Mathematics Exam Paper 2025 - PDF

Summary

This is a Mathematics exam paper from January 2025. The paper includes questions on calculus, vectors, probability, and other key areas. Download the PDF to review the questions.

Full Transcript

Here is the converted text from the images provided: ## SECOND PUC PREPARATORY EXAMINATION JANUARY - 2025 **Sub: MATHEMATICS (35)** **Time:** 3 Hrs **Total no. of questions:** 47 **Total Marks:** 80 **Instructions:** (i) The question paper has five parts namely A, B, C, D and E. Answer all the...

Here is the converted text from the images provided: ## SECOND PUC PREPARATORY EXAMINATION JANUARY - 2025 **Sub: MATHEMATICS (35)** **Time:** 3 Hrs **Total no. of questions:** 47 **Total Marks:** 80 **Instructions:** (i) The question paper has five parts namely A, B, C, D and E. Answer all the parts. (ii) Part- A has 15 multiple choice questions. 5 fill in the blanks of 1 mark each. (iii) Write the question numbers properly and use the graph sheet for the question on Linear Programming in Part - E. ### PART - A **I. Answer all the multiple choice questions: 15 x 1 = 15** 1. If a relation R on the set {1, 2, 3} be defined by R = {(1, 1)} then R is (a) Reflexive and symmetric (b) Reflexive and transitive (c) Symmetric and transitive (d) only symmetric 2. The range of $\sec^{-1} x$ is (a) $[-\frac{\pi}{2}, \frac{\pi}{2}]$ (b) $[-\frac{\pi}{2}, \frac{\pi}{2})$ (c) $[0,π]$ (d) $[0,π] - \{\frac{\pi}{2}\}$ 3. $\sin^{-1}(\sin[-600^\circ]) =$ (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $-\frac{2\pi}{3}$ 4. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ then $A+A'= I$ if the value of $\alpha$ is (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\pi$ (d) $\frac{\pi}{2}$ 5. If A is a square matrix of order 3 and $|A| = 3$, then $|adj A|$ is (a) 3 (b) 9 (c) $\frac{1}{3}$ (d) 0 6. The function $f(x) = [x]$, where $[x]$ the greatest integer function is continuous at (a) 1.5 (b) 4 (c) 1 (d) -2 7. $\int e^x \{\frac{1}{\sqrt{x^2 + 9}} + \log (x + \sqrt{x^2 + 9}) \} dx =$ (a) $e^x \log(x + \sqrt{x^2 + 9}) + c$ (b) $\frac{e^x}{\sqrt{x^2 + 9}} + c$ (c) $e^x \cos \frac{x}{3} + c$ (d) $\frac{1}{\sqrt{x^2 + 9}}$ 8. The total revenue in rupees received from the sale of x units of a product is given by, $R(x) = 3x^2 + 36x + 5$. The marginal revenue, when $x = 15$ is (a) 116 (b) 96 (c) 90 (d) 126 9. $\int \frac{1}{\sqrt{x}} \cos \sqrt{x} dx$ (a) $2 \cos \sqrt{x} + c$ (b) $-2 \cos \sqrt{x} + c$ (c) $2 \sin \sqrt{x} + c$ (d) $\sin \sqrt{x} + c$ 10. The solution of $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$ is (a) $\cos^{-1}x - \cos^{-1}y = c$ (b) $\sin^{-1}x - \sin^{-1}y = c$ (c) $\sin^{-1}x + \sin^{-1}y = c$ (d) $\cos x + \cot y = c$ 11. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 2, |\vec{b}| = 3, |\vec{c}| = 5$, then value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$ is (a) 0 (b) 1 (c) -19 (d) 38 12. The value of $\lambda$ for which the vectors $3\hat{i} - 6\hat{j} + \hat{k}$ and $2\hat{i} - 4\hat{j} + \lambda \hat{k}$ are parallel is (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (c) $\frac{5}{2}$ (d) $\frac{2}{5}$ 13. The angle between the straight lines $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$ and $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-3}{-3}$ is (a) $45^\circ$ (b) $30^\circ$ (c) $60^\circ$ (d) $90^\circ$ 14. If A and B are two events of a sample space S such that P(A) = 2.0, P(B) = 0.6 and P(A|B) = 0.5 then P(A'|B) = (a) $\frac{1}{2}$ (b) $\frac{3}{10}$ (c) $\frac{1}{3}$ (d) $\frac{2}{3}$ 15. If A and B are two independent events with P(A)=0.3 and P(A ∪ B) = 0.8 then P(B) is (a) $\frac{6}{7}$ (b) $\frac{5}{7}$ (c) $\frac{3}{7}$ (d) $\frac{4}{7}$ **II. Fill in the blanks by choosing appropriate answer from those given in the bracket.** 5 × 1 = 5 $[2, 4, 0, \frac{2}{3}, \frac{3}{2}]$ 16. The principal value of $\cos^{-1} (\cos(\frac{\pi}{k}))$, then the value of k = \_\_\_\_ 17. If $f(x) = \begin{cases} \frac{\sin(\frac{1}{x})}{k}, & x \neq 0 \\ k & x = 0 \end{cases}$ is continuous at $x = 0$, then K = \_\_\_\_ 18. If $\int_{0}^{\frac{\pi}{2}} \cos^2 x dx = \frac{\pi}{k}$, then the value of k = \_\_\_\_. 