Mathematics II Past Paper PDF - Silver Oak University - Summer 2024
Document Details
Uploaded by Deleted User
Silver Oak University
2024
Silver Oak University
Tags
Related
- IIT JAM 2025 Mathematics (MA) Syllabus PDF
- BCA-Semester-I First Mid Odd Semester Theory Examination 2024-25 Mathematics-I PDF
- BTech Engineering Mathematics-I Past Paper 2023-24 PDF
- JAM 2023 Mathematics Past Paper PDF
- 2024 Exam Paper PDF
- Wiley Acing the GATE: Engineering Mathematics and General Aptitude PDF
Summary
This document is a Mathematics II past paper for Diploma Engineering students from Silver Oak University. The paper covers topics in linear algebra, calculus and contains problems. The Summer 2024 exam is included in this document.
Full Transcript
## SILVER OAK UNIVERSITY **Programme:** Diploma Engineering **Branch:** ALL **SEMESTER:** II (REG/REM) **EXAMINATION-SUMMER-2024** **Subject Code:** 1010272102 **Subject Name:** MATHEMATICS II **Time:** 10:30 AM to 12:45 PM **Date:** 05/06/2024 **Total Marks:** 60 **Instructions:** 1. Attempt al...
## SILVER OAK UNIVERSITY **Programme:** Diploma Engineering **Branch:** ALL **SEMESTER:** II (REG/REM) **EXAMINATION-SUMMER-2024** **Subject Code:** 1010272102 **Subject Name:** MATHEMATICS II **Time:** 10:30 AM to 12:45 PM **Date:** 05/06/2024 **Total Marks:** 60 **Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Only normal calculator is allowed. **Q-1** Fill in the blanks (Each of 1 mark) (i) If $\frac{4x}{[2 -3]}$ = 0, then x = (ii) If A = $\begin{bmatrix} 3 & 2 & 1 \\ -6 & 5 & 4 \\ -1 & 3 & -2 \end{bmatrix}$, then A^T = (iii) If A = $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ then A^2 = (iv) li-j-k = (v) $\int \frac{1}{x+5}dx$ = (vi) $\int cotx dx$ = (vii) $\int \frac{1}{x^2+16}dx$ = (viii) $\int sin x dx$ = (ix) The slope of the line ax - by - c = 0 is (x) The distance between the points (2,-3) & (3,-2) is (xi) The equation of the line passing through the points (1,3) & (2,5) is (xii) If x = (3,-1) and y = (-5,4) then 2x - y = (xiii) The value of î.î + j.j + k.k = (xiv) If x = (1,2,3) & y = (4,5,6) then x.ỹ = (xv) The condition of slope of two parallel lines is **Q-2** (A) $\int (x^5-2x^4-2x + 3x + cosx - e^{-5x})dx$ = **OR** (A) If the lines 2x - py = 4 and 5x + 3y = 5 are (i)parallel (ii) mutually perpendicular then find the value of p (B) Find the adjoint of the matrix A = $\begin{bmatrix} 1 & -3 & 2 \\ 3 & 1 & -4 \\ -3 & 2 & 5 \end{bmatrix}$ **OR** (B) Evaluate: $\begin{bmatrix} -1 & -3 & 2 \\ 3 & -2 & 1 \\ -4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & -2 \\ -1 & 5 \end{bmatrix}$ (C) Using matrix method solve the equations: x-y+2z = 3, 3x + y-2z = 9, 2x - y + z = 5 **OR** (C) Using matrix method solve the equations: x-y+z=2, 2x+y-3z = 5, x+y-4z = 1 **Q-3** (A) $\int x sin x dx $ (B) $\int cosx sinx dx$ (C) (i) $\int \frac{2x+5}{(x-1)(x-2)(x-3)} dx$ (ii) $\int (x + 1)^3 dx$ **OR** (A) Find the equation of circle with center (3,5) and radius 2. (B) Prove that the points (0, -1), (6,7), (-2,3) and (8,3) are the vetices of rectangle. (C) (i) Find the equations of the tangent and normal at (3,-1) to the circle x² + y² + 6x + 4y + 3 = 0 (ii) Find slope, x - intercept, y - intercept of line 5x + 3y - 2 = 0. **Q-4** (A) Find unit perpendicular vector to given vectors x = (5,-3,1) & y = (1,5,-2) (B) Find the angle between the vectors i - j&j-k (C) (i) Prove that angle between