Summary

This document contains notes on Chapters 7 and 8, focusing on molecular biology concepts including the Central Dogma, DNA structure, replication, transcription, translation, and bacterial genetics. It provides an overview of the flow of genetic information and molecular mechanisms within cells.

Full Transcript

‭ HAPTER‬‭7‬‭&‬‭8;‬‭Course‬‭Part‬‭2:‬‭The‬‭Blueprint‬‭of‬‭Life‬‭&‬ C ‭Bacterial‬‭Genetics‬ ‭A)‬‭Chapter‬‭7:‬‭The‬‭Blueprint‬‭of‬‭Life,‬‭from‬‭DNA‬‭to‬‭protein‬ ‭‬ C ‭ entral‬‭Dogma‬‭of‬‭Molecular‬‭Biology‬‭(picture‬‭below)‬ ‭‬ ‭Genetics‬‭–‬‭the‬‭science‬‭of‬‭heredity‬ ‭‬ ‭Mole...

‭ HAPTER‬‭7‬‭&‬‭8;‬‭Course‬‭Part‬‭2:‬‭The‬‭Blueprint‬‭of‬‭Life‬‭&‬ C ‭Bacterial‬‭Genetics‬ ‭A)‬‭Chapter‬‭7:‬‭The‬‭Blueprint‬‭of‬‭Life,‬‭from‬‭DNA‬‭to‬‭protein‬ ‭‬ C ‭ entral‬‭Dogma‬‭of‬‭Molecular‬‭Biology‬‭(picture‬‭below)‬ ‭‬ ‭Genetics‬‭–‬‭the‬‭science‬‭of‬‭heredity‬ ‭‬ ‭Molecular‬‭Biology‬‭–‬‭the‬‭science‬‭dealing‬‭with‬‭DNA‬‭and‬ ‭protein‬‭synthesis‬ ‭○‬ ‭The‬‭total‬‭DNA‬‭contained‬‭in‬‭the‬‭cell‬‭–‬‭genome‬ ‭‬ ‭Consists‬‭of‬‭the‬‭chromosome(s)‬‭and‬‭any‬ ‭plasmids‬ ‭○‬ ‭Chromosomes‬‭contain‬‭the‬‭genes‬ ‭‬ ‭Genes‬‭–‬‭sections‬‭of‬‭DNA‬‭that‬‭code‬‭for‬‭a‬ ‭functional‬‭product‬ ‭○‬ ‭DNA‬‭–‬‭macromolecule‬‭made‬‭of‬‭nucleotides‬ ‭Each‬‭nucleotide‬‭in‬‭DNA‬‭has:‬ ‭‬ ‭Nitrogenous‬‭base‬‭(A,‬‭T,‬‭G,‬‭C)‬ ‭‬ ‭Sugar‬‭(deoxyribose)‬ ‭‬ ‭Numbered‬‭1ʹ‬‭to‬‭5ʹ‬ ‭‬ ‭A‬‭phosphate.‬ ‭B)‬‭Chapter‬‭7:‬‭DNA‬‭forms‬‭a‬‭double‬‭helix‬ ‭ ‬ T‭ wo‬‭strands‬‭are‬‭held‬‭together‬‭by‬‭hydrogen‬‭bonds‬‭between‬‭bases‬ ‭‬ ‭The‬‭base‬‭pairing‬‭rule:‬ ‭○‬ ‭A‬‭always‬‭pairs‬‭with‬‭T‬‭(‬‭A‬‭–‬‭T‭)‬ ‬ ‭○‬ ‭G‬‭always‬‭pairs‬‭with‬‭C‬‭(‬‭G‬‭–‬‭C‬‭)‬ ‭‬ ‭Strands‬‭of‬‭DNA‬‭are‬‭complementary‬ ‭○‬ ‭Sequence‬‭of‬‭one‬‭strand‬‭determines‬‭the‬‭sequence‬‭of‬‭the‬‭other.‬ ‭‬ ‭Nucleotides‬‭are‬‭linked‬‭together‬‭by‬‭covalent‬‭phosphodiester‬‭bonds‬ ‭‬ ‭5ʹ‬‭carbon‬‭of‬‭one‬‭nucleotide‬‭is‬‭joined‬‭to‬‭3ʹ‬‭carbon‬‭of‬‭the‬‭next‬‭nucleotide,‬‭with‬‭a‬‭phosphate‬ ‭between‬‭them‬ ‭‬ ‭We‬‭usually‬‭consider‬‭DNA‬‭in‬‭the‬‭5'‬‭to‬‭3'‬‭direction‬ ‭○‬ ‭Starting‬‭at‬‭5'‬‭end‬ ‭○‬ ‭Finishing‬‭at‬‭3'‬‭end‬ ‭‬ ‭Two‬‭strands‬‭of‬‭DNA‬‭run‬‭antiparallel.‬ ‭C)‬‭Chapter‬‭7:‬‭The‬‭flow‬‭of‬‭genetic‬‭information‬‭&‬‭DNA‬‭Replication‬ ‭‬ ‭The‬‭flow‬‭of‬‭genetic‬‭information‬ ‭ ‬ ‭1.‬‭DNA‬‭is‬‭copied‬‭before‬‭cell‬‭division‬‭-‬‭Replication‬ ○ ‭○‬ ‭2.‬‭DNA‬‭is‬‭used‬‭to‬‭make‬‭proteins‬‭-‬‭Gene‬‭expression‬ ‭○‬ ‭3.‬‭DNA‬‭can‬‭flow‬‭between‬‭two‬‭different‬‭bacterial‬‭cells‬‭–‬‭Recombination.‬ ‭‬ ‭DNA‬‭replication‬ ‭○‬ ‭One‬‭parental‬‭double‬‭stranded‬‭DNA‬‭molecule‬‭is‬‭used‬‭to‬‭make‬‭2‬‭identical‬‭double‬ ‭stranded‬‭DNA‬‭molecules‬ ‭○‬ ‭Because‬‭the‬‭strands‬‭are‬‭complementary:‬ ‭‬ ‭One‬‭strand‬‭can‬‭serve‬‭as‬‭a‬‭template‬‭for‬‭synthesis‬‭of‬‭the‬‭other‬‭strand‬ ‭‬ ‭DNA‬‭polymerase‬‭reads‬‭the‬‭order‬‭of‬‭nucleotides‬‭in‬‭the‬‭template‬‭strand‬‭to‬ ‭make‬‭a‬‭complementary‬‭new‬‭strand.‬ ‭1.‬ ‭A‬‭small‬‭segment‬‭of‬‭the‬‭dsDNA‬‭unwinds‬‭and‬‭the‬‭strands‬‭are‬‭separated‬ ‭○‬ ‭Forms‬‭the‬‭replication‬‭fork‬ ‭‬ ‭Each‬‭separated‬‭strand‬‭serves‬‭as‬‭template‬‭for‬‭synthesis‬‭of‬‭a‬‭complementary‬‭strand‬ ‭○‬ ‭A‬‭Short‬‭RNA‬‭primer*‬‭is‬‭produced‬‭by‬‭the‬‭enzyme:‬‭Primase‬ ‭○‬ ‭Serves‬‭as‬‭starting‬‭site‬‭for‬‭nucleotides‬‭to‬‭form‬‭new‬‭strand‬‭of‬‭DNA.‬ ‭2.‬ ‭Synthesis‬‭of‬‭the‬‭Leading‬‭strand‬ ‭○‬ ‭DNA‬‭polymerase‬‭can‬‭only‬‭synthesize‬‭DNA‬‭in‬‭one‬‭direction‬‭=‬‭5′‬‭→‬‭3′‬ ‭i.‬ ‭Template‬‭must‬‭be‬‭read‬‭in‬‭the‬‭3'‬‭→‬‭5'‬‭direction‬ ‭ii.‬ ‭Follows‬‭the‬‭replication‬‭fork‬ ‭iii.‬ ‭Synthesis‬‭of‬‭the‬‭leading‬‭strand‬‭is‬‭continuous‬‭in‬‭the‬‭5'‬‭to‬‭3'‬‭direction.‬ ‭3.‬ ‭Synthesis‬‭of‬‭the‬‭Lagging‬‭strand‬ ‭○‬ ‭DNA‬‭polymerase‬‭can‬‭only‬‭make‬‭DNA‬‭in‬‭5'‬‭to‬‭3'‬‭direction‬ ‭i.‬ ‭But‬‭the‬‭second‬‭strand‬‭must‬‭be‬‭made‬‭in‬‭the‬‭opposite‬‭direction‬ ‭○‬ ‭DNA‬‭polymerase‬‭synthesizes‬‭small‬‭fragments‬‭of‬‭DNA:‬‭Okazaki‬‭fragments‬ ‭‬ ‭Made‬‭in‬‭the‬‭5'‬‭to‬‭3'‬‭direction‬ ‭‬ ‭Afterwards,‬‭the‬‭RNA‬‭primers‬‭are‬‭removed‬‭and‬‭the‬‭fragments‬‭are‬‭joined‬ ‭together‬‭by‬‭enzyme‬‭DNA‬‭ligase.‬ ‭C)‬‭Chapter‬‭7:‬‭Gene‬‭expression/‬‭Transcription‬‭&‬‭Translation‬ ‭‬ ‭Two‬‭parts:‬ ‭○‬ ‭1.‬‭Transcription‬‭–‬‭information‬‭stored‬‭in‬‭DNA‬‭is‬‭copied‬‭into‬‭RNA‬ ‭‬ ‭Synthesis‬‭of‬‭RNA‬‭from‬‭a‬‭DNA‬‭template‬ ‭‬ ‭Sequence‬‭is‬‭complementary‬‭to‬‭a‬‭gene‬ ‭‬ ‭Except:‬‭it‬‭contains‬‭U‬‭instead‬‭of‬‭T‬ ‭○‬ ‭Three‬‭types‬‭of‬‭RNA‬ ‭‬ ‭Messenger‬‭RNA‬‭(mRNA)‬‭–‬‭carries‬‭information‬‭for‬‭making‬‭specific‬‭protein‬ ‭‬ ‭Ribosomal‬‭RNA‬‭(rRNA)‬‭–‬‭forms‬‭part‬‭of‬‭the‬‭ribosome‬ ‭‬ ‭Transfer‬‭RNA‬‭(tRNA)‬‭–‬‭transports‬‭specific‬‭amino‬‭acids‬‭for‬‭protein‬‭synthesis‬ ‭1.‬ ‭Initiation‬ ‭a.‬ ‭RNA‬‭polymerase‬‭binds‬‭to‬‭the‬‭gene‬‭at‬‭specific‬‭site‬‭called‬‭the‬‭promoter‬ ‭b.‬ ‭Separates‬‭(melts)‬‭the‬‭two‬‭strands‬ ‭c.‬ ‭Only‬‭one‬‭DNA‬‭strand‬‭is‬‭copied‬‭–‬‭the‬‭template‬ ‭d.‬ ‭The‬‭template‬‭is‬‭read‬‭in‬‭the‬‭3'‬‭→‬‭5'‬‭direction‬‭so‬‭that‬‭RNA‬‭can‬‭be‬‭made‬‭in‬‭the‬‭5'‬‭→‬‭3'‬ ‭direction.‬ ‭2.‬ ‭Elongation‬ ‭a.‬ ‭RNA‬‭polymerase‬‭moves‬‭along‬‭the‬‭template‬‭synthesizing‬‭new‬‭RNA‬ ‭b.‬ ‭Allows‬‭the‬‭DNA‬‭to‬‭rewind‬‭behind‬‭it‬ ‭3.‬ ‭Translation‬‭–‬‭information‬‭in‬‭RNA‬‭is‬‭decoded‬‭to‬‭make‬‭protein.‬ ‭a.‬ ‭When‬‭RNA‬‭polymerase‬‭encounters‬‭the‬‭terminator‬‭(end‬‭of‬‭the‬‭gene)‬‭it‬‭falls‬‭off‬‭the‬ ‭template‬‭and‬‭releases‬‭the‬‭newly‬‭synthesized‬‭RNA.‬ ‭‬ ‭The‬‭genetic‬‭code‬ ‭○‬ ‭Information‬‭in‬‭mRNA‬‭must‬‭be‬‭translated‬‭to‬‭make‬‭proteins‬ ‭○‬ ‭Organized‬‭into‬‭sets‬‭of‬‭3‬‭nucleotides‬‭–‬‭codons‬ ‭○‬ ‭Each‬‭codon‬‭specifies‬‭an‬‭amino‬‭acid‬‭to‬‭be‬‭added‬‭during‬‭protein‬‭synthesis‬ ‭‬ ‭ex.‬‭GGC‬‭specifies‬‭the‬‭amino‬‭acid‬‭glycine‬ ‭○‬ ‭Sequence‬‭of‬‭codons‬‭in‬‭an‬‭mRNA‬‭determines‬‭sequence‬‭of‬‭amino‬‭acids‬‭in‬‭the‬‭protein‬ ‭○‬ ‭Three‬‭codons‬‭specify‬‭no‬‭amino‬‭acid:‬ ‭‬ ‭–UAA,‬‭UAG,‬‭UGA‬ ‭‬ ‭–‬‭“Stop‬‭codons”‬ ‭‬ ‭–Signal‬‭the‬‭end‬‭of‬‭protein‬‭synthesis.‬ ‭‬ ‭2.‬‭Translation‬ ‭○‬ ‭information‬‭in‬‭RNA‬‭is‬‭decoded‬‭to‬‭make‬‭protein.‬ ‭1.‬ ‭Initiation‬ ‭a.‬ ‭A‬‭ribosome‬‭assembles‬‭on‬‭the‬‭mRNA‬ ‭b.‬ ‭a‬‭tRNA‬‭carrying‬‭the‬‭amino‬‭acid‬‭formyl-methionine‬‭enters‬‭the‬‭P‬‭site‬ ‭c.‬ ‭a‬‭tRNA‬‭carrying‬‭a‬‭second‬‭amino‬‭acid‬‭enters‬‭the‬‭ribosome‬ ‭d.‬ ‭Specified‬‭by‬‭the‬‭codon‬‭in‬‭the‬‭A‬‭site‬ ‭e.‬ ‭The‬‭ribosome‬‭joins‬‭the‬‭amino‬‭acids‬‭together‬‭by‬‭a‬‭peptide‬‭bond.‬ ‭.‬ ‭Elongation‬ 2 ‭a.‬ ‭The‬‭ribosome‬‭moves‬‭a‬‭distance‬‭of‬‭one‬‭codon‬‭down‬‭the‬‭mRNA‬‭ ‬‭The‬‭next‬‭codon‬‭is‬ ‭now‬‭in‬‭place‬‭in‬‭the‬‭A‬‭site‬ ‭b.‬ ‭The‬‭correct‬‭tRNA‬‭enters‬‭the‬‭A‬‭site,‬‭bringing‬‭with‬‭it‬‭the‬‭next‬‭amino‬‭acid‬‭to‬‭be‬‭added‬ ‭c.‬ ‭The‬‭amino‬‭acid‬‭is‬‭joined‬‭to‬‭the‬‭chain‬ ‭d.‬ ‭Forms‬‭a‬‭polypeptide‬ ‭e.‬ ‭Elongation‬‭continues‬‭until‬‭a‬‭“stop‬‭codon”‬‭is‬‭reached.‬ ‭3.‬ ‭Termination‬ ‭a.‬ ‭When‬‭a‬‭stop‬‭codon‬‭enters‬‭the‬‭A‬‭site,‬‭the‬‭ribosome‬‭disassembles‬‭and‬‭releases‬‭the‬ ‭polypeptide‬ ‭b.‬ ‭The‬‭polypeptide‬‭is‬‭folded‬‭into‬‭the‬‭correct‬‭shape‬‭and‬‭becomes‬‭a‬‭protein‬ ‭c.‬ ‭The‬‭ribosome‬‭can‬‭initiate‬‭translation‬‭of‬‭another‬‭mRNA.‬ ‭D)‬‭Chapter‬‭8:‬‭Microbial‬‭Genetics‬ ‭‬ ‭Genetic‬‭Change‬‭in‬‭Bacteria‬ ‭○‬ ‭Two‬‭methods:‬‭Mutation*,‬‭Horizontal‬‭gene‬‭transfer‬ ‭‬ ‭Mutation‬ ‭○‬ ‭A‬‭change‬‭in‬‭the‬‭nucleotide‬‭sequence‬‭of‬‭DNA‬ ‭ ‬ ‭May‬‭cause‬‭a‬‭change‬‭in‬‭a‬‭protein‬‭encoded‬‭by‬‭a‬‭gene‬ ○ ‭‬ ‭Horizontal‬‭gene‬‭transfer‬ ‭○‬ ‭Genetic‬‭info‬‭is‬‭passed‬‭from‬‭one‬‭living‬‭cell‬‭to‬‭another‬‭cell‬‭of‬‭the‬‭same‬‭generation‬ ‭○‬ ‭Ex.‬‭Plasmid‬‭transfer‬ ‭ ‬ ‭In‬‭either‬‭case:‬ ‭○‬ ‭Change‬‭is‬‭stable,‬‭and‬‭passed‬‭on‬‭to‬‭progeny.‬ ‭E)‬‭Chapter‬‭8:‬‭Mutations‬ ‭‬ ‭Mutations‬ ‭○‬ ‭1.‬‭Base‬‭substitution‬‭(point‬‭mutation)‬ ‭‬ ‭A‬‭single‬‭nucleotide‬‭is‬‭replaced‬‭by‬‭another‬‭nucleotide‬ ‭‬ ‭When‬‭DNA‬‭replicates–‬‭results‬‭in‬‭a‬‭substituted‬‭base‬‭pair‬ ‭○‬ ‭When‬‭DNA‬‭is‬‭transcribed‬‭and‬‭translated‬‭can‬‭result‬‭in‬‭an‬‭incorrect‬‭amino‬‭acid‬‭in‬‭the‬ ‭protein‬ ‭‬ ‭Missense‬‭mutation.‬ ‭○‬ ‭2.‬‭Frameshift‬‭mutation‬ ‭‬ ‭Insertion‬‭–‬‭one‬‭or‬‭two‬‭nucleotide(s)‬‭added‬‭to‬‭the‬‭gene‬ ‭‬ ‭Deletion‬‭–‬‭one‬‭or‬‭two‬‭nucleotide(s)‬‭removed‬‭from‬‭the‬‭gene‬ ‭‬ ‭Changes‬‭the‬‭reading‬‭frame‬‭of‬‭the‬‭mRNA‬ ‭‬ ‭–‬‭Sequence‬‭of‬‭amino‬‭acids‬‭is‬‭changed‬‭“downstream”‬‭of‬‭mutation‬ ‭site‬ ‭‬ ‭–‬‭Almost‬‭always‬‭results‬‭in‬‭a‬‭non-functional‬‭protein.‬ ‭‬ ‭How‬‭do‬‭mutations‬‭occur?‬ ‭○‬ ‭Spontaneous‬‭mutation‬ ‭‬ ‭Occur‬‭in‬‭absence‬‭of‬‭mutagens,‬‭due‬‭to‬‭occasional‬‭mistakes‬‭during‬‭DNA‬ ‭replication‬ ‭○‬ ‭Induced‬‭mutation‬ ‭‬ ‭Occur‬‭when‬‭DNA‬‭damaging‬‭agents‬‭cause‬‭changes‬‭in‬‭DNA‬‭sequence‬‭–‬ ‭mutagens‬ ‭‬ ‭Ex:‬‭Radiation,‬‭some‬‭chemicals‬ ‭○‬ ‭Regardless‬‭of‬‭origin,‬‭mutations‬‭can‬‭result‬‭in:‬ ‭‬ ‭1.‬‭No‬‭effect‬‭on‬‭the‬‭protein‬‭(remains‬‭functional)‬‭–‬‭silent‬‭mutation‬ ‭‬ ‭2.‬‭A‬‭protein‬‭with‬‭a‬‭different‬‭amino‬‭acid‬‭sequence‬‭that‬‭may‬‭have‬‭an‬‭altered‬ ‭function‬‭–‬‭missense‬‭mutation‬ ‭‬ ‭3.‬‭Premature‬‭stop‬‭codon‬‭–‬‭Incomplete‬‭(‬‭truncated‬‭)‬‭protein,‬‭usually‬ ‭nonfunctional‬‭–‬‭nonsense‬‭mutation.‬ ‭F)‬‭Chapter‬‭8:‬‭Plasmids‬ ‭‬ ‭Plasmids‬ ‭○‬ ‭Self‬‭replicating,‬‭dsDNA‬‭molecules‬ ‭○‬ ‭Contain‬‭non-essential‬‭genes‬ ‭‬ ‭ex.‬‭Genes‬‭for‬‭toxin‬‭production‬ ‭○‬ ‭F‬‭plasmids‬‭–‬‭Fertility‬‭factors‬ ‭‬ ‭Carry‬‭genes‬‭to‬‭make‬‭F‬‭pilus‬‭(or‬‭sex‬‭pilus)‬ ‭‬ ‭Involved‬‭in‬‭conjugation‬‭(transfer‬‭of‬‭genetic‬‭material‬‭between‬ ‭bacteria)‬ ‭○‬ ‭R‬‭plasmids‬‭–‬‭Resistance‬‭factors‬ ‭‬ ‭Carry‬‭genes‬‭for‬‭antibiotic‬‭resistance‬ ‭○‬ ‭Vir‬‭Plasmids‬‭–‬‭Virulence‬‭factors‬ ‭‬ ‭Carry‬‭genes‬‭for‬‭toxin‬‭production.‬ ‭‬ ‭Horizontal‬‭gene‬‭transfer‬‭in‬‭bacteria‬ ‭○‬ ‭Three‬‭basic‬‭methods:‬ ‭‬ ‭1‭.‬‬‭Transformation‬ ‭‬ ‭Pieces‬‭of‬‭“naked”‬‭DNA‬‭are‬‭taken‬‭up‬‭by‬‭a‬‭bacterial‬‭cell‬ ‭‬ ‭ie.‬‭from‬‭dead‬‭cells,‬‭or‬‭from‬‭released‬‭plasmids‬ ‭‬ ‭These‬‭pieces‬‭can‬‭be‬‭integrated‬‭into‬‭the‬‭chromosome‬ ‭○‬ ‭Recombination‬ ‭○‬ ‭Can‬‭then‬‭be‬‭passed‬‭to‬‭progeny,‬‭and‬‭become‬‭a‬‭stable‬‭part‬‭of‬ ‭the‬‭genome.‬ ‭‬ ‭2.‬‭Transduction‬ ‭‬ ‭Small‬‭fragments‬‭of‬‭DNA‬‭transferred‬‭between‬‭bacteria‬‭by‬ ‭bacteriophage‬ ‭○‬ ‭Viruses‬‭that‬‭infect‬‭bacteria‬ ‭‬ ‭Phage‬‭attaches‬‭to‬‭bacterial‬‭cell‬‭wall‬‭–‬‭injects‬‭its‬‭DNA‬‭into‬‭the‬‭cell‬ ‭‬ ‭Phage‬‭DNA‬‭is‬‭replicated‬‭inside‬‭bacterial‬‭cell‬ ‭‬ ‭Phage‬‭DNA‬‭also‬‭encodes‬‭enzymes‬‭that‬‭cut‬‭the‬‭bacterium’s‬‭DNA‬‭into‬ ‭fragments‬ ‭‬ ‭As‬‭new‬‭phages‬‭are‬‭being‬‭assembled,‬‭some‬‭accidentally‬‭receive‬‭a‬ ‭piece‬‭of‬‭bacteria‬‭DNA‬‭instead‬‭of‬‭phage‬‭DNA‬ ‭○‬ ‭Transducing‬‭particle‬ ‭‬ ‭The‬‭transducing‬‭particle‬‭can‬‭then‬‭carry‬‭bacterial‬‭genes‬‭to‬‭another‬ ‭cell‬ ‭‬ ‭Injection‬‭mechanism‬‭is‬‭still‬‭fully‬‭functional‬ ‭‬ ‭But,‬‭bacterial‬‭DNA‬‭is‬‭injected‬‭into‬‭the‬‭cell‬ ‭‬ ‭If‬‭the‬‭injected‬‭DNA‬‭recombines‬‭with‬‭the‬‭existing‬‭chromosome,‬‭it‬ ‭becomes‬‭a‬‭stable‬‭genetic‬‭element‬ ‭○‬ ‭ie.‬‭will‬‭be‬‭passed‬‭to‬‭progeny.‬ ‭‬ ‭3.‬‭Conjugation‬‭(bacterial‬‭mating)‬ ‭‬ ‭Mediated‬‭by‬‭genes‬‭encoded‬‭on‬‭an‬‭F‬‭factor‬ ‭‬ ‭Transfer‬‭occurs‬‭when‬‭a:‬ ‭○‬ ‭Donor‬‭cell‬‭(F+)‬‭–‬‭forms‬‭an‬‭F‬‭pilus‬‭and‬‭uses‬‭it‬‭to‬‭attach‬‭to‬‭a‬ ‭recipient‬‭cell‬‭(F‬‭-‬‭)‬ ‭○‬ ‭Pilus‬‭retracts‬‭bringing‬‭the‬‭cells‬‭together‬ ‭○‬ ‭The‬‭donor‬‭cell‬‭replicates‬‭the‬‭F‬‭factor‬‭as‬‭a‬‭copy‬‭is‬‭passed‬‭to‬ ‭the‬‭recipient‬ ‭○‬ ‭The‬‭recipient‬‭becomes‬‭an‬‭F+‬‭cell.‬ ‭CHAPTER‬‭13;‬‭Course‬‭Part‬‭2:‬‭Viruses,‬‭Viroids,‬‭and‬‭Prions‬ ‭A)‬‭Viruses‬‭Characteristics‬ ‭‬ ‭Viruses‬‭(from‬‭the‬‭Latin‬‭word‬‭for‬‭poison)‬ ‭○‬ ‭Acellular‬‭particles‬‭capable‬‭of‬‭infecting‬‭host‬‭cells‬‭and‬‭causing‬‭disease‬ ‭○‬ ‭Not‬‭free-living‬‭–‬‭require‬‭a‬‭host‬‭cell‬‭in‬‭which‬‭to‬‭multiply‬ ‭‬ ‭Obligate‬‭intracellular‬‭parasites‬ ‭‬ ‭Use‬‭host‬‭metabolic‬‭systems‬‭and‬‭usually‬‭disrupt‬‭normal‬‭host‬‭cell‬‭function‬ ‭‬ ‭Features‬‭of‬‭viruses‬ ‭○‬ ‭Acellular‬‭–‬‭do‬‭not‬‭have‬‭a‬‭plasma‬‭membrane‬ ‭○‬ ‭Contain‬‭a‬‭single‬‭type‬‭of‬‭nucleic‬‭acid‬‭–‬‭either‬‭DNA‬‭or‬‭RNA‬ ‭‬ ‭Surrounded‬‭by‬‭a‬‭protein‬‭coat‬ ‭‬ ‭May‬‭or‬‭may‬‭not‬‭have‬‭additional‬‭envelope‬‭of‬‭lipids‬ ‭○‬ ‭Have‬‭very‬‭few‬‭of‬‭their‬‭own‬‭enzymes‬ ‭‬ ‭Take‬‭over‬‭enzymes‬‭of‬‭their‬‭host.‬ ‭‬ ‭Host‬‭Range‬ ‭○‬ ‭Viruses‬‭can‬‭infect‬‭Animals,‬‭Plants,‬‭Fungi,‬‭Protozoa‬‭and‬‭Bacteria‬ ‭○‬ ‭Most‬‭viruses‬‭are‬‭specific‬‭for‬‭a‬‭single‬‭host‬‭species*‬ ‭‬ ‭To‬‭infect‬‭a‬‭cell‬‭the‬‭virus‬‭must‬‭recognize‬‭features‬‭on‬‭the‬‭host‬‭cell‬‭surface‬ ‭‬ ‭ex.‬‭Some‬‭viruses‬‭recognize‬‭the‬‭fimbriae‬‭of‬‭a‬‭certain‬‭bacterial‬‭species‬ ‭‬ ‭VIral‬‭Size‬ ‭○‬ ‭Electron‬‭microscope‬‭is‬‭required‬‭to‬‭view‬‭viruses‬ ‭○‬ ‭Range‬‭from‬‭20‬‭–‬‭1000‬‭nm‬‭in‬‭length.‬ ‭‬ ‭Viral‬‭architecture‬ ‭○‬ ‭All‬‭viruses‬‭have‬‭at‬‭least‬‭two‬‭parts:‬ ‭‬ ‭1.‬‭Nucleic‬‭acid‬ ‭‬ ‭Can‬‭have‬‭either‬‭DNA‬‭or‬‭RNA‬‭as‬‭the‬‭genetic‬‭material‬‭–‬‭not‬‭both‬ ‭‬ ‭Can‬‭be‬‭single‬‭stranded‬‭or‬‭double‬‭stranded‬ ‭○‬ ‭Can‬‭be‬‭linear‬‭or‬‭circular‬ ‭‬ ‭Can‬‭be‬‭in‬‭several‬‭pieces‬‭–‬‭segmented‬ ‭‬ ‭Total‬‭amount‬‭of‬‭nucleic‬‭acid‬‭=‬‭a‬‭few‬‭thousand‬‭to‬‭250,000‬‭base‬‭pairs‬ ‭○‬ ‭E.‬‭coli‬‭chromosome‬‭=‬‭~4,600,000‬‭base‬‭pairs.‬ ‭‬ ‭2.‬‭Capsid‬ ‭‬ ‭Protein‬‭coat‬‭surrounding‬‭the‬‭nucleic‬‭acid‬ ‭‬ ‭Made‬‭up‬‭of‬‭individual‬‭proteins‬‭called‬‭capsomeres‬ ‭‬ ‭Nucleic‬‭acid‬‭and‬‭Capsid‬‭–‬‭Nucleocapsid‬ ‭‬ ‭Minimum‬‭required‬‭structure‬‭for‬‭a‬‭virus‬ ‭‬ ‭3.‬‭Envelope‬ ‭‬ ‭Not‬‭present‬‭in‬‭all‬‭viruses‬ ‭‬ ‭Lipid‬‭bilayer‬‭(membrane)‬‭acquired‬‭from‬‭the‬‭host‬‭cell‬ ‭‬ ‭External‬‭coating‬‭around‬‭the‬‭nucleocapsid‬ ‭‬ ‭Additional‬‭viral‬‭proteins‬‭inserted‬‭into‬‭envelope‬‭–‬‭called‬‭Spikes‬ ‭B)‬‭Morphology/Naming/Classification‬ ‭‬ M ‭ orphology‬‭(Shape)‬‭of‬‭Viruses‬ ‭‬ ‭1.‬‭Polyhedral‬ ‭○‬ ‭Usually‬‭icosahedral‬‭–‬‭shape‬‭with‬‭20‬‭triangular‬‭faces‬ ‭‬ ‭2.‬‭Helical‬ ‭○‬ ‭Long‬‭rods‬‭–‬‭can‬‭be‬‭rigid‬‭or‬‭flexible‬ ‭‬ ‭3.‬‭Enveloped‬ ‭○‬ ‭Roughly‬‭spherical‬‭–‬‭dictated‬‭by‬‭lipid‬‭bilayer‬ ‭‬ ‭4.‬‭Complex‬ ‭○‬ ‭Polyhedral‬‭head‬‭with‬‭a‬‭helical‬‭tail‬ ‭○‬ ‭Only‬‭found‬‭in‬‭bacteriophages.‬ ‭‬ ‭Classification‬‭of‬‭Viruses‬ ‭○‬ ‭Based‬‭on:‬ ‭○‬ ‭1.‬‭Nucleic‬‭acid‬‭type‬ ‭‬ ‭DNA‬‭or‬‭RNA‬ ‭‬ ‭Single‬‭stranded‬‭or‬ ‭double‬‭stranded‬ ‭‬ ‭Segmented‬‭or‬‭single‬ ‭molecule‬ ‭○‬ ‭2.‬‭Capsid‬‭structure‬ ‭‬ ‭Polyhedral‬ ‭‬ ‭Helical‬ ‭○‬ ‭3.‬‭Presence‬‭of‬‭envelope.‬ ‭C)‬‭Multiplication‬‭of‬‭animal‬‭viruses‬ ‭‬ ‭Multiplication‬‭of‬‭animal‬‭viruses‬ ‭○‬ ‭1‭.‬‬‭Adsorption‬‭–‬‭attachment‬‭to‬‭host‬‭cell‬ ‭‬ ‭Viruses‬‭have‬‭attachment‬‭sites‬‭–‬‭recognize‬‭protein‬‭or‬‭glycoprotein‬‭of‬‭host‬ ‭membrane‬ ‭○‬ ‭2‭.‬‬‭Penetration‬‭–‬‭entry‬‭into‬‭host‬‭cell‬ ‭‬ ‭Most‬‭enveloped‬‭viruses‬‭enter‬‭by‬‭fusion‬‭–‬‭lipids‬‭of‬‭envelope‬‭fuse‬‭with‬‭host‬ ‭cytoplasmic‬‭membrane.‬ ‭‬ ‭Naked‬‭virus‬‭enters‬‭the‬‭cell‬‭via‬‭endocytosis‬ ‭○‬ ‭3‭.‬‬‭Uncoating‬ ‭‬ ‭Viral‬‭nucleic‬‭acid‬‭is‬‭freed‬‭from‬‭the‬‭capsid‬ ‭○‬ ‭4‭.‬‬‭Biosynthesis‬ ‭‬ ‭Viral‬‭nucleic‬‭acids‬‭are‬‭replicated‬ ‭‬ ‭DNA‬‭replication‬‭occurs‬‭in‬‭the‬‭nucleus‬ ‭ ‬ ‭RNA‬‭replication‬‭occurs‬‭in‬‭the‬‭cytoplasm‬ ‭‬ ‭Viral‬‭proteins‬‭(capsomeres)‬‭are‬‭synthesized‬‭in‬‭the‬‭cytoplasm‬ ‭‬ ‭Biosynthesis‬‭relies‬‭on‬‭the‬‭host‬‭metabolic‬‭machinery‬ ‭‬ ‭Ex.‬‭Replication‬‭and‬‭transcription‬‭enzymes,‬‭ribosomes.‬ ‭○‬ ‭5‭.‬‬‭Maturation‬‭and‬‭assembly‬ ‭‬ ‭New‬‭virions‬‭are‬‭assembled‬ ‭‬ ‭Capsomeres‬‭form‬‭the‬‭capsid‬ ‭‬ ‭Nucleic‬‭acid‬‭enters‬‭capsid‬‭–‬‭forms‬‭the‬‭nucleocapsid‬ ‭ ‬ ‭6‭.‬‬‭Release‬ ○ ‭‬ ‭Naked‬‭viruses‬‭–‬‭burst‬‭out,‬‭rupture‬‭host‬‭cell‬‭–‬‭host‬‭cell‬‭dies‬ ‭‬ ‭Enveloped‬‭viruses‬‭–‬‭bud‬‭out,‬‭virus‬‭pushes‬‭through‬‭cytoplasmic‬‭membrane‬ ‭‬ ‭Steady‬‭release‬‭of‬‭mature‬‭viruses‬ ‭‬ ‭Host‬‭cell‬‭stays‬‭alive‬‭for‬‭a‬‭long‬‭time‬ ‭D)‬‭Interactions‬‭between‬‭viruses‬‭and‬‭animal‬‭hosts‬ ‭‬ ‭Interactions‬‭between‬‭viruses‬‭and‬‭animal‬‭hosts‬ ‭○‬ ‭Host‬‭defense‬‭plays‬‭major‬‭role‬‭in‬‭outcome‬‭of‬‭viral‬‭infection‬ ‭‬ ‭Protects‬‭against‬‭otherwise‬‭lethal‬‭infection‬ ‭○‬ ‭Most‬‭healthy‬‭humans‬‭carry‬‭a‬‭number‬‭of:‬ ‭‬ ‭Viruses‬ ‭‬ ‭Antibodies‬‭to‬‭viruses‬ ‭○‬ ‭If‬‭virus‬‭is‬‭transferred‬‭from‬‭the‬‭immune‬‭host‬‭to‬‭another‬‭individual‬‭–‬‭can‬‭result‬‭in‬ ‭infection.‬ ‭E)‬‭Categories‬‭of‬‭animal‬‭virus‬‭infection‬ ‭‬ ‭Categories‬‭of‬‭animal‬‭virus‬‭infection‬ ‭○‬ ‭Acute‬‭infections‬ ‭○‬ ‭Usually‬‭short‬‭duration‬ ‭○‬ ‭Disease‬‭symptoms‬‭result‬‭from‬‭tissue‬‭damage‬ ‭‬ ‭Lysis‬‭of‬‭host‬‭cells‬‭–‬‭release‬‭and‬‭spread‬‭of‬‭virus‬‭particles‬ ‭○‬ ‭Host‬‭defense‬‭systems‬‭gradually‬‭eliminate‬‭virus‬ ‭‬ ‭May‬‭take‬‭days‬‭or‬‭weeks‬ ‭○‬ ‭Host‬‭may‬‭develop‬‭long‬‭lasting‬‭immunity‬ ‭○‬ ‭ex.‬‭Mumps,‬‭Influenza,‬‭Polio*.‬ ‭‬ ‭Acute‬‭infection‬‭with‬‭late‬‭complications‬ ‭○‬ ‭After‬‭acute‬‭period,‬‭some‬‭non-infectious‬‭particles‬‭remain‬ ‭‬ ‭Can‬‭cause‬‭serious‬‭disease‬‭years‬‭later‬ ‭○‬ ‭ex.‬‭Measles‬‭→‬‭subacute‬‭sclerosing‬‭panencephalitis‬ ‭○‬ ‭Fatal‬‭brain‬‭disorder‬‭–‬‭occurs‬‭up‬‭to‬‭ten‬‭years‬‭after‬‭recovery‬‭from‬‭measles‬ ‭‬ ‭Persistent‬‭viral‬‭infections‬ ‭○‬ ‭Virus‬‭is‬‭continuously‬‭present‬‭in‬‭body,‬‭but‬‭may‬‭or‬‭may‬‭not‬‭cause‬‭disease‬ ‭‬ ‭ie.‬‭May‬‭be‬‭no‬‭symptoms‬ ‭○‬ ‭Infected‬‭host‬‭can‬‭still‬‭serve‬‭as‬‭a‬‭reservoir‬ ‭‬ ‭Can‬‭transmit‬‭virus‬‭to‬‭others.‬ ‭‬ ‭Chronic‬‭viral‬‭infection‬ ‭○‬ ‭After‬‭the‬‭acute‬‭period,‬‭infectious‬‭virus‬‭remains‬‭present‬‭at‬‭all‬‭times‬ ‭‬ ‭May‬‭or‬‭may‬‭not‬‭cause‬‭noticeable‬‭symptoms‬ ‭○‬ ‭ex.‬‭Hepatitis‬‭B‬‭(serum‬‭hepatitis‬‭virus)‬ ‭‬ ‭Transmitted‬‭by‬‭blood,‬‭or‬‭sexually‬‭transmitted‬ ‭‬ ‭May‬‭have‬‭acute‬‭period‬‭–‬‭fever,‬‭nausea,‬‭jaundice‬ ‭‬ ‭After‬‭the‬‭acute‬‭period,‬‭virus‬‭numbers‬‭stay‬‭high‬‭for‬‭the‬‭rest‬‭of‬‭the‬‭patient’s‬ ‭life‬ ‭‬ ‭May‬‭cause‬‭cirrhosis‬‭or‬‭liver‬‭cancer‬‭after‬‭many‬‭years.