Mathematics Past Paper VIII PDF
Document Details
Uploaded by KeenