*~680*Ω*~ = 2.79 *mA*]{.math.inline} {#i_680omega-2.79-ma} ### [*I*~4.7*KΩ*~ = 0.48 *mA*]{.math.inline} {#i_4.7komega-0.48-ma} ### [*I*~1000*Ω*~ = 2.79 *mA*]{.math.inline} {#i_1000omega-2.79-ma} ### [*I*~1000*Ω*~ = 2.31mA]{.math.inline} {#i_1000omega-2.31textma} 3. Compare and assess your readings with theoretical calculations using voltage divider. (0.5 Mark) 470 and 1000 are in parallel: \ [\$\$R\_{\\text{eq}} = \\frac{4.7k\*1000}{1000 + 4700} = 824.56\\text{\\ ohm}\$\$]{.math.display}\ \ [\$\$V\_{680} = 7\*\\frac{680}{680 + 1000 + 824.56} = 1.9V\$\$]{.math.display}\ \ [\$\$I\_{680} = \\frac{V}{R} = 2.79\\text{mA}\$\$]{.math.display}\ \ [\$\$V\_{1000} = 7\*\\frac{1000}{680 + 1000 + 824.56} = 2.79\\text{\\ V}\$\$]{.math.display}\ \ [\$\$I\_{1000} = \\frac{V}{R} = 2.79\\text{mA}\$\$]{.math.display}\ \ [\$\$V\_{1000} = 7\*\\frac{824.56}{680 + 1000 + 824.56} = 2.3\\text{\\ V}\$\$]{.math.display}\ \ [\$\$I\_{680} = \\frac{V}{R} = 2.3\\text{mA}\$\$]{.math.display}\ \ [\$\$V\_{4.7k} = 7\*\\frac{824.56}{680 + 1000 + 824.56} = 2.3\\ V\$\$]{.math.display}\ \ [\$\$I\_{680} = \\frac{V}{R} = 0.5\\text{mA}\$\$]{.math.display}\ 4. Connect the circuit as shown in the below Figure: A black background with white lines Description automatically generated *Take photo of the connection and share it* 5. Turn on Supply on the specified voltage in the circuit diagram shown, and then use the available multimeter to measure following voltages:(1 Mark) **[Case 1 (Max Value of R2):]** V~R1~=...10.12......, V~R2~=......9.6..., V~R3~=...10.15...... V~AB~=...10.12..., V~BC~=......9.6..., V~CD~=......10.15... V~AG~=......15.03..., V~BG~=...4.9......, V~CG~=......-4.7... (G: Ground) **[Case 2 (Half Value of R2):]** V~R1~=......11.92..., V~R2~=...6.05......, V~R3~=...11.95...... V~AB~=......11.92..., V~BC~=...6.05......, V~CD~=...11.95...... V~AG~=......15..., V~BG~=...2.99......, V~CG~=...-2.9...... (G: Ground) **[Case 2 (min Value of R2):]** V~R1~=......14.9..., V~R2~=...0......, V~R3~=...14.98...... V~AB~=......14.9..., V~BC~=...0......, V~CD~=......14.98... V~AG~=......15..., V~BG~=...90.8m......, V~CG~=...85.9m...... (G: Ground) 6. Compare and assess your readings of V~R1~, V~R2~, V~R3~, V~AG~ , V~BG~ and V~CG~ with theoretical calculations for both max and half value, state your observations and comments? (1 Mark) For max value: \ [*R* = 1*kohm*]{.math.display}\ \ [\$\$V\_{R1} = 30\*\\frac{1k}{3k} = 10\\ V\$\$]{.math.display}\ \ [\$\$V\_{R2} = 30\*\\frac{1k}{3k} = 10\\ V\$\$]{.math.display}\ \ [\$\$V\_{R3} = 30\*\\frac{1k}{3k} = 10\\ V\$\$]{.math.display}\ \ [\$\$I = \\frac{V}{R} = \\frac{30}{3K} = 10mA\$\$]{.math.display}\ \ [*V*~AG~ = *I*(*R*~1~+*R*~2~+*R*~3~) − 15 = 10 \* 3*k* − 15 = 15*V*]{.math.display}\ \ [*V*~*BG*~ = *I*(*R*~2~+*R*~3~) − 15 = 10 \* 2*k* − 15 = 5*V*]{.math.display}\ \ [*V*~*CG*~ = *I*(*R*~3~) − 15 = 10 \* 1*k* − 15 =  − 5*V*]{.math.display}\ For half value: \ [*R* = 0.5kohm]{.math.display}\ \ [\$\$V\_{R1} = 30\*\\frac{1k}{2.5k} = 12\\text{\\ V}\$\$]{.math.display}\ \ [\$\$V\_{R2} = 30\*\\frac{0.5k}{2.5k} = 6V\$\$]{.math.display}\ \ [\$\$V\_{R3} = 30\*\\frac{1k}{2.5k} = 12\\text{\\ V}\$\$]{.math.display}\ \ [\$\$I = \\frac{V}{R} = \\frac{30}{2.5K} = 12\\text{mA}\$\$]{.math.display}\ \ [*V*~AG~ = *I*(*R*~1~+*R*~2~+*R*~3~) − 15 = 12 \* 2.5*k* − 15 = 15*V*]{.math.display}\ \ [*V*~BG~ = *I*(*R*~2~+*R*~3~) − 15 = 12 \* 1.5*k* − 15 = 3*V*]{.math.display}\ \ [*V*~CG~ = *I*(*R*~3~) − 15 = 12 \* 1*k* − 15 =  − 3*V*]{.math.display}\ ![Shape Description automatically generated](media/image1.jpeg) **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Instrumentation and Measurements/MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 mins **Duration** **Time** 3 **Grade** **Date** 6 **No. of papers** 11- 11 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 6]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **2** CLO4 2 **1** **Total** **3** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 6 ]** **[Operational Amplifier as Non-Inverting Amplifier]** ================================================================== **[Objective]** - Learn how to use an operational amplifier to assemble a non-inverting amplifier. - Examine its gain and how it can be changed. - Examine the function and connection of the voltage divider circuit (potentiometer) as an input to the op-amp. **[Instruments & Equipment:]** 1. ### Electronic Circuits Board 2. ### Resistors 3. ### Multimeter 4. ### Potentiometers 5. ### Op-Amps ### ### ### ### **[Theory:]** An op-amp non-inverting amplifier is an electronic circuit that uses an operational amplifier (op-amp) to amplify an input signal while maintaining the same polarity as the input. This configuration is typically used to provide signal amplification and impedance matching. In the non-inverting operational amplifier setup, you directly connect the input voltage signal (VIN) to the non-inverting (+) input terminal, resulting in a positive gain for the amplifier. To control the amplifier\'s output, a portion of the output voltage is fed back to the inverting (-) input terminal through a voltage divider network formed by resistors R2 and R1, creating negative feedback. This closed-loop arrangement establishes a non-inverting amplifier circuit with excellent stability. A diagram of a circuit Description automatically generated **Non-inverting amplifier** ### Non-inverting Operational Amplifier Gain \ [\$\$\\mathbf{U}\_{\\mathbf{1}}\\mathbf{=}\\frac{\\mathbf{R}\_{\\mathbf{1}}}{\\mathbf{R}\_{\\mathbf{1}}\\mathbf{+}\\mathbf{R}\_{\\mathbf{2}}}\\mathbf{\\ }\\mathbf{U}\_{\\mathbf{2}}\$\$]{.math.display}\ \ [\$\$\\mathbf{Gain =}\\frac{\\mathbf{U}\_{\\mathbf{2}}}{\\mathbf{U}\_{\\mathbf{1}}}\$\$]{.math.display}\ \ [\$\$\\mathbf{Gain =}\\frac{\\mathbf{R}\_{\\mathbf{1}}\\mathbf{+}\\mathbf{R}\_{\\mathbf{2}}}{\\mathbf{R}\_{\\mathbf{1}}}\\mathbf{= 1 +}\\frac{\\mathbf{R}\_{\\mathbf{2}}}{\\mathbf{R}\_{\\mathbf{1}}}\$\$]{.math.display}\ **[Procedure:]** 1. Connect the circuit as shown in the below Figure: **Q1** -------- **2** ![A diagram of a circuit Description automatically generated](media/image32.png) 2. Regarding the voltage divider circuit (potentiometer), change the value of potentiometer and then calculate the bi-polarity range of the output voltage VBG which is voltage U1. (0.25 Mark) +-----------------------------------+-----------------------------------+ | 3. Set the intended input | | | voltages U1 on potentiometer | | | and measure output voltage U2 | | | for cases 1 and 2 (gain | | | variants). Enter your | | | readings in the following | | | table: (0.5 Mark) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | U1 [V] | | | -4.0 V | | | -2.5 V | | | 1 V | | | 3.5 V | | | | | | | | | | | | | | | | | | Case 1 | | | R1 = 10 kΩ | | | R2 = 4.7 kΩ | | | | | | U2 [V] | | | | | | | | | | | | | | | | | | | | | Case 2 | | | R1 = 4.7 kΩ | | | R2 = 10 kΩ< | | | /strong> | | | U2 [V] | | | | | | | | | | | | | | | | | | | | | | | +-----------------------------------+-----------------------------------+ 4. Calculate the gain A using resistors values. (0.5 Mark) --------------------------- --------------------------- -- **[Case 1:]** **[Case 2:]** --------------------------- --------------------------- -- 5. Based on the table of the previous exercise containing two test cases; Calculate the respective gain A of the inverting amplifier using -2.5V readings. (0.5 Mark) -- --------------------------- -- **[Case 2:]** -- --------------------------- -- 6. Decreasing feedback resistor R~2~, how does this change the gain and what limit is reached? (0.25 Mark) **[Question ]** - Design a non-inverting amplifier with the gain of [*A* =  ]{.math.inline}and attach a photo of the circuit design. Then find the output voltage reading for the below table. **Q2** -------- **1** A diagram of a circuit Description automatically generated Design steps: - For the designed circuit find the output for the below input: **U~1~ \[V\]** **0.5 V** **1 V** **1.5 V** **2 V** ------------------ ----------- --------- ----------- --------- U~2~ \[V\] Gain (U~1~/U~2~) ![Shape Description automatically generated](media/image1.jpeg) **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Instrumentation and Measurements/MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 min2 **Duration** **Time** 4 **Grade** **Date** 5 **No. of papers** 11- 11 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 7]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **1.5** CLO4 2 **0.5** CLO4 **Total** **2** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 7]** **[Operational Amplifier as Inverting Amplifier]** ============================================================== **[Objective]** - Understand and implement the Op amp circuit connection to act as an inverting amplifier. **[Instruments & Equipment:]** 1. ### Electronic Circuits Board 2. ### Resistors 3. ### Multimeter 4. ### Potentiometer 5. ### Op-Amp **[Theory:]** In analogue electronics, \"inverting\" means a phase shift of 180° between input and output signal of a circuit. A positive voltage becomes a negative one, and vice versa. In case of voltage changes, a voltage rise will have the reverse effect and cause the voltage to decrease, and vice versa. Descriptive formulas use a minus symbol to indicate this inversion. To create an inverting amplifier, connect the non-inverting input (+) of the op-amp to ground potential and activate the inverting input (-). A diagram of a circuit Description automatically generated Inverting amplifier For D.C. voltage gain A and output voltage U2, the following equations apply under the assumption that input current Iin and offset voltage UIO equal 0: \ [\$\$A = - \\frac{R\_{2}}{R\_{1}} = \\frac{U\_{2}}{U\_{1}}\$\$]{.math.display}\ **[Procedure:]** 1. Connect the inverting circuit according to Figure below on the Circuits Board. **Q1** --------- **1.5** ![](media/image34.png) 2. Set the intended input voltages U1 on potentiometer P and measure the output voltage U2 using R2 = 1 k, 4.7 k and 10 k ohm. Enter your readings in the following table. +-------------+-------------+-------------+-------------+-------------+ | [**U**~**1* | **-4** | **-2** | **2** | **4** | | *~]{.math | | | | | |.inline}**( | | | | | | V)** | | | | | +=============+=============+=============+=============+=============+ | [**U**~**2* | | | | | | *~]{.math | | | | | |.inline}**( | | | | | | V)** | | | | | | | | | | | | R2 = 1 kΩ | | | | | +-------------+-------------+-------------+-------------+-------------+ | [**U**~**2* | | | | | | *~]{.math | | | | | |.inline}**( | | | | | | V)** | | | | | | | | | | | | R2 = 4.7 kΩ | | | | | +-------------+-------------+-------------+-------------+-------------+ | [**U**~**2* | | | | | | *~]{.math | | | | | |.inline}**( | | | | | | V)** | | | | | | | | | | | | R2 = 10 kΩ | | | | | +-------------+-------------+-------------+-------------+-------------+ 3. Comment on the relation between R2 and output voltage. 4. Calculate gain A using resistors values and using voltage readings: **Resistance** **Gain using resistor:** [\$\\mathbf{A}\\mathbf{= -}\\frac{\\mathbf{R}\_{\\mathbf{2}}}{\\mathbf{R}\_{\\mathbf{1}}}\$]{.math.inline} **Gain using Voltage:** [\$\\mathbf{A}\\mathbf{=}\\frac{\\mathbf{U}\_{\\mathbf{2}}}{\\mathbf{U}\_{\\mathbf{1}}}\$]{.math.inline} **(at -2 V )** ----------------- -------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------------------------------------- **R2 = 1 kΩ** **R2 = 4.7 kΩ** **R2 = 10 kΩ** 5. Connect the input to the AC source as the figure and set the signal to tringle wave. **Q2** --------- **0.5** A diagram of a circuit Description automatically generated 6. Display U1 and U2 on the oscilloscope. Plot the measured signals. ![A graph