‬ ‭‬ ‭Latent‬‭viral‬‭infections‬ ‭○‬ ‭Acute‬‭infection‬‭followed‬‭by‬‭symptomless‬‭period‬ ‭○‬ ‭The‬‭virus‬‭integrates‬‭a‬‭copy‬‭of‬‭it’s‬‭DNA‬‭into‬‭a‬‭host‬‭cell‬‭chromosome‬‭and‬‭remains‬ ‭dormant‬ ‭‬ ‭Provirus‬‭*‬ ‭‬ ‭Disease‬‭can‬‭be‬‭reactivated‬‭years‬‭later‬ ‭‬ ‭Symptoms‬‭may‬‭be‬‭different‬ ‭○‬ ‭ex.‬‭Varicella-Zoster‬‭virus‬‭(Herpes‬‭family)‬ ‭‬ ‭Causes‬‭–‬‭Chicken‬‭pox‬‭(Varicella)‬‭in‬‭children‬ ‭‬ ‭Remains‬‭latent‬‭for‬‭years‬‭–‬‭no‬‭disease‬ ‭‬ ‭Can‬‭reactivate‬‭later‬‭to‬‭cause‬‭shingles‬‭(Herpes-Zoster).‬ ‭‬ ‭Viruses‬‭and‬‭Human‬‭Tumors‬ ‭○‬ ‭Tumor‬‭–‬‭abnormal‬‭growth‬‭of‬‭tissue‬ ‭○‬ ‭Benign‬‭tumor‬‭–‬‭does‬‭not‬‭spread‬ ‭‬ ‭Malignant‬‭tumor‬‭–‬‭metastasize‬‭and‬‭invade‬‭nearby‬‭tissues‬‭(ie.‬‭Cancer)‬ ‭○‬ ‭Cell‬‭growth‬‭is‬‭controlled‬‭by‬‭two‬‭types‬‭of‬‭genes:‬ ‭‬ ‭Genes‬‭that‬‭stimulate‬‭cell‬‭growth‬‭–‬‭proto-oncogenes*‬ ‭‬ ‭Genes‬‭that‬‭inhibit‬‭cell‬‭growth‬‭–‬‭tumor‬‭suppressor‬‭genes‬ ‭‬ ‭Mutations‬‭in‬‭these‬‭genes‬‭can‬‭lead‬‭to‬‭uncontrolled‬‭cell‬‭growth,‬‭tumor‬ ‭formation‬‭and‬‭cancer‬ ‭○‬ ‭Cancer‬‭causing‬‭viruses‬‭(oncogenic‬‭viruses)‬ ‭‬ ‭Carry‬‭oncogenes‬‭–‬‭genes‬‭that‬‭interfere‬‭with‬‭the‬‭cell’s‬‭control‬‭mechanisms‬ ‭‬ ‭Most‬‭are‬‭DNA‬‭viruses‬ ‭‬ ‭Integrate‬‭viral‬‭DNA‬‭into‬‭the‬‭host‬‭chromosome‬‭as‬‭a‬‭provirus‬ ‭‬ ‭Oncogenes‬‭continue‬‭to‬‭be‬‭expressed‬ ‭‬ ‭Viruses‬‭associated‬‭with‬‭cancers‬‭in‬‭humans‬ ‭○‬ ‭Hepatitis‬‭B‬‭and‬‭Hepatitis‬‭C‬ ‭‬ ‭Believed‬‭to‬‭cause‬‭almost‬‭all‬‭cases‬‭of‬‭liver‬‭cancer‬ ‭○‬ ‭Epstein-Barr‬‭virus‬ ‭‬ ‭Causes‬‭infectious‬‭mononucleosis‬ ‭‬ ‭May‬‭cause‬‭lymphoma‬‭(cancer‬‭of‬‭white‬‭blood‬‭cells)‬‭and‬‭some‬‭cancers‬‭of‬‭the‬ ‭nose‬‭and‬‭throat‬ ‭○‬ ‭Human‬‭Papillomavirus‬‭(HPV)‬ ‭‬ ‭Sexually‬‭transmitted‬‭–‬‭genital‬‭warts‬ ‭‬ ‭Believed‬‭to‬‭cause‬‭almost‬‭all‬‭cases‬‭of‬‭cervical‬‭cancer.‬ ‭‬ ‭Virus-like‬‭infectious‬‭particles‬ ‭○‬ ‭Viroids‬ ‭‬ ‭Naked‬‭RNA‬ ‭‬ ‭No‬‭protein‬‭coat*‬ ‭‬ ‭Results‬‭in‬‭some‬‭diseases‬‭in‬‭plants‬ ‭‬ ‭not‬‭yet‬‭found‬‭in‬‭animals‬ ‭○‬ ‭Prions‬ ‭‬ ‭Infectious‬‭protein‬‭particles‬ ‭‬ N ‭ o‬‭genetic‬‭material‬‭(RNA‬‭or‬‭DNA)‬ ‭‬ ‭Linked‬‭to‬‭several‬‭human‬‭and‬‭animal‬‭diseases‬ ‭‬ ‭Transmissible‬‭spongiform‬‭encephalopathies‬ ‭‬ ‭Sponge-like‬‭holes‬‭in‬‭the‬‭brain‬ ‭E)‬‭Mode‬‭of‬‭infection‬ ‭‬ ‭Mode‬‭of‬‭infection‬ ‭○‬ ‭Seem‬‭to‬‭be‬‭transmitted‬‭through‬‭food‬ ‭○‬ ‭ex.‬‭Sheep‬‭infected‬‭with‬‭prions‬‭–‬‭Scrapie*‬ ‭‬ ‭Eaten‬‭by‬‭cows‬‭–‬‭Mad‬‭Cow‬‭Disease‬ ‭‬ ‭Eaten‬‭by‬‭humans‬‭–‬‭variant‬‭Creutzfeldt-Jakob‬‭disease‬ ‭○‬ ‭Not‬‭usually‬‭destroyed‬‭by‬‭high‬‭temperatures‬ ‭‬ ‭Can‬‭be‬‭destroyed‬‭by‬‭heat‬‭(480C)‬‭or‬‭a‬‭combination‬‭of‬‭autoclaving‬‭in‬‭a‬ ‭solution‬‭of‬‭sodium‬‭hydroxide‬‭(strong‬‭base)‬ ‭○‬ ‭Onset‬‭of‬‭disease‬‭in‬‭humans‬‭occurs‬‭several‬‭years‬‭after‬‭infection‬ ‭‬ ‭Not‬‭clear‬‭why‬‭–‬‭or‬‭how‬‭it‬‭accumulates‬‭in‬‭the‬‭brain‬ ‭‬ ‭Always‬‭fatal‬‭–‬‭no‬‭treatment‬‭or‬‭cure.‬ ‭CHAPTER‬‭14;‬‭Course‬‭Part‬‭2:‬‭The‬‭Innate‬‭Immune‬‭Response‬ ‭A)‬‭Overview‬‭of‬‭Innate‬‭immunity‬ ‭‬ ‭Overview‬‭of‬‭Innate‬‭immunity‬ ‭○‬ ‭Refers‬‭to‬‭defenses‬‭that‬‭are‬‭present‬‭at‬‭birth‬ ‭○‬ ‭Non-specific‬‭–‬‭act‬‭against‬‭all‬‭(most)‬‭microbes‬‭in‬‭the‬‭same‬‭way‬ ‭○‬ ‭No‬‭memory‬‭component‬‭–‬‭cannot‬‭recall‬‭previous‬‭contact‬‭with‬‭an‬‭invader‬ ‭○‬ ‭Always‬‭present‬‭-‬‭It‬‭is‬‭active‬‭before‬‭an‬‭infection‬‭occurs‬ ‭‬ ‭Responds‬‭rapidly‬ ‭‬ ‭Includes‬‭:‬ ‭○‬ ‭First‬‭line‬‭defenses‬ ‭‬ ‭Physical‬‭and‬‭chemical‬‭barriers‬‭that‬‭prevent‬‭microbes‬‭from‬‭entering‬‭the‬‭body‬ ‭○‬ ‭Second‬‭line‬‭defenses‬ ‭‬ ‭Components‬‭that‬‭act‬‭to‬‭eliminate‬‭microbes‬‭that‬‭have‬‭invaded‬‭body‬‭tissues‬ ‭‬ ‭Cellular‬‭defenses‬ ‭‬ ‭Molecular‬‭defenses‬ ‭‬ ‭Fever‬‭and‬‭inflammation.‬ ‭B)‬‭The‬‭first‬‭line‬‭of‬‭defense‬ ‭‬ ‭The‬‭first‬‭line‬‭of‬‭defense‬ ‭○‬ ‭Physical‬‭barriers‬ ‭‬ ‭1.‬‭Skin‬ ‭‬ O ‭ uter‬‭surface‬‭of‬‭skin‬‭consists‬‭of‬‭dead‬‭cells‬‭and‬‭keratin‬‭(a‬‭protective‬ ‭protein)‬ ‭‬ ‭Frequently‬‭shed‬‭–‬‭removes‬‭microbes‬ ‭‬ ‭Dry‬‭–‬‭inhibits‬‭growth‬‭of‬‭microbes‬ ‭○‬ ‭Skin‬‭infections‬‭are‬‭more‬‭common‬‭on‬‭moist‬‭areas‬‭of‬‭skin,‬‭or‬ ‭in‬‭moist‬‭environments‬ ‭‬ ‭Outer‬‭layer‬‭of‬‭skin‬‭is‬‭an‬‭excellent‬‭defense‬‭–‬‭rarely‬‭penetrated‬‭by‬ ‭microbes‬ ‭○‬ ‭Most‬‭infections‬‭occur‬‭under‬‭the‬‭skin‬‭–‬‭after‬‭skin‬‭has‬‭been‬ ‭broken‬ ‭‬ ‭Some‬‭microbes‬‭are‬‭able‬‭to‬‭eat‬‭dead‬‭skin‬‭cells‬‭and‬‭oils‬‭secreted‬‭by‬ ‭the‬‭skin‬ ‭○‬ ‭Results‬‭in‬‭body‬‭odour.‬ ‭‬ ‭2.‬‭Mucous‬‭membranes‬ ‭‬ ‭Involved‬‭in‬‭fluid‬‭or‬‭gas‬‭exchange‬ ‭‬ ‭Offer‬‭less‬‭protection‬‭than‬‭the‬‭skin‬ ‭‬ ‭Line‬‭our‬‭“tracts”‬‭–‬‭ex.‬‭Digestive‬‭tract‬ ‭‬ ‭Secrete‬‭mucous‬‭–‬‭a‬‭glycoprotein‬‭–‬‭keeps‬‭membrane‬‭from‬‭drying‬ ‭(cracking)‬ ‭○‬ ‭Traps‬‭microbes‬ ‭‬ ‭Mucocilliary‬‭escalator‬ ‭○‬ ‭Cilia‬‭sweep‬‭mucous‬‭away‬ ‭‬ ‭3.‬‭Fluid‬‭flow‬ ‭‬ ‭Saliva,‬‭tears,‬‭urine*,‬‭vaginal‬‭secretions‬‭–‬‭move‬‭microbes‬‭away‬‭from‬ ‭the‬‭body.‬ ‭ ‬ ‭Antimicrobial‬‭substances‬‭(Chemical‬‭barriers)‬ ○ ‭‬ ‭1.‬‭Acidity‬‭of‬‭body‬‭fluids‬‭and‬‭skin‬ ‭‬ ‭Stomach‬‭acid‬‭–‬‭p‬‭H‬‭2‬ ‭○‬ ‭Destroys‬‭many‬‭bacteria‬‭and‬‭toxins‬ ‭‬ ‭Skin‬‭–‬‭fatty‬‭acids‬‭and‬‭lactic‬‭acid‬‭–‬‭pH‬‭3‬‭–‬‭5‬ ‭○‬ ‭Prevents‬‭growth‬‭of‬‭many‬‭microbes‬ ‭‬ ‭2.‬‭Lysozyme‬ ‭‬ ‭Enzyme‬‭that‬‭degrades‬‭peptidoglycan‬ ‭‬ ‭Found‬‭in‬‭sweat,‬‭tears,‬‭saliva,‬‭nasal‬‭secretions.‬ ‭‬ ‭3.‬‭Lactoferrin‬ ‭‬ ‭Iron‬‭binding‬‭proteins‬‭in‬‭milk,‬‭mucous‬ ‭○‬ ‭Makes‬‭iron‬‭unavailable‬‭to‬‭slow‬‭growth‬‭of‬‭microbes‬ ‭‬ ‭4.‬‭Defensins‬ ‭‬ ‭Short‬‭polypeptides‬ ‭‬ ‭Poke‬‭holes‬‭in‬‭microbial‬‭membranes‬ ‭‬ ‭Produced‬‭by‬‭epithelial‬‭cells*‬ ‭‬ ‭5.‬‭The‬‭normal‬‭microbiota*‬ ‭‬ ‭Acquired‬‭shortly‬‭after‬‭birth‬ ‭‬ ‭Prevent‬‭growth‬‭of‬‭pathogens‬ ‭○‬ ‭Competitive‬‭exclusion‬‭and‬‭Microbial‬‭antagonism.‬ ‭C)‬‭The‬‭second‬‭line‬‭of‬‭defense‬ ‭‬ ‭The‬‭second‬‭line‬‭of‬‭defense‬ ‭○‬ ‭The‬‭cells‬‭of‬‭the‬‭immune‬‭system‬ ‭‬ ‭Leukocytes‬‭–‬‭white‬‭blood‬‭cells‬ ‭‬ ‭Always‬‭found‬‭in‬‭normal‬‭blood,‬‭but‬‭increase‬‭in‬‭response‬‭to‬‭infection‬ ‭‬ ‭Leukocytes‬‭–‬‭three‬‭broad‬‭groups‬ ‭○‬ ‭1.