Exponential and Logarithmic Functions Chapter 4.1 PDF

Document Details

BeauteousWilliamsite1372

Uploaded by BeauteousWilliamsite1372

Saudi Electronic University

Tags

exponential functions mathematics graphs algebra

Summary

This document provides examples and explanations on exponential functions, including their graphs and transformations. It covers various aspects of exponential functions and their practical applications.

Full Transcript

Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions Definition: The exponential function 𝑓 with base 𝒃 is defined by 𝒇(𝒙) = 𝒃𝒙 𝒐𝒓 𝒚 = 𝒃𝒙 where b is a positive constant other than 1. (𝒃 > 0 , 𝑏 ≠ 1)....

Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions Definition: The exponential function 𝑓 with base 𝒃 is defined by 𝒇(𝒙) = 𝒃𝒙 𝒐𝒓 𝒚 = 𝒃𝒙 where b is a positive constant other than 1. (𝒃 > 0 , 𝑏 ≠ 1). ftp.mj 𝑥 is any real number. z.gg yy Domain of exponential function 𝒇(𝒙) = 𝒃𝒙 : all real numbers (R). tea Range of exponential function 𝒇(𝒙) = 𝒃𝒙 : (0, ∞) Examples : 1 - 𝑓(𝑥) = 2 , 𝑔(𝑥) = 10 , ℎ(𝑥) = 𝜋 , 𝑗(𝑥) = , 𝑘(𝑥) = 3 standard form 2 transformed form- The function 𝒇(𝒙) = 𝒆𝒙 is called a natural exponential function. The irrational number 𝑒 ≈ 2.72 is called a natural base. so Examples of non exponential functions: X isis isis seem is 𝑔(𝑥) = (−1) , 𝑓(𝑥) = 𝑥 , 𝑘(𝑥) = 1 , 𝑔(𝑥) = (−4) , H(x) = 𝑥 I a ↳ # ↳ & ↓ number Variable number negative base I negative variable =  Evaluating an exponential function: 𝐿𝑒𝑡 𝑔(𝑥) = (1.56) evaluate 𝑔(4) = (1 56)" 5 922. =. go.xss.sn Example 1: Approximate each number using a calculator. Round your answer to three decimal places. 0 125 5) 4 =.. 38690 387 9) 𝑒 = 0.. 1 Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions 10.67  Graphing Exponential Functions: Example 2: increasing 13) Graph 𝑓(𝑥) =. Then find domain, range and the equation of asymptote. stander form 𝑥 𝑓(𝑥) (𝑥, 𝑦) - O 1(z)* ()" = (z) (z) = = = 0 7 1. (1 : 10 , 11 0. 7) - * ⑨ ⑧ 1 (z) (2) = = 1 5. (1 1. 5) , because b > · The graph is increasing - ·& Asymptote 𝒇(𝒙) Domain - d) , or IR Range 10 d) , Horizontal on the X-axis Asymptote 0 y = H.A b 7 I 0 > b > Increasing Decreasing - - 2 Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions anreasing o.sc 17) Graph 𝑓(𝑥) = ( 0.6). Then find domain, range and the equation of asymptote 𝑥 𝑓(𝑥) (x, y) · :1 - I 10. 6)" = (0 67.. 66 (-1 1. 66) , 10 6 : 10 % 1 (0 1) = 0 =.. * , ⑧ 10 6)" 10 6 & I. =. = 0 6. (1 , 0. 6) - * because O >b > · The graph is decreasing 𝒇(𝒙) Domain 1-0 , 0 or IR Range 10 %) , Horizontal on the X-axis Asymptote 0 y = H.A 3 Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions s o w team sumn's H Transformation of Exponential Function (𝑓(𝑥) = 𝑏 ) Transformation Equation Description Vertical Shift 𝑔(𝑥) = 𝑏 + 𝑐 * up (𝑥, 𝑦) → (𝑥, 𝑦 + 𝑐) E shift in y 𝑔(𝑥) = 𝑏 − 𝑐 ↳ down (𝑥, 𝑦) → (𝑥, 𝑦 − 𝑐) Horizontal Shift 𝑔(𝑥) = 𝑏 * Teff (𝑥, 𝑦) → (𝑥 − 𝑐, 𝑦) shift in X 𝑔(𝑥) = 𝑏 Fight - (𝑥, 𝑦) → (𝑥 + 𝑐, 𝑦) Reflection about x-axis ( y) - 𝑔(𝑥) = −𝑏 (𝑥, 𝑦) → (𝑥, −𝑦) 𝑔(𝑥) = 𝑏 (𝑥, 𝑦) → (−𝑥, 𝑦) Reflection about y-axis ( x) - Vertical stretching or shrinking 𝑔(𝑥) = 𝑐𝑏 (𝑥, 𝑦) → (𝑥, 𝑐𝑦) Horizontal stretching or 𝑔(𝑥) = 𝑏 8 𝑥 (𝑥, 𝑦) → ( , 𝑦) shrinking 𝑐8 4 Transformations