paper with a grid Description automatically generated](media/image36.png) 7. Comment on the output (gain and phase shift). Shape Description automatically generated **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Instrumentation and Measurements/MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 mins **Duration** **Time** 3 **Grade** **Date** 8 **No. of papers** 11- 11 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 8]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **2** CLO4 2 **1** CLO4 **Total** **3** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 8]** **[Operational Amplifier as Voltage Follower and Voltage to Current Converter]** ============================================================================================ **[Objective]** - Understand and test the loading effect of one circuit by another, which is one of the most important concerns in analogy signal conditioning. - Learn how to use an operational amplifier to assemble a voltage follower (buffer circuit). - Understand and implement the Op amp circuit connection to act as a Voltage to Current Converter 1-5V to 4-20mA. **[Instruments & Equipment:]** 1. ### Electronic Circuits Board 2. ### Resistors 3. ### Multimeter 4. ### Potentiometer 5. ### Op-Amp ### ### ### ### ### **[Theory:]** **[Voltage Follower:]** The loading effect in sensors refers to the impact that the act of measuring or sensing a quantity has on the system or process being measured. This effect is a fundamental consideration when using sensors or instruments to monitor or control various physical parameters. The loading effect can introduce changes or disturbances in the system, which may affect the accuracy and reliability of the measurement. The most common loading effect in sensors is electrical loading. When a sensor is connected, it often draws some current or voltage from the system being measured. This can affect the accuracy of the measurement, especially if the system\'s characteristics change as a result. As a solution, a voltage follower can be used as a buffer because it draws little current due to the high input impedance of the amplifier, thus eliminating loading effects while still maintaining the same voltage at the output. ![A black line drawing of a rectangle Description automatically generated](media/image37.png) Figure below represent the equivalent circuit of a sensor connected to a load: A screenshot of a computer Description automatically generated \ [\$\$V\_{y} = V\_{X}\\left( \\frac{R\_{L}}{R\_{L} + R\_{x}} \\right)\$\$]{.math.display}\ **[Voltage to Current Converter:]** An operational amplifier can be employed as a voltage-to-current converter. In this configuration, the op-amp is used to convert a voltage input into a corresponding output current. This can be achieved by connecting the input voltage to the inverting input (-) of the op-amp and the output current is taken from the op-amp\'s output terminal. The voltage-to-current conversion is typically accomplished using Ohm\'s law (I = V/R), where V is the input voltage and R is a connected resistor. By setting an appropriate resistor value, you can control the magnitude of the output current. This configuration is particularly useful in applications where you need to convert a voltage signal into a current signal to drive devices like LEDs, lasers, or transmitters, or when interfacing between voltage-based and current-based systems. Op-amp circuit as voltage to current converter can be used in two configurations: 1. **Output load floating:** In this circuit, feedback resistor acts as a load. ![A diagram of a circuit Description automatically generated](media/image39.png) **V-I Converter with output load floating** \ [**I=I**~**L**~]{.math.display}\ \ [**V**~in~ **=** **IR**]{.math.display}\ \ [\$\$\\mathbf{I =}\\mathbf{I}\_{\\mathbf{\\text{out}}}\\mathbf{=}\\frac{\\mathbf{V}\_{\\mathbf{\\text{in}}}}{\\mathbf{R}}\$\$]{.math.display}\ 2. **Output grounded load:** In this circuit, one terminal of load is grounded, and the load current is controlled by an input voltage. A diagram of a circuit Description automatically generated **V-I Converter with grounded load** \ [*I*~2~ + *I*~1~ = *I*~*L*~]{.math.display}\ \ [\$\$\\frac{V\_{o} - V\_{1}}{R} + \\frac{V\_{\\text{in}} - V\_{1}}{R} = I\_{L}\$\$]{.math.display}\ \ [*V*~*o*~ = 2*V*~in~,    *G* = 2]{.math.display}\ \ [*V*~*o*~ − *V*~1~ + *V*~in~ − *V*~1~ = *RI*~*L*~]{.math.display}\ [*V*~*o*~ − 2*V*~1~ + *V*~in~ = *RI*~*L*~]{.math.inline}, Substitute [*V*~*o*~ = 2*V*~in~]{.math.inline} \ [*V*~in~ = *RI*~*L*~]{.math.display}\ \ [\$\$I\_{L} = \\frac{V\_{\\text{in}}}{R}\$\$]{.math.display}\ **[Procedure:]** **[Voltage Follower:]** 1. Using the voltage divider circuit in Figure below, change the value of potentiometer and then calculate the bi-polarity range of the output voltage V\_BG which is voltage [*V*~*d*~]{.math.inline}. **Q1** -------- **2** **Range of** [**V**~**d**~]{.math.inline} = 2. Connect [*R*~*L*~]{.math.inline}to the circuit as shown below, change the value of potentiometer and then answer the following (note [**V**~**d**~]{.math.inline} = [**V**~load~]{.math.inline}): ![A white circle in a black background Description automatically generated](media/image42.png) Max value of [*V*~*d*~=]{.math.inline} Min value of [*V*~*d*~=]{.math.inline} Comment on these results (compared to step 1 results): Using the voltage divider circuit (potentiometer) connected with op-amp as a voltage follower shown in Figure below and answer the following: A black background with white symbols Description automatically generated Measure the voltage values: Max value of [*V*~*d*~=]{.math.inline} Min value of [*V*~*d*~=]{.math.inline} Max value of [*V*~load~=]{.math.inline} Min value of [*V*~load~=]{.math.inline} 3. Comment on these results (compared to step 2 results): **[Voltage to Current Converter]** 1. Using the circuit diagram shown in Figure below Answer the following: **Q2** -------- **1** ![A diagram of a circuit Description automatically generated](media/image44.png) 2. Set the intended input voltages [*V*~in~]{.math.inline} and measure output current readings in the following table: +---------+---------+---------+---------+---------+---------+---------+ | ### {# | ### [** | ### 1 { | ### 1.5 | ### 2 { | ### 2.5 | ### 3 { | | section | V**~in~ | #sectio | {#sect | #sectio | {#sect | #sectio | | -32} | ]{.math | n-33} | ion-34} | n-35} | ion-36} | n-37} | | |.inlin | | | | | | | | e} \[V\ | | | | | | | | ] {#mat | | | | | | | | hbfv_ma | | | | | | | | thbftex | | | | | | | | tin-v} | | | | | | +=========+=========+=========+=========+=========+=========+=========+ | ### At | ### I~l | ### {# | ### {# | ### {# | ### {# | ### {# | | R~load~ | oad~ \[ | section | section | section | section | section | | = 1 kΩ | A\] | -21} | -22} | -23} | -24} | -25} | | | | | | | | | | ### {# | ### (Pr | | | | | | | section | actical | | | | | | | -20} | ) | | | | | | +---------+---------+---------+---------+---------+---------+---------+ | ### {# | ### I~l | ### {# | ### {# | ### {# | ### {# | ### {# | | section | oad~ \[ | section | section | section | section | section | | -26} | A\] | -27} | -28} | -29} | -30} | -31} | | | | | | | | | | | ### (Th | | | | | | | | eoretic | | | | | | | | al) | | | | | | +---------+---------+---------+---------+---------+---------+---------+ 3. Comment on the results attained in table. Shape Description automatically generated **SHARJAH MARITIME ACADEMY** **[Laboratory Experiment]** ----------------------------------------- ------------------- ------------------------------- ---------------- **SHARJAH MARITIME ACADEMY** Fall 2024/2025 **Semester** Marine Engineering Technology **Department** Instrumentation and Measurements/MET222 **Course/Code** Eng. Ibtihal Ahmed **Lecturer** 1 hour 50 mins **Duration** **Time** 3 **Grade** **Date** 5 **No. of papers** 11- 11 **Room No.