‬‭Granulocytes‬ ‭‬ ‭Have‬‭large‬‭granules‬‭in‬‭their‬‭cytoplasm‬‭–‬‭visible‬‭with‬ ‭light‬‭microscope‬ ‭‬ ‭Three‬‭sub-groups‬ ‭‬ ‭i.‬‭Basophils‬‭–‬‭weak‬‭phagocytes‬ ‭○‬ ‭Secrete‬‭chemoattractants‬ ‭○‬ ‭Release‬‭histamine‬‭–‬‭causes‬ ‭inflammation,‬‭allergies‬ ‭‬ ‭ii.‬‭Eosinophils‬ ‭○‬ ‭Destroy‬‭large‬‭pathogens‬ ‭○‬ ‭ex‬‭.‬‭Parasitic‬‭worms‬ ‭○‬ ‭Produce‬‭extracellular‬‭digestive‬ ‭enzymes‬‭to‬‭attack‬‭a‬‭parasite‬ ‭‬ ‭iii.‬‭Neutrophils‬‭–‬‭strong‬‭phagocytes*‬ ‭○‬ ‭Polymorphonuclear‬ ‭○‬ ‭Can‬‭leave‬‭the‬‭blood‬‭and‬‭migrate‬ ‭into‬‭tissues‬‭to‬‭destroy‬‭invading‬ ‭microbes.‬ ‭○‬ ‭2.‬‭Mononuclear‬‭phagocytes‬ ‭‬ ‭Also‬‭have‬‭granules‬‭–‬‭but‬‭they‬‭are‬‭not‬‭visible‬‭under‬ ‭light‬‭microscope‬ ‭‬ ‭i.‬‭Monocytes‬‭–‬‭initially‬‭non-phagocytic‬ ‭○‬ ‭Leave‬‭blood,‬‭enter‬‭tissues‬‭and‬ ‭change‬‭into‬‭macrophages*‬‭–‬‭strong‬ ‭phagocytes‬ ‭○‬ ‭Often‬‭found‬‭in‬‭organs‬‭–‬‭filter‬‭out‬ ‭invading‬‭pathogens‬‭as‬‭blood‬‭passes‬ ‭through‬ ‭‬ ‭ii.‬‭Dendritic‬‭cells‬ ‭○‬ ‭Phagocytize‬‭foreign‬‭material‬‭and‬ ‭bring‬‭it‬‭to‬‭the‬‭adaptive‬‭immune‬ ‭system‬‭for‬‭‘inspection’‬ ‭‬ ‭Antigen‬‭presentation‬ ‭○‬ ‭3.‬‭Lymphocytes‬‭–‬‭Three‬‭types:‬ ‭‬ ‭Natural‬‭killer‬‭cells‬‭(NK‬‭cells)‬ ‭‬ R ‭ esponsible‬‭for‬‭killing‬‭infected‬‭body‬‭cells‬ ‭and‬‭tumor‬‭cells.‬ ‭‬ ‭Attack‬‭any‬‭body‬‭cell‬‭that‬‭displays‬‭unusual‬ ‭proteins‬‭in‬‭the‬‭cytoplasmic‬‭membrane‬ ‭‬ ‭T‬‭and‬‭B‬‭lymphocytes‬‭–‬‭part‬‭of‬‭adaptive‬‭immunity.‬ ‭‬ P ‭ hagocytes‬‭–‬‭white‬‭blood‬‭cells‬‭that‬‭use‬‭phagocytosis‬‭to‬‭“eat”‬‭microbes.‬ ‭D)‬‭Molecular‬‭defenses‬‭&‬‭Result‬‭of‬‭activating‬‭the‬‭complement‬‭cascade‬ ‭‬ ‭Molecular‬‭defenses‬ ‭○‬ ‭1.‬‭The‬‭Complement‬‭System‬ ‭‬ ‭About‬‭30‬‭Proteins‬‭that‬‭circulate‬‭in‬‭blood‬ ‭‬ ‭Work‬‭together‬‭in‬‭a‬‭cascade‬ ‭‬ ‭Action‬‭of‬‭one‬‭protein‬‭triggers‬‭action‬‭of‬‭the‬‭next‬ ‭‬ ‭Complement‬‭can‬‭be‬‭triggered‬‭several‬‭ways:‬ ‭‬ ‭Small‬‭molecules‬‭binding‬‭to‬‭the‬‭surface‬‭of‬‭invading‬‭microbes.‬ ‭‬ ‭Result‬‭of‬‭activating‬‭the‬‭complement‬‭cascade‬ ‭○‬ ‭1.‬‭Opsonization‬ ‭‬ ‭Attach‬‭to‬‭microbes‬‭and‬‭act‬‭as‬‭a‬‭flag‬‭to‬‭attract‬‭phagocytes‬ ‭‬ ‭Increases‬‭phagocytosis‬‭by‬‭1000x‬ ‭○‬ ‭2.‬‭Enhance‬‭inflammation‬ ‭‬ ‭Increase‬‭blood‬‭vessel‬‭permeability‬ ‭‬ ‭Attract‬‭phagocytes‬‭to‬‭infection‬‭site.‬ ‭○‬ ‭3.‬‭Lysis‬‭of‬‭foreign‬‭cells‬ ‭‬ ‭Formation‬‭of‬‭membrane‬‭attack‬‭complexes‬‭(MACs)‬ ‭‬ ‭Pokes‬‭holes‬‭in‬‭membranes‬ ‭‬ ‭Kills‬‭Gram‬‭negative‬‭bacteria‬‭,‬‭but‬‭not‬‭Gram‬‭positive‬‭bacteria.*‬ ‭E)‬‭The‬‭Inflammatory‬‭Response‬ ‭‬ ‭The‬‭Inflammatory‬‭Response‬ ‭○‬ ‭In‬‭response‬‭to‬‭tissue‬‭damage:‬‭blood‬‭vessels‬‭dilate,‬‭fluids‬‭leak‬‭and‬‭leukocytes‬ ‭migrate‬‭into‬‭tissues‬ ‭‬ ‭More‬‭blood‬‭reaches‬‭area‬ ‭‬ ‭Allows‬‭phagocytes‬‭to‬‭enter‬‭tissues‬‭–‬‭increased‬‭phagocytosis‬ ‭‬ ‭Brings‬‭platelets*‬‭to‬‭form‬‭blood‬‭clots,‬‭and‬‭nutrients‬‭for‬‭faster‬‭repair.‬ ‭‬ ‭Signs‬‭and‬‭symptoms‬‭of‬‭inflammation:‬ ‭○‬ ‭Pain,‬‭swelling‬ ‭○‬ ‭Heat,‬‭Redness‬ ‭○‬ ‭Edema‬ ‭○‬ ‭Loss‬‭of‬‭function.‬ ‭‬ ‭Fever‬ ‭○‬ ‭Can‬‭be‬‭triggered‬‭by‬‭toxins,‬‭LPS‬‭or‬‭chemicals‬‭produced‬‭by‬‭the‬‭immune‬‭system‬ ‭○‬ ‭Results‬‭in:‬ ‭‬ ‭Rapid‬‭muscle‬‭contraction‬‭(shivering)‬ ‭‬ ‭Increased‬‭temperature‬ ‭○‬ ‭Benefits:‬ ‭‬ ‭Faster‬‭phagocytosis‬ ‭‬ ‭Slows‬‭growth‬‭of‬‭heat‬‭limited‬‭microbes‬ ‭‬ ‭ex.‬‭E.‬‭coli‬‭prefers‬‭to‬‭grow‬‭at‬‭37°C,‬‭growth‬‭slows‬‭at‬‭40°C‬ ‭‬ ‭Faster‬‭metabolism‬‭-‬‭healing‬ ‭‬ ‭Up‬‭to‬‭a‬‭certain‬‭temperature,‬‭fever‬‭is‬‭a‬‭defense‬‭against‬‭disease‬ ‭○‬ ‭Drawbacks:‬ ‭‬ ‭Uncomfortable‬ ‭‬ ‭Fever‬‭above‬‭43°C‬‭can‬‭cause‬‭death.‬ ‭ ‬ ‭Anti-viral‬‭Interferons‬‭(IFNs)‬ ‭○‬ ‭Produced‬‭when‬‭cells‬‭detect‬‭viral‬‭RNA‬ ‭○‬ ‭Released‬‭by‬‭infected‬‭cells‬‭to‬‭warn‬‭neighboring‬‭cells‬ ‭‬ ‭Induces‬‭neighboring‬‭cells‬‭to‬‭enter‬‭into‬‭an‬‭antiviral‬‭state‬ ‭‬ ‭Does‬‭not‬‭help‬‭cells‬‭that‬‭are‬‭already‬‭infected‬ ‭‬ ‭Neighboring‬‭cells‬‭undergo‬‭apoptosis‬‭if‬‭infected.‬ ‭CHAPTER‬‭15;‬‭Course‬‭Part‬‭2:‬‭The‬‭Adaptive‬‭Immune‬‭Response‬ ‭A)‬‭Adaptive‬‭immune‬‭response‬ ‭Adaptive‬‭immune‬‭response‬ ‭‬ ‭Can‬‭be‬‭acquired‬‭either‬‭naturally‬‭or‬‭artificially‬ ‭‬ ‭Natural‬‭adaptive‬‭immunity‬‭:‬‭an‬‭organism‬‭or‬‭toxin‬‭enters‬‭the‬‭body‬‭and‬‭promotes‬‭an‬‭immune‬ ‭response‬ ‭‬ ‭Artificial‬‭adaptive‬‭immunity‬‭:‬‭results‬‭from‬‭immunization‬‭with‬‭a‬‭vaccine‬ ‭‬ ‭Both‬‭types‬‭are‬‭specific‬‭and‬‭have‬‭memory‬ ‭Specific‬ ‭‬ ‭Adaptive‬‭immune‬‭response‬‭protects‬‭against‬‭one‬‭pathogen‬ ‭‬ ‭Does‬‭not‬‭protect‬‭against‬‭other‬‭pathogens‬ ‭‬ ‭Only‬‭exception‬‭is‬‭when‬‭two‬‭pathogens‬‭are‬‭very‬‭closely‬‭related‬ ‭○‬ ‭ex.‬‭Smallpox‬‭and‬‭Cowpox‬ ‭Memory‬ ‭‬ ‭Result‬‭in‬‭a‬‭much‬‭stronger‬‭response‬‭upon‬‭re-exposure‬ ‭‬ ‭Long-term‬‭immunity‬‭–‬‭possibly‬‭for‬‭life.‬ ‭‬ ‭Overview‬‭of‬‭adaptive‬‭immunity‬ ‭○‬ ‭Involves‬‭two‬‭general‬‭responses‬‭that‬‭respond‬‭against‬‭antigens‬ ‭○‬ M ‭ olecules‬‭that‬‭interact‬‭specifically‬‭with‬‭the‬‭adaptive‬‭immune‬‭system‬‭and‬‭elicit‬‭an‬ ‭adaptive‬‭response‬ ‭‬ ‭Exogenous‬‭antigens‬ ‭○‬ ‭Come‬‭from‬‭outside‬ ‭‬ ‭Ex.‬‭Bacteria,‬‭viruses,‬‭toxins‬ ‭ ‬ ‭Endogenous‬‭antigen‬‭s‬ ‭○‬ ‭Generated‬‭inside‬‭a‬‭body‬‭cell.‬ ‭B)‬‭Humoral‬‭Immunity‬‭vs‬‭Cell‬‭Mediated‬‭Immunity‬ ‭‬ ‭1.‬‭Antibody‬‭mediated‬‭response‬‭(Humoral‬‭response)‬ ‭○‬ ‭B‬‭cells‬ ‭‬ ‭Detect‬‭exogenous‬‭antigens‬‭and‬‭proliferate‬‭to‬‭form‬‭plasma‬‭cells‬ ‭‬ ‭Produce‬‭small‬‭protective‬‭molecules‬‭–‬‭antibodies‬‭(Ab)‬ ‭‬ ‭Bind‬‭to‬‭the‬‭surface‬‭of‬‭bacteria,‬‭viruses,‬‭toxins,‬‭etc.‬ ‭‬ ‭2.‬‭Cell‬‭mediated‬‭response‬ ‭○‬ ‭Helper‬‭T‬‭cells‬‭(TH)‬ ‭‬ ‭Direct‬‭and‬‭assist‬‭adaptive‬‭immunity‬‭and‬‭upregulate‬‭innate‬‭immunity‬ ‭○‬ ‭Cytotoxic‬‭T‬‭cells‬‭(TC)‬ ‭‬ ‭Destroy‬‭abnormal‬‭body‬‭cells‬ ‭‬ ‭Ex.‬‭Cells‬‭infected‬‭by‬‭viruses,‬‭cancer‬‭cells.