vectors i + 2j & i + j + 3k is $sin^{-1}\frac{46}{55}$ (ii) Find direction cosines of vector (3,2,1). **OR** (A) Find the order and degree of the $\frac{d^3y}{dx^3} = \frac{dy}{dx}^5 + 1$ (B) For which value of p the vectors (p, -4, 3) and (2,-3, 5) are perpendicular. (C) (i) Show that y = ae^(2x) + be^(-2x) is the general solution of differential equation y^2 - 4y = 0. (ii) Solve: y(1 + e^x) dy - (1 + y) e^xdx = 0. ## SILVER OAK UNIVERSITY **Mid Semester Examination (April 2024)** **Semester:** II **Programme:** Diploma Engineering **Subject Code:** 1010272102 **Subject Name:** Mathematics-II **Date:** 05/04/2024 **Time:** 10:00 AM to 11:45 AM **Duration:** 1 hr. 45 minutes **Total Marks:** 50 **Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. No scientific or programmable calculator is allowed. (Only normal calculator) **Q-1** Attempt all questions. (14 MARKS) 1. If A= $\begin{bmatrix} 2 & 7 \\ 5 & 3 \\ 1 & 4 \end{bmatrix}$. then A^T = 2. If A= $\begin{bmatrix} -5 & 3 \\ 1 & -2 \\ 2 & 1 \end{bmatrix}$ then adj A = 3. If A= $\begin{bmatrix} -1 & 2 \\ 2 & 4 \\ 5 & 7 \end{bmatrix}$ then Co-factor of 7 = 4. If $\int \frac{2}{|x|} dx$ = 2, then x = 5. $\int cotx dx$ = 6. $\int \frac{1}{x} dx$ = 7. $\int x dx$ 8. $\int u v' dx$ = 9. If a=i+j+k&b=3i-6j+2k, then |2a+3b|= 10. If a = (-5,2,4) & b = (-3,1,2), then (a + b). (a - b) = 11. If a = (2,x, 1) & b = (5,2,3), and if a ⊥ b, then x = 12. Find the distance between the points A(1,5) & B(3,8). 13. General equation of line is given by. 14. The triangle having two sides equal is said to be **Q-2** (a) If A= $\begin{bmatrix} 5 & 2 & 3 \\ 1 & 8 & 6 \\ -1 & 2 & 2 \end{bmatrix}$ , B= $\begin{bmatrix} 3 \\ 6 \\ 1 \end{bmatrix}$ , C= $\begin{bmatrix} 2 & 3 & 2 \end{bmatrix}$ , then find 3A + 2B - 4C, AC + AB **OR** a) Find Adjoint of matrix if A = $\begin{bmatrix} 1 & 2 & 1 \\ -4 & 1 & 3 \\ 3 & -1 & 6 \end{bmatrix}$ b) Find $\int [4x^3+3x^2 - sinx + 3x+5]dx$ **OR** b) Find $\int x cosx dx$ and $\int x sinx dx$ c) Show that the points (-2,-1), (5, -4), (-1,-18) & (-8,-15) form a rectangle. Show that the angle between the vector i + j-k & 2i-2j+k is $sin^{-1}(\frac{\sqrt{27}}{3})$ **OR** c) If (-1,3), (-1,x) and (4,3) are the vertices of right angled triangle, Find x. Find the angle between two vectors (1,0,1) & (1,1,0) **Q-3** a) Solve: 3x +7y=13 & x-3y=-1 using matrices. b) Find $\int \frac{3x+2}{(x-2)(x-4)}$ dx c) Find Modulus, unit vector, direction cosines of a = 5î-3j+k Show that the points (1,4), (3,-2) & (-3,16) are colliear. **OR** a) If A = $\begin{bmatrix} 5 & 4 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ & B= $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ ,prove that (A+B)^* = B* + A^* b) Find $\int \frac{1}{x-1} dx$ c) Find unit vector perpendicular to the given vectors (2,-3,4) & (1,5,-3) Find the equation of lines from the points A(2,5) & B (1,6). Also find slope,x - intercept, y - intercept. **Q-4** Answer any 4 out of 6. (12 MARKS) a) Evaluate: $\begin{bmatrix} 1 & 2 & 3 \\ -5 & 6 & 1 \\ 1 & -3 & 7 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 5 & 2 \\ -2 & 14 \end{bmatrix}$ b) Find A^-1, A = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & -3 & 5 \\ 1 & 1 & 3 \end{bmatrix}$ c) $\int (x + 1)^3 dx$ d) Find $\int \frac{cosx}{(1-sinx)(2-sinx)} dx$ e) Find p if the lines 5x + py-3=0&2x-y+1 = 0 are parallel and perpendicular. f) $\int (x^2+2x+5) dx$