** ----------------------------------------- ------------------- ------------------------------- ---------------- **[LAB assessment experiment 9]** -------------- ------------------------------ ------------ ------ **Question** **Marks** **CLOs** **Available** **Actual** 1 **1** CLO4 2 **1** CLO4 **Total** **3** **Lecturer** **Name:** Eng. Ibtihal Ahmed **Sign:** **Date:** -------------- ------------------------------ ------------ ------ **[Experiment 9]** **[Operational Amplifier as Summing amplifier]** ============================================================ **[Objective]** - Understand and implement the Op amp circuit connection to act as a summing amplifier. **[Instruments & Equipment:]** 1. ### Electronic Circuits Board 2. ### Resistors 3. ### Multimeter 4. ### Potentiometer 5. ### Op-Amp **[Theory:]** A summing amplifier can be used to sum up any input voltages with a 180° phase shift on the output. You can expand the input side of the circuit to any number of inputs. ![](media/image45.png) **Summing amplifier** Each input has a fixed gain factor (A1, A2,... An) resulting from the ratio between the negative feedback resistor R2 and the respective input resistor R1 x. ### [\$\\mathbf{A}\_{\\mathbf{1}}\\mathbf{= -}\\frac{\\mathbf{R}\_{\\mathbf{2}}}{\\mathbf{R}\_{\\mathbf{11}}}\\mathbf{\\ }\$]{.math.inline}, [\$\\mathbf{A}\_{\\mathbf{2}}\\mathbf{= -}\\frac{\\mathbf{R}\_{\\mathbf{2}}}{\\mathbf{R}\_{\\mathbf{12}}}\$]{.math.inline} ,..................., [\$\\mathbf{A}\_{\\mathbf{n}}\\mathbf{= -}\\frac{\\mathbf{R}\_{\\mathbf{2}}}{\\mathbf{R}\_{\\mathbf{1}\\mathbf{n}}}\$]{.math.inline} \ [*U*~2~ =  − (*U*~*in*1~*A*~1~ + *U*~*in*2~*A*~2~ + ... + *U*~*in*3~*A*~1*n*~)]{.math.display}\ \ [\$\$U\_{2} = - (\\frac{U\_{in1}R\_{2}}{R\_{11}} + \\frac{U\_{in2}R\_{2}}{R\_{12}} + \\ldots + \\frac{U\_{\\text{inn}}R\_{2}}{R\_{1n}})\$\$]{.math.display}\ If all input resistors are identical: \ [\$\$U\_{2} = - \\frac{R\_{2}}{R\_{1}}(U\_{in1} + U\_{in2} + \\ldots + U\_{\\text{inn}})\$\$]{.math.display}\ **[Procedure:]** 1. Connect the summing amplifier according to Figure below. The adjustable D.C. voltage source of the Electronic Circuits Board supplies is Uin1. **Q1** -------- **1** 4. Set input voltages Uin1 provided by the following table using the adjustable D.C. voltage source and keep Uin2 = -4 V constant by setting potentiometer position. Then measure output voltage U2. Repeat the test for Uin2 = +4.6 V. Enter all readings in the table. +-----------+-----------+-----------+-----------+-----------+-----------+ | **Uin1 | **0** | **2.9** | **6.1** | **9.2** | **10** | | (V)** | | | | | | +===========+===========+===========+===========+===========+===========+ | **U2 | | | | | | | (V)** | | | | | | | | | | | | | | **Uin2=-4 | | | | | | | V** | | | | | | +-----------+-----------+-----------+-----------+-----------+-----------+ | **U2 | | | | | | | (V)** | | | | | | | | | | | | | | **Uin2=4. | | | | | | | 6 | | | | | | | V** | | | | | | +-----------+-----------+-----------+-----------+-----------+-----------+ - Calculate gain factors A1 and A2 of inputs Uin1 and Uin2. \ [*A*~1~=]{.math.display}\ \ [*A*~2~=]{.math.display}\ - Specify the arithmetic equation of function U2 = f(Uin1) for two values of Uin2. And verify the value of Uin1=6.1 V **Equation 1:** **Equation2**: **Q2** -------- **1** **U2 equation 1:** **U2 equation 2:** 5. Disconnect the variable D.C. voltage source from input Uin1. Now connect input Uin1 of the summing amplifier to the output of the function generator according. Set a sine signal with amplitude USine = 1 VP and frequency f = 10 kHz. Set the potentiometer output Uin2 to -4.44 V. Draw the output and find the DC shift of the signal. DC shift: ![A graph paper with a grid Description automatically generated](media/image36.png)

Use Quizgecko on...
Browser
Browser