19. The projection on the y-axis of the vector $5\hat{i} + 2\hat{j} - 4\hat{k}$ is \_\_\_\_. 20. If P(A) = 0.3, P(B) = 0.5 and P(A/B) = 0.4 then P(B/A) is \_\_\_\_. ### PART - B **III. Answer any six questions: 6 x 2 = 12** 21. Find the area of the triangle with vertices (1, 0), (6, 0), (4, 3) using determinants. 22. Find $\frac{dy}{dx}$ if $y = \sin^{-1}(\frac{2x}{1+x^2})$. 23. An edge of a variable cube is increasing at the rate of 3 cm/sec. How fast is the volume of the cube increasing when the edge is 10cm, long? 24. Find the intervals in which the function f given by $f(x) = 2x^2 - 3x$ is strictly increasing. 25. Evaluate $\int_{1}^{e^{\pi/2}} \frac{e^{\tan^{-1}x}}{1+x^2} dx$. 26. In a bank, principal increases continuously at the rate of r% per year. Find the value of r, if Rs. 100 double itself in 10 years (log 2 = 0.6931). 27. Find a vector in the direction of vector $5\hat{i} - \hat{j} + 2\hat{k}$ which has magnitude 8 units. 28. Find the values of P so that the lines $\frac{1-x}{3P} = \frac{7y-14}{2} = \frac{z-3}{2}$ and $\frac{7-7x}{3P} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles. 29. If A and B are two independent events, then prove that P(A U B) = 1-P(A').P(B'). ### PART - C **Answer any six questions: 6 x 3 = 18** 30. Determine whether the relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(x, y) : y \text{ is divisible by } x\}$ is reflexive, symmetric and transitive. 31. Write the simplest form of $\tan^{-1} (\frac{\cos x}{1 - \sin x})$, $-\frac{3\pi}{2} < x < \frac{\pi}{2}$. 32. Prove that inverse of a square matrix, if it exists, is unique. 33. If $x = a (\theta - \sin \theta)$ and $y = a (1 + \cos \theta)$ then prove that $\frac{dy}{dx} = -\cot (\frac{\theta}{2})$. 34. An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre rectangular sheet of aluminium and folding up the sides. Find the volume of the larger such box. 35. Evaluate $\int \frac{dx}{x(x^n+1)}$. 36. If the vertices A, B and C of a triangle are (1, 2, 3), (-1, 0, 0) and (0, 1, 2) respectively then find [ABC]. 37. Find the shortest distance between the lines $\vec{r} = \hat{i} + \hat{j} + \lambda (2\hat{i} - \hat{j} + \hat{k})$ and $\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu (3\hat{i} - 5\hat{j} + 2\hat{k})$. 38. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six. ### PART-D **Answer any Four questions 4 × 5 = 20** 39. Show that the function $f: N \rightarrow Y$ defined by $f(x) = 4x + 3$, where $Y = \{y = 4x + 3, y \in N, \text{for some } x \in N\}$ is invertible. Hence write the inverse of f. 40. If $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ -1 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 0 & -2 & 1 \end{bmatrix}$, find A (BC), (AB) C and that (AB)C = A (BC). 41. Solve the system of equations by matrix method $x - y + z = 4, 2x + y - 3z = 0, x + y + z = 2$. 42. If $y = (\tan^{-1} x)^2$ then show $(x^2+1)^2 \frac{d^2y}{dx^2} + 2x(x^2+1) \frac{dy}{dx} = 2$. 43. Find the integral of $\frac{1}{a^2 - x^2}$ with respect to x and hence evaluate $\int{\frac{1}{1 - x^2}} dx$. 44. Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is by using integration. 45. Solve the differential equation $y.dx - (x + 2y^2).dy = 0$. ### PART-E **Answer the following questions** 46. Prove that $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x)dx$ and hence evaluate $\int_{-1}^{2} |x + 2| dx$. **OR** Minimize and maximize $z = 3x + 9y$ subject to the constraints: $x + 3y \leq 60, x + y \geq 10, x \leq y, x \geq 0, y \geq 0$ by graphical method. 47. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ satisfy the equation $A^2 - 5A + 7I = 0$ where $I$ is $2 \times 2$ identify matrix and 0 is $2 \times 2$ zero-matrix, using the equation find $A^{-1}$. **OR** Find the value of k, if $f(x) = \begin{cases} kx + 1 & \text{if } x \leq \pi \\ \cos x & \text{if } x > \pi \end{cases}$ is continuous at $x = \pi$.