Shifts -- Hovizauntly vertically shift in X shift in y --- -- t - down = t Up Left right Reflection --- Reflection about X-axis Reflection about y-axis - Y g(x) f(x) f)0 x) g(x) = - = - - X f(x) g(x) f(x) 9)(x) (x , y) - (X , y) - (x , y) - ) - X , y) VerticallyStretching Shrinking Graphs --- number ("C : any 0xC > 0 < Multipling y by f(x) g(x) Stretch (x y) - (X c f) Shrink ,. , Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions Example3: 201intrease 29) Begin by Graphing 𝑓(𝑥) = 2.then use transformation of this graph to graph given function. Give the equation of the asymptotes. Use the graph to determine each function’s domain and range - - a) ℎ(𝑥) = 2 −1 2x +2 𝑥 𝑓(𝑥) = 2 (𝑥, 𝑦) h(x) = - 1 (x - 2 , y - 1) & ⑨ & & & ↑ - 2 ( 1) 1 t z( z) 2 - - - - , * ( 3 E) = , - , - - 20 , 2 1 1) 20 , 1 - 10 - 8 = I (-2 0) , 2 (1 2 2 1) 2 (1 2) - - I , = , ( - 1 , 1) 𝑓(𝑥) = 2 ℎ(𝑥) = 2 −1 Domain ( - 0 , 6) Domain ( - w , d Range 10 0) Range C- 1 G , , Horizontal Horizontal Asymptote 0 y - = Asymptote = H.A y H.A 5 Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions Example 4: Begin by Graphing 𝑓(𝑥) = 𝑒.then use transformation of this graph to graph given function. Give the equation of the asymptotes. Use the graph to determine each function’s domain and range %.. 𝑔(𝑥) = 𝑒 +2 ⑨ X - e f(x) = 0 =. eX(X 4 ( , 0 , y)(. 4) - (1 X , , 2 y + z). 4) - & ⑨ -D · · & 8 e = 1 10 , 1) (0 , 3) I e = 2. 4 (1 , 2. 4) (1 , 4. 7) 𝑔(𝑥) = 𝑒 +2 Domain ( - 0 , 0) Range (2 , 8) Horizontal Asymptote H.A 2 y = 6 Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions Example5: Begin by Graphing 𝑓(𝑥) =.then use transformation of this graph to graph given function. Give the equation of the asymptotes. Use the graph to determine each function’s domain and range 1 𝑔(𝑥) = −3 +1 2 & 𝑥 𝑓(𝑥) (𝑥, 𝑦) (x+ 1 , - 3y + 1) ()" ⑧ (+1 3(2) 1) (-1 2) - + 2 , - = 5) - (0 , ⑨ · - , 1) (2) 10 + 1 , 1) 3(1) + X-- D 0 1 (0 - = 2) ⑨ (1 , - (1 + 1 - 3(z) 1) (2) = + 1 11 , 2) (2 , - 0. 5) & & 𝑓(𝑥) 𝑔(𝑥) Domain ( - 0. 6) Domain ( - 0 , 6) Range 10 , %) Range ( - 0 , 1) Horizontal Horizontal Asymptote 8 Asymptote - 3(0) +1 = 1 y = H.A H.A y = 1 7 Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions Example 6: 61) Give the equation of the exponential function whose graph is shown. bor by form ((X) y = standard = ⑧ the · f(x) = " b = 4 = b - 4 = b using Fre point (1 , 4) * The final answer is f(x) = y · Example: ⑧ 8 Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions Example & Extra find domain and : 3 , Range asymptote X+ * 1 · g(x) e + g(x) 1(2) = + 3 - = · 2 Domain : )-O , 6) or Domain : 1-0 , 8) or R Range (1 Range (3 8) : 4) : , , = 3 Asymptote y Asymptote y : : = f(x) 574(1 =. 026)" = 574 f(x) = 574(1 026)*. - 1 , 148 with decimals 2001 - 1954 +X - = 27 8(x) 574(1 026)54 =. - 2295 2028 1974 - - X = 54 574(1 026)" R f(x) =. - + 4590 2055 - 1974 - X = 8) · Doubles up (get multiplied by 2) · Increases by the double 9 Chapter4: Exponential and Logarithmic Functions 4.1 : Exponential Functions 0 514 f(x) 80e - 80(1) 100. = + 20 -+ + 20 - % X = 0 0 51" 1 f(x) 69 -. 809 + 20 % - X = = 0 514) f(x) 31 % - Y 802 + 20 -. X = = 0 5152 52 f(x) -. X = = 80e + 20 - 20 % 10

Use Quizgecko on...
Browser
Browser