‬ ‭C)‬‭The‬‭Nature‬‭of‬‭Antigens‬‭(Immunoglobulins)‬ ‭‬ ‭Antigen‬‭–‬‭antibody‬‭generator‬ ‭○‬ ‭Any‬‭molecule‬‭that‬‭induces‬‭antibody‬‭production,‬‭or‬‭binds‬‭to‬‭a‬‭specific‬‭receptor‬‭on‬‭a‬ ‭B‬‭or‬‭T‬‭cell‬ ‭○‬ ‭Each‬‭antibody‬‭recognizes‬‭only‬‭a‬‭small‬‭part‬‭of‬‭the‬‭antigen‬‭called‬‭an‬‭epitope‬ ‭(antigenic‬‭determinant)‬ ‭○‬ ‭A‬‭foreign‬‭particle‬‭(like‬‭a‬‭bacterial‬‭cell)‬‭has‬‭several‬‭antigens,‬‭and‬‭a‬‭vast‬‭array‬‭of‬ ‭potential‬‭epitopes‬ ‭○‬ ‭Some‬‭antigens‬‭are‬‭more‬‭immunogenic‬‭than‬‭others‬ ‭‬ ‭Ex.‬‭Proteins*‬‭often‬‭elicit‬‭a‬‭strong‬‭immune‬‭response.‬ ‭○‬ ‭Y-shaped‬‭proteins‬‭that‬‭bind‬‭to‬‭antigens‬‭in‬‭a‬‭very‬‭specific‬‭manner‬ ‭‬ ‭Like‬‭a‬‭“lock‬‭and‬‭key”‬ ‭‬ ‭Only‬‭an‬‭antigen‬‭with‬‭the‬‭correct‬‭epitope‬‭will‬‭be‬‭bound‬ ‭○‬ ‭Each‬‭antibody‬‭binds‬‭to‬‭one‬‭and‬‭only‬‭one‬‭antigen.‬ ‭D)‬‭Antibody‬‭structure‬ ‭‬ E‭ ach‬‭antibody‬‭consists‬‭of‬‭four‬‭polypeptides‬‭–‬‭2‬‭light‬‭chains‬‭,‬‭and‬‭2‬‭heavy‬‭chains‬‭,‬‭and‬‭has‬‭two‬ ‭general‬‭parts:‬ ‭‬ ‭Two‬‭identical‬‭arms‬‭–‬‭Fab‬‭region‬‭(variable‬‭fragment)‬ ‭ ‬ ‭Each‬‭with‬‭an‬‭identical‬‭antigen‬‭binding‬‭site‬‭specific‬‭for‬‭one‬‭epitope‬ ○ ‭ ‬ ‭One‬‭stem‬‭–‬‭Fc‬‭region‬‭(constant‬‭fragment)‬ ‭○‬ ‭Binds‬‭to‬‭complement‬‭proteins,‬‭phagocytes,‬‭etc,‬‭allowing‬‭the‬‭antibody‬‭to‬‭trigger‬ ‭other‬‭components‬‭of‬‭immunity.‬ ‭E)‬‭Six‬‭protective‬‭functions‬‭of‬‭antibodies‬ ‭‬ ‭1.‬‭Cross-linking‬‭(agglutination)‬ ‭○‬ ‭Antigens‬‭get‬‭stuck‬‭together‬ ‭○‬ ‭Reduces‬‭number‬‭of‬‭infectious‬‭units‬‭to‬‭be‬‭dealt‬‭with‬ ‭‬ ‭2.‬‭Neutralization‬ ‭○‬ ‭Ab‬‭binds‬‭to‬‭and‬‭inactivates‬‭toxins,‬‭bacteria,‬‭viruses‬ ‭○‬ ‭Blocks‬‭attachment‬‭sites‬ ‭‬ ‭3.‬‭Complement‬‭activation‬ ‭○‬ ‭Ab‬‭binds‬‭bacteria‬‭–‬‭acts‬‭as‬‭starting‬‭point‬‭for‬‭complement‬‭pathway‬ ‭○‬ ‭MAC‬‭attack.‬ ‭‬ ‭4.‬‭Opsonization‬ ‭○‬ ‭Ab‬‭flags‬‭down‬‭phagocytic‬‭cells‬‭–‬‭to‬‭engulf‬‭and‬‭destroy‬‭the‬‭antigen‬ ‭‬ ‭5.‬‭Ab‬‭dependent‬‭cytotoxicity‬ ‭○‬ ‭Ab‬‭flags‬‭down‬‭immune‬‭system‬‭cells‬‭to‬‭destroy‬‭abnormal‬‭or‬‭infected‬‭body‬‭cells‬ ‭‬ ‭6.‬‭Immobilization‬‭and‬‭prevention‬‭of‬‭adherence‬ ‭○‬ ‭Ab‬‭binds‬‭to‬‭flagella‬‭to‬‭stop‬‭pathogen‬‭from‬‭moving‬ ‭○‬ ‭To‬‭pili‬‭to‬‭stop‬‭bacteria‬‭from‬‭colonizing.‬ ‭F)‬‭Five‬‭classes‬‭of‬‭antibodies‬‭(GAMED/MEGAD)‬ ‭‬ ‭1.‬‭IgG‬‭–‬‭immunoglobulin‬‭G‬ ‭○‬ ‭Most‬‭abundant‬ ‭○‬ ‭Binds‬‭to‬‭antigen‬‭very‬‭strongly‬ ‭○‬ ‭Found‬‭in‬‭the‬‭blood‬‭–‬‭but‬‭can‬‭also‬‭enter‬‭tissues‬‭in‬‭regions‬‭of‬‭inflammation‬ ‭‬ ‭Can‬‭cross‬‭placenta‬‭–‬‭confers‬‭passive‬‭immunity‬‭to‬‭fetus*‬ ‭‬ ‭2.‬‭IgM‬‭–‬‭immunoglobulin‬‭M‬ ‭○‬ ‭Consist‬‭of‬‭5‬‭units‬‭of‬‭Ab‬‭–‬‭a‬‭pentamer‬ ‭○‬ ‭Does‬‭not‬‭move‬‭as‬‭freely‬‭as‬‭IgG‬‭–‬‭IgM‬‭stays‬‭in‬‭the‬‭blood‬ ‭‬ ‭Often‬‭attached‬‭to‬‭surface‬‭of‬‭B‬‭cells‬ ‭○‬ ‭First‬‭Ab‬‭produced‬‭upon‬‭infection‬ ‭○‬ ‭Very‬‭good‬‭at‬‭cross-linking‬‭antigens.‬ ‭‬ ‭3.‬‭IgA‬‭–‬‭immunoglobulin‬‭A‬ ‭○‬ ‭Consists‬‭of‬‭2‬‭units‬‭of‬‭Ab‬‭–‬‭a‬‭dimer‬ ‭○‬ ‭Also‬‭known‬‭as‬‭secretory‬‭Ab‬ ‭‬ ‭Found‬‭in‬‭body‬‭secretions‬‭–‬‭saliva,‬‭mucous,‬‭tears,‬‭milk‬ ‭○‬ ‭Functions‬‭to‬‭protect‬‭mucosal‬‭surfaces‬ ‭‬ ‭Protects‬‭gastrointestinal‬‭tract‬‭of‬‭newborns‬ ‭‬ ‭4.‬‭IgD‬ ‭○‬ F‭ unction‬‭unknown‬‭.‬‭Found‬‭in‬‭serum‬‭and‬‭Back-up‬‭in‬‭case‬‭IgG‬‭non-functional‬‭or‬‭not‬ ‭made?‬ ‭ ‬ ‭5.‬‭IgE‬ ‭○‬ ‭Found‬‭on‬‭the‬‭surface‬‭of‬‭certain‬‭immune‬‭system‬‭cells‬ ‭‬ ‭Mast‬‭cells‬‭and‬‭Basophils‬ ‭‬ ‭When‬‭it‬‭binds‬‭to‬‭antigens‬‭–‬‭the‬‭cell‬‭releases‬‭histamine‬ ‭‬ ‭Attracts‬‭complement‬‭and‬‭phagocytes‬‭to‬‭the‬‭area‬ ‭‬ ‭Histamine‬‭is‬‭responsible‬‭for‬‭allergy‬‭symptoms.‬ ‭G)‬‭Cells‬‭of‬‭the‬‭adaptive‬‭immune‬‭system‬ ‭‬ ‭1.‬‭Lymphocytes‬ ‭○‬ ‭B‬‭–‬‭lymphocytes‬‭(B‬‭cells)‬ ‭‬ ‭Antibody‬‭producing‬‭cells*‬ ‭‬ ‭Involved‬‭in‬‭humoral‬‭immune‬‭response‬ ‭○‬ ‭T‬‭–‬‭lymphocytes‬‭(T‬‭cells)‬ ‭‬ ‭Helper‬‭T‬‭cells‬‭(TH‬‭cells)‬ ‭‬ ‭Help‬‭B‬‭and‬‭Tc‬‭cells‬‭prepare‬‭for‬‭an‬‭immune‬‭response‬ ‭‬ ‭Cytotoxic‬‭T‬‭cells‬‭(Tc‬‭cells)‬ ‭‬ ‭Destroy‬‭abnormal‬‭body‬‭cells‬ ‭‬ ‭Ex.‬‭Cells‬‭infected‬‭by‬‭viruses‬‭and‬‭cancer‬‭cells.‬ ‭‬ ‭2.‬‭Antigen‬‭presenting‬‭cells‬‭(APC)‬ ‭○‬ ‭Macrophages,‬‭B‬‭cells,‬‭dendritic‬‭cells‬ ‭‬ ‭1.‬‭Foreign‬‭material‬‭(ex.‬‭Bacterial‬‭cell)‬‭is‬‭engulfed‬‭by‬‭APC‬ ‭‬ ‭2.‬‭Antigen‬‭is‬‭processed‬‭and‬‭presented‬‭to‬‭T‬‭cells‬‭along‬‭with‬‭self‬‭antigens‬ ‭‬ ‭Self‬‭antigens‬‭–‬‭part‬‭of‬‭Major‬‭histocompatibility‬‭complex‬‭(MHC)‬ ‭‬ ‭Check‬‭to‬‭prevent‬‭destruction‬‭of‬‭our‬‭own‬‭cells‬‭by‬‭mistake‬ ‭‬ ‭3.‬‭T‬‭cells‬‭become‬‭activated‬‭against‬‭the‬‭foreign‬‭material.‬ ‭H)‬‭The‬‭B-Cell‬‭Response:‬‭Humoral‬‭immunity‬ ‭ ‬ E‭ ach‬‭naïve‬‭B‬‭cell‬‭carries‬‭Ig‬‭for‬‭one‬‭epitope‬‭on‬‭its‬‭surface‬ ‭‬ ‭Circulate‬‭in‬‭blood,‬‭and‬‭gather‬‭in‬‭lymphoid‬‭organs*‬ ‭‬ ‭If‬‭it‬‭encounters‬‭its‬‭specific‬‭epitope‬‭it‬‭will‬‭become‬‭activated‬ ‭○‬ ‭B‬‭cell‬‭receptor‬‭binds‬‭to‬‭the‬‭epitope‬‭on‬‭the‬‭antigen‬ ‭‬ ‭Clonal‬‭selection‬ ‭○‬ ‭Antigen‬‭is‬‭phagocytized‬ ‭○‬ ‭Antigen‬‭is‬‭digested‬‭into‬‭small‬‭fragments.‬ ‭‬ ‭Small‬‭fragments‬‭are‬‭presented‬‭on‬‭surface‬‭along‬‭with‬‭MHC‬‭class‬‭II‬‭to‬‭T-helper‬‭cells‬‭(TH)‬ ‭‬ ‭If‬‭a‬‭TH‬‭recognizes‬‭the‬‭fragment‬‭as‬‭foreign,‬‭it‬‭activates‬‭the‬‭B‬‭cell‬‭to‬‭multiply‬‭and‬‭differentiate‬ ‭○‬ ‭–‬‭B‬‭cell‬‭undergoes‬‭clonal‬‭expansion.‬ ‭I)‬‭Clonal‬‭expansion‬ ‭‬ ‭The‬‭activated‬‭B‬‭cell‬‭divides‬‭and‬‭differentiates‬‭into:‬ ‭○‬ ‭1.‬‭Plasma‬‭cells‬ ‭‬ ‭Ab‬‭producing‬‭cells‬ ‭‬ ‭Short‬‭life‬‭span,‬‭produce‬‭a‬‭lot‬‭of‬‭Ab‬ ‭○‬ ‭2.‬‭Memory‬‭B‬‭cells‬ ‭‬ ‭Long‬‭living:‬‭20‬‭–‬‭30‬‭years‬ ‭‬ ‭Circulate‬‭in‬‭blood‬ ‭‬ ‭If‬‭it‬‭encounters‬‭Ag‬‭again‬‭it‬‭will‬‭quickly‬‭multiply‬‭and‬‭change‬‭into‬‭Ab‬ ‭producing‬‭plasma‬‭cells.‬ ‭J)‬‭Immunologic‬‭memory‬ ‭‬ ‭1.‬‭Primary‬‭response‬ ‭○‬ ‭B‬‭cells‬‭produce‬‭low‬‭levels‬‭of‬‭Ab‬ ‭○‬ ‭Slow‬‭process‬‭–‬‭takes‬‭7‬‭–‬‭14‬‭days‬ ‭○‬ ‭IgM‬‭first,‬‭followed‬‭by‬‭IgG‬‭and‬‭IgA‬ ‭○‬ ‭Major‬‭outcome:‬‭memory‬‭is‬‭built‬‭for‬‭the‬‭antigen‬ ‭‬ ‭2.‬‭Secondary‬‭response‬ ‭○‬ ‭High‬‭levels‬‭of‬‭IgG‬ ‭○‬ ‭Fast‬‭response‬‭time:‬‭takes‬‭1‬‭–‬‭2‬‭days‬ ‭○‬ ‭Quickly‬‭overcomes‬‭the‬‭infection‬ ‭○‬ ‭Memory‬‭cells‬‭are‬‭replenished.‬ ‭‬ ‭The‬‭T‬‭cell‬‭Response:‬‭Cell-Mediated‬‭Immunity‬ ‭○‬ ‭TC‬‭(Cytotoxic‬‭T‬‭cells)‬‭–‬‭responsible‬‭for‬‭destroying‬‭abnormal‬‭cells‬ ‭‬ ‭Ex.‬‭cells‬‭infected‬‭by‬‭viruses‬‭or‬‭bacteria,‬‭cancer‬‭cells,‬‭foreign‬‭cells‬ ‭‬ ‭Recognize‬‭antigens‬‭presented‬‭along‬‭with‬‭MHC‬‭class‬‭I‬ ‭○‬ ‭T‬‭cell‬‭activation‬ ‭‬ ‭A‬‭dendritic‬‭cell‬‭engulfs‬‭foreign‬‭antigen,‬‭presents‬‭antigen‬‭to‬‭a‬‭specific‬‭Tc‬ ‭‬ ‭Tc‬‭is‬‭activated‬‭to‬‭undergo‬‭clonal‬‭expansion‬ ‭‬ ‭Produces:‬ ‭○‬ ‭Memory‬‭T‬‭cells‬ ‭○‬ ‭Cytotoxic‬‭T‬‭lymphocytes‬‭(CTLs).‬ ‭○‬ ‭Once‬‭the‬‭CTLs‬‭are‬‭activated‬‭-‬‭any‬‭body‬‭cell‬‭can‬‭serve‬‭as‬‭APC‬ ‭○‬ ‭Endogenous‬‭antigen‬‭is‬‭presented‬‭on‬‭the‬‭cell‬‭surface‬‭along‬‭with‬‭MHC‬‭class‬‭I‬ ‭‬ ‭CTL‬‭attaches‬‭to‬‭abnormal‬‭cell‬‭and‬‭releases:‬ ‭‬ ‭Perforins‬‭–‬‭enzymes‬‭that‬‭poke‬‭holes‬‭in‬‭the‬‭abnormal‬‭cell’s‬ ‭membrane‬ ‭‬ ‭Granzymes‬‭–‬‭enzymes‬‭that‬‭induce‬‭apoptosis‬‭(programmed‬‭cell‬ ‭death).‬ ‭CHAPTER‬‭16;‬‭Course‬‭Part‬‭2:‬‭Host-Microbe‬‭Interactions‬ ‭A)‬‭Principles‬‭of‬‭Disease‬ ‭Term‬ ‭Definition‬ ‭Example‬ ‭Pathogen‬ ‭ rganism‬‭that‬‭can‬‭cause‬ O ‭Streptococcus‬‭pyogenes‬ ‭disease‬ ‭‬ ‭Pathogenicity‬ ‭Ability‬‭to‬‭cause‬‭disease‬ ‭Yes,‬‭it‬‭is‬‭pathogenic‬ ‭‬ ‭Virulence‬ S‭ everity‬‭of‬‭disease‬‭(ability‬‭to‬ ‭ ighly‬‭virulent‬‭(some‬‭strains‬ H ‭cause‬‭harm)‬ ‭are‬‭more‬‭virulent‬‭than‬‭others‬ ‭depending‬‭on‬‭their‬‭virulence‬ ‭factors)‬ ‭Infection‬ ‭ rowth‬‭of‬‭pathogens‬‭in‬‭the‬ G I‭nfection‬‭doesn’t‬‭always‬‭lead‬ ‭body‬ ‭to‬‭illness/disease‬ ‭Disease‬ ‭ bnormal‬‭state‬‭where‬‭the‬ A e‭.g.,‬‭Strep‬‭throat‬‭(but‬‭some‬ ‭body‬‭is‬‭not‬‭capable‬‭of‬ ‭more‬‭virulent‬‭strains‬‭can‬‭cause‬ ‭performing‬‭normal‬‭functions‬ ‭necrotizing‬‭fasciitis)‬ ‭Pathology‬ ‭The‬‭study‬‭of‬‭disease‬ ‭Studying‬‭strep‬‭throat‬ ‭Etiology‬ ‭Cause‬‭of‬‭the‬‭disease‬ S‭ tudying‬‭what‬‭causes‬‭strep‬ ‭throat‬ ‭Pathogenesis‬ ‭How‬‭the‬‭disease‬‭develops‬ S‭ tudying‬‭how‬‭strep‬‭throat‬ ‭develops‬ ‭B)‬‭The‬‭human‬‭microbiota‬‭(the‬‭human‬‭microbiome)‬‭Composition‬ ‭‬ ‭A‬‭typical‬‭human‬‭body‬‭has‬‭approx.‬‭10‬‭bacterial‬‭cells‬‭for‬‭each‬‭human‬‭cell‬ ‭○‬ ‭New‬‭data‬‭actually‬‭suggests‬‭the‬‭ratio‬‭is‬‭closer‬‭to‬‭1:1‬‭(it‬‭is‬‭estimated‬‭to‬‭be‬‭3.0‬‭x‬‭1013‬ ‭human‬‭cells‬‭and‬‭harbors‬‭approx.‬‭3.8‬‭x‬‭1013‬‭bacteria‬‭(Senders‬‭et‬‭al.,‬‭2016))‬ ‭‬ ‭Your‬‭Microbiota‬‭is‬‭Made‬‭up‬‭of:‬ ‭○‬ ‭Normal‬‭microbiota‬‭–‬‭permanent‬‭residents‬ ‭○‬ ‭Transient‬‭microbiota‬‭–‬‭not‬‭permanent‬‭residents,‬‭but‬‭may‬‭be‬‭present‬‭for‬‭days,‬‭weeks‬ ‭or‬‭months‬ ‭C)‬‭The‬‭human‬‭microbiota‬‭(the‬‭human‬‭microbiome)‬‭Location‬ ‭‬ M ‭ icrobiota‬‭is‬‭localized‬‭to‬‭c ertain‬‭parts‬‭of‬‭the‬‭body‬ ‭‬ ‭Generally‬‭exposed‬‭areas‬ ‭○‬ ‭ex.‬‭Skin,‬‭respiratory,‬‭intestinal‬‭and‬‭urinary‬‭tracts‬ ‭‬ ‭Internal‬‭tissues‬‭(blood,‬‭muscle,‬‭brain,‬‭etc.)‬‭are‬‭normally‬‭free‬‭of‬‭microbes.‬ ‭D)‬‭Role‬‭of‬‭the‬‭microbiota‬ ‭‬ ‭Benefit‬‭the‬‭host‬‭by‬‭preventing‬‭growth‬‭of‬‭pathogens‬ ‭○‬ ‭Microbial‬‭antagonism–‬‭members‬‭of‬‭the‬‭microbiota‬‭produce‬‭substances‬‭harmful‬‭to‬ ‭invading‬‭microbes‬ ‭○‬ ‭Competitive‬‭exclusion–‬‭microbiota‬‭use‬‭up‬‭available‬‭nutrients‬‭preventing‬‭growth‬‭of‬ ‭pathogens‬ ‭‬ ‭E.g.,‬‭)‬‭Clostridioides‬‭difficile‬‭(previously‬‭Clostridium‬‭difficile‬‭)‬‭–‬‭is‬‭inhibited‬ ‭by‬‭the‬‭normal‬‭microbiota‬‭of‬‭the‬‭large‬‭intestine‬ ‭‬ ‭If‬‭normal‬‭microbiota‬‭is‬‭eliminated‬‭(antibiotic‬‭treatments),‬‭C.‬‭difficile‬‭can‬ ‭cause‬‭infection‬ ‭‬ ‭can‬‭lead‬‭to‬‭fatal‬‭inflammation‬‭of‬‭the‬‭colon‬ ‭‬ ‭Other‬‭benefits‬‭of‬‭the‬‭microbiota:‬ ‭‬ ‭Some‬‭bacteria‬‭produce‬‭enzymes‬‭that‬‭aid‬‭digestion‬ ‭‬ ‭E.‬‭coli‬‭in‬‭the‬‭large‬‭intestine‬‭makes‬‭vitamins‬‭K‬‭and‬‭B‬ ‭E)‬‭Opportunistic‬‭pathogens‬ ‭‬ ‭Microbes‬‭that‬‭are‬‭part‬‭of‬‭the‬‭normal‬‭microbiota‬ ‭○‬ ‭Do‬‭not‬‭normally‬‭cause‬‭disease‬ ‭○‬ ‭Can‬‭cause‬‭disease‬‭if:‬ ‭‬ ‭Transferred‬‭to‬‭another‬‭part‬‭of‬‭the‬‭body‬ ‭‬ ‭Human‬‭host‬‭becomes‬‭immuno-compromised‬ ‭‬ ‭Normal‬‭microbiota‬‭is‬‭disturbed‬ ‭‬ ‭ex.‬‭E.‬‭coli‬‭–‬‭normal‬‭resident‬‭of‬‭the‬‭large‬‭intestine‬ ‭○‬ ‭if‬‭transferred‬‭to‬‭urinary‬‭tract‬‭can‬‭cause‬‭infection‬ ‭‬ ‭ex.‬‭Streptococcus‬‭pneumoniae‬‭is‬‭a‬‭normal‬‭resident‬‭of‬‭the‬‭respiratory‬‭tract‬ ‭○‬ ‭When‬‭host‬‭is‬‭already‬‭weakened‬‭(ex.‬‭After‬‭having‬‭a‬‭cold)‬ ‭○‬ ‭Can‬‭cause‬‭pneumonia‬ ‭F)‬‭Si‬‭gns,‬‭Symptoms,‬‭and‬‭Syndromes‬ ‭‬ ‭Symptoms‬‭–‬‭What‬‭a‬‭patient‬‭feels‬ ‭○‬ ‭ex.‬‭Pain,‬‭malaise‬ ‭○‬ ‭Subjective‬‭and‬‭variable‬ ‭‬ ‭Signs‬‭–‬‭an‬‭objective‬‭change‬‭a‬‭physician‬‭can‬‭measure‬ ‭○‬ ‭ex.‬‭Lesions,‬‭swelling,‬‭fever,‬‭paralysis‬ ‭‬ ‭Syndrome‬‭–‬‭a‬‭specific‬‭group‬‭of‬‭symptoms‬‭and‬‭signs‬‭that‬‭always‬‭accompany‬‭a‬‭particular‬ ‭disease‬ ‭○‬ ‭ex.‬‭Carpal‬‭tunnel‬‭syndrome,‬‭down‬‭syndrome‬ ‭G)‬‭Classification‬‭of‬‭disease‬ ‭‬ D ‭ iseases‬‭can‬‭be‬‭classified‬‭based‬‭on‬‭effect‬‭on‬‭host‬‭and‬‭on‬‭population‬ ‭‬ ‭Communicable‬‭or‬‭contagious‬‭disease‬‭-‬‭A‬‭disease‬‭that‬‭spreads‬‭from‬‭one‬‭host‬‭to‬‭another‬ ‭ ‬ ‭contagious‬‭diseases‬‭–‬‭easily‬‭spread‬ ○ ‭○‬ ‭ex.‬‭Chicken‬‭pox,‬‭measles,‬‭gonorrhea‬ ‭‬ ‭Contagious‬‭disease‬‭–‬‭easily‬‭spread‬ ‭○‬ ‭ex.‬‭Chicken‬‭pox‬‭and‬‭measles‬ ‭ ‬ ‭Non-communicable‬‭disease‬‭–‬‭does‬‭not‬‭spread‬‭between‬‭people‬ ‭○‬ ‭ex.‬‭Arthritis,‬‭diabetes,‬‭heart‬‭disease‬ ‭H)‬‭Progression‬‭of‬‭infectious‬‭disease‬ ‭‬ ‭Incubation‬‭period‬ ‭○‬ ‭Time‬‭between‬‭infection‬‭and‬‭first‬‭signs‬‭or‬‭symptoms‬ ‭‬ ‭Prodromal‬‭period‬ ‭○‬ ‭Early,‬‭mild‬‭symptoms‬ ‭○‬ ‭ex.‬‭Malaise‬ ‭‬ ‭Period‬‭of‬‭illness‬ ‭○‬ ‭Most‬‭severe‬‭signs‬‭and‬‭symptoms‬ ‭○‬ ‭Active‬‭immune‬‭response‬‭–‬‭may‬‭cause‬‭some‬‭signs‬‭and‬‭symptoms‬ ‭‬ ‭ex.‬‭Fever‬ ‭○‬ ‭If‬‭disease‬‭is‬‭not‬‭overcome‬‭–‬‭results‬‭in‬‭death.‬ ‭‬ ‭Period‬‭of‬‭decline‬ ‭○‬ ‭Signs‬‭and‬‭symptoms‬‭subside‬ ‭○‬ ‭Can‬‭last‬‭hours‬‭or‬‭days‬ ‭○‬ ‭Patient‬‭vulnerable‬‭to‬‭secondary‬‭infections‬ ‭‬ ‭Period‬‭of‬‭convalescence‬ ‭○‬ ‭Recovery‬‭occurs‬ ‭○‬ ‭The‬‭pathogen‬‭can‬‭still‬‭be‬‭present‬‭and‬‭spread‬‭to‬‭others‬ ‭‬ ‭Can‬‭carry‬‭pathogen‬‭for‬‭months‬‭or‬‭years.‬ ‭I)‬‭Duration‬‭of‬‭symptoms‬ ‭‬ ‭Acute‬‭–‬‭rapidly‬‭developing,‬‭short‬‭duration‬ ‭○‬ ‭ex.‬‭Influenza‬ ‭‬ ‭Chronic‬‭–‬‭slow‬‭to‬‭develop,‬‭continual‬‭duration‬ ‭○‬ ‭ex.‬‭Tuberculosis‬ ‭‬ ‭Latent‬‭–‬‭inactive‬‭for‬‭period‬‭of‬‭time,‬‭can‬‭be‬‭reactivated‬ ‭○‬ ‭ex.‬‭Cold‬‭sores‬‭–‬‭herpes‬‭virus.‬ ‭J)‬‭Number‬‭of‬‭microbes‬‭is‬‭important/‬‭Distribution‬‭of‬‭the‬‭pathogen‬ ‭‬ ‭Number‬‭of‬‭microbes‬‭is‬‭important‬ ‭○‬ ‭If‬‭too‬‭few‬‭microbes‬‭enter,‬‭immune‬‭system‬‭will‬‭fight‬‭them‬‭off‬‭and‬‭prevent‬‭disease‬ ‭○‬ ‭Likelihood‬‭of‬‭disease‬‭increases‬‭as‬‭microbe‬‭number‬‭increases‬ ‭○‬ ‭Virulence‬‭and‬‭pathogenicity‬‭of‬‭a‬‭microbe‬‭can‬‭be‬‭expressed‬‭numerically:‬ ‭‬ ‭Infectious‬‭dose:‬ ‭ ‬ I‭D50‬‭–‬‭Causes‬‭infection‬‭in‬‭50%‬‭of‬‭the‬‭population‬ ‭‬ ‭ex.‬‭Bacillus‬‭anthracis‬ ‭○‬ ‭By‬‭ingestion‬‭–‬‭ID50‬‭=‬‭250,000‬‭to‬‭1,000,000‬‭endospores‬ ‭○‬ ‭By‬‭inhalation‬‭–‬‭ID50‬‭=‬‭10,000‬‭to‬‭20,000‬‭endospores‬ ‭○‬ ‭Through‬‭a‬‭cut‬‭in‬‭the‬‭skin‬‭–‬‭ID50‬‭=‬‭10-20‬‭endospores‬ ‭ ‬ ‭Potency‬‭of‬‭a‬‭toxin‬ ‭‬ ‭expressed‬‭as‬‭Lethal‬‭dose‬ ‭○‬ ‭LD50‬‭–‬‭Kills‬‭50%‬‭of‬‭the‬‭infected‬‭population.‬ ‭‬ ‭Distribution‬‭of‬‭the‬‭pathogen‬ ‭○‬ ‭Localized‬‭infectio‬‭n‬‭–‬‭confined‬‭to‬‭small‬‭area‬‭of‬‭the‬‭body‬ ‭○‬ ‭Systemic‬‭infection‬‭–‬‭microbes‬‭or‬‭toxins‬‭are‬‭spread‬‭throughout‬‭the‬‭body‬ ‭○‬ ‭Septicemia‬‭–‬‭systemic‬‭infection‬‭of‬‭the‬‭blood‬ ‭‬ ‭Bacteremia‬‭–‬‭bacteria‬‭in‬‭the‬‭blood‬ ‭‬ ‭Toxemia‬‭–‬‭toxins‬‭in‬‭the‬‭blood‬ ‭‬ ‭Viremia‬‭–‬‭viruses‬‭in‬‭the‬‭blood‬ ‭‬ ‭Sepsis‬‭*‬‭–‬‭life‬‭threatening‬‭systemic‬‭inflammatory‬‭response,‬‭usually‬‭due‬‭to‬ ‭bacteremia‬ ‭○‬ ‭Example:‬‭Clostridium‬‭tetani‬‭causes‬‭infection‬‭of‬‭a‬‭cut‬ ‭‬ ‭Releases‬‭toxins‬‭into‬‭the‬‭blood.‬ ‭K)‬‭Establishing‬‭the‬‭cause‬‭of‬‭disease‬ ‭‬ ‭Koch’s‬‭Postulates‬ ‭○‬ ‭Based‬‭on‬‭the‬‭germ‬‭theory‬‭of‬‭disease‬ ‭○‬ ‭Allows‬‭determination‬‭of‬‭specific‬‭microorganisms‬‭that‬‭cause‬‭disease‬ ‭‬ ‭1.‬‭The‬‭same‬‭pathogen‬‭should‬‭be‬‭present‬‭in‬‭every‬‭case‬‭of‬‭the‬‭disease‬ ‭‬ ‭2.‬‭The‬‭pathogen‬‭must‬‭be‬‭isolated‬‭and‬‭grown‬‭in‬‭pure‬‭culture‬ ‭‬ ‭3.‬‭Pathogen‬‭from‬‭the‬‭pure‬‭culture‬‭should‬‭cause‬‭disease‬‭when‬‭inoculated‬ ‭into‬‭a‬‭healthy‬‭lab‬‭animal‬ ‭‬ ‭4.‬‭The‬‭same‬‭microbe‬‭should‬‭be‬‭isolated‬‭again‬‭from‬‭the‬‭inoculated‬‭individual.‬ ‭‬ ‭Exceptions‬‭to‬‭Koch’s‬‭Postulates‬ ‭○‬ ‭Some‬‭bacteria‬‭will‬‭not‬‭grow‬‭in‬‭pure‬‭culture‬ ‭‬ ‭ex.‬‭Treponema‬‭pallidum‬‭–‬‭causative‬‭agent‬‭of‬‭syphilis‬‭*‬ ‭○‬ ‭Some‬‭pathogens‬‭cannot‬‭be‬‭used‬‭to‬‭infect‬‭lab‬‭animals**‬ ‭‬ ‭ex.‬‭HIV‬ ‭○‬ ‭Sometimes‬‭several‬‭different‬‭microorganisms‬‭can‬‭cause‬‭the‬‭same‬‭disease‬ ‭‬ ‭ex.‬‭Pneumonia‬ ‭○‬ ‭Sometimes‬‭one‬‭pathogen‬‭can‬‭cause‬‭many‬‭different‬‭diseases‬ ‭‬ ‭ex.‬‭Streptococcus‬‭pyogenes‬ ‭‬ ‭Causes‬‭Strep‬‭throat,‬‭Skin‬‭infections,‬‭Scarlet‬‭fever.‬ ‭‬ ‭Recall:‬‭Examples‬‭of‬‭Pathogens‬‭and‬‭Diseases‬ S‭ treptococcus‬ ‭Strep‬‭troat‬ ‭ rotein‬‭F‬ P ‭ epiratory‬ R ‭pyogenes‬ ‭*Adhesins*‬ ‭epithelial‬‭cells‬ S‭ treptococcus‬ ‭Dental‬‭caries‬ ‭ dhesin‬‭P1‬ A ‭Teeth‬ ‭mutans‬ ‭*Adhesins*‬ ‭ eisseria‬ N ‭Gonorrhea‬ T‭ ype‬‭IV‬‭pili‬ ‭ rethral‬‭epithelial‬ U ‭gonorrhoeae‬ ‭*Adhesins*‬ ‭cells‬ E‭ nterotoxigenic‬‭E.‬ ‭Traveler’s‬‭diarrhea‬ T‭ ype‬‭1‬‭fimbriae‬ I‭ntestinal‬ ‭coli‬‭(ETEC)‬ ‭*Adhesins*‬ ‭epithelial‬‭cells‬ ‭Vibrio‬‭cholerae‬ ‭Cholera‬ ‭ -methlyphenylal‬ N I‭ntestinal‬ ‭anine‬‭pili‬ ‭epithelial‬‭cells‬ ‭*Adhesins*‬ ‭○‬ P ‭ athology/Pathogenicity/Disease/Pathologen/Virulence/Infection/Site‬‭of‬ ‭Colonization/Virulence‬‭Factors‬ ‭○‬ ‭Colonization‬‭–‬‭the‬‭establishment‬‭and‬‭growth‬‭of‬‭a‬‭microbe‬‭in‬‭a‬‭particular‬ ‭environment.‬ ‭L)‬‭Mechanisms‬‭of‬‭pathogenesis‬ ‭ ‬ E‭ stablishing‬‭Infection‬ ‭‬ ‭1.‬‭Adherence‬ ‭○‬ ‭Surface‬‭molecules‬‭that‬‭allow‬‭a‬‭pathogen‬‭to‬‭attach‬‭-‬‭adhesins‬ ‭‬ ‭Often‬‭stick‬‭to‬‭specific‬‭receptors‬‭on‬‭host‬‭cell‬‭surface‬ ‭‬ ‭ex.‬‭Bacterial‬‭capsules,‬‭pili‬‭and‬‭fimbriae‬ ‭‬ ‭ex.‬‭Viral‬‭spikes‬ ‭‬ ‭2.‬‭Invasiveness‬ ‭○‬ ‭Ability‬‭of‬‭a‬‭pathogen‬‭to‬‭invade‬‭and‬‭multiply‬‭in‬‭tissues‬ ‭○‬ ‭Two‬‭types‬‭of‬‭molecules‬‭promote‬‭invasiveness:‬ ‭○‬ ‭Extracellular‬‭enzymes‬‭–‬‭exoenzymes‬ ‭○‬ ‭Degrade‬‭or‬‭alter‬‭host‬‭cells‬‭and‬‭tissues‬ ‭‬ ‭Fibrinolysin‬‭–‬‭degrades‬‭fibrin‬‭clots‬‭(S.‬‭pyogenes)‬ ‭‬ ‭Collagenase‬‭–‬‭degrades‬‭connective‬‭tissue‬‭(Vibrio‬‭and‬‭Clostridium)‬ ‭‬ ‭Coagulase‬‭–‬‭promote‬‭blood‬‭clots‬‭around‬‭the‬‭bacterial‬‭cell‬‭(Staphylococci)‬ ‭○‬ ‭Invasin‬ ‭‬ ‭Surface‬‭proteins‬‭that‬‭cause‬‭rearrangement‬‭of‬‭host‬‭cell‬‭cytoskeleton‬ ‭‬ ‭Forces‬‭host‬‭cell‬‭to‬‭take‬‭in‬‭the‬‭bacterium‬ ‭‬ ‭Ex.‬‭Salmonella‬‭enterica‬‭forces‬‭“ruffling”‬‭by‬‭intestinal‬‭cells‬ ‭M)‬‭Invasion‬‭–‬‭portals‬‭of‬‭entry‬ ‭‬ ‭1.‬‭Mucous‬‭membranes‬ ‭○‬ ‭Respiratory‬‭trac‬‭t‬‭–‬‭most‬‭common‬‭portal‬‭of‬‭entry‬ ‭‬ ‭Microbes‬‭inhaled‬‭into‬‭nose‬‭or‬‭mouth‬‭–‬‭ex.‬‭Colds,‬‭influenza‬ ‭○‬ ‭Gastrointestinal‬‭tract‬ ‭‬ ‭Germs‬‭enter‬‭in‬‭food‬‭or‬‭water‬ ‭ ‬ ‭Most‬‭are‬‭destroyed‬‭by‬‭acid‬‭(in‬‭stomach)‬‭or‬‭by‬‭bile‬‭(in‬‭intestine)‬ ‭‬ ‭Some‬‭can‬‭survive:‬‭ex‬‭.‬‭Vibrio‬‭cholera‬ ‭○‬ ‭Genitourinary‬‭tract‬‭–‬‭STIs‬ ‭‬ ‭Most‬‭pathogens‬‭require‬‭a‬‭broken‬‭mucous‬‭membrane‬ ‭‬ ‭ie.‬‭a‬‭cut‬‭or‬‭a‬‭microabrasion‬ ‭ ‬ ‭Conjunctiva‬‭–‬‭membrane‬‭covering‬‭the‬‭eye.‬ ○ ‭‬ ‭2.‬‭Skin‬ ‭○‬ ‭Unbroken‬‭skin‬‭is‬‭impenetrable‬‭by‬‭most‬‭microbes‬ ‭○‬ ‭Some‬‭microbes‬‭can‬‭cause‬‭infections‬‭of‬‭hair‬‭follicles‬‭(‬‭Cutibacterium‬‭acnes‬‭)‬ ‭○‬ ‭Most‬‭require‬‭a‬‭wound‬‭for‬‭entry‬ ‭ ‬ ‭3.‬‭Parenteral‬‭route‬ ‭○‬ ‭Microbes‬‭deposited‬‭directly‬‭into‬‭tissues‬‭when‬‭skin‬‭or‬‭membranes‬‭are‬‭broken‬ ‭‬ ‭ex.‬‭Tick‬‭bite‬‭can‬‭introduce‬‭bacteria‬‭into‬‭host‬‭–‬‭Lyme‬‭disease‬ ‭‬ ‭ex.‬‭Intravenous‬‭injection‬‭with‬‭contaminated‬‭syringe‬‭–‬‭HIV.‬ ‭N)‬‭Dama

Use Quizgecko on...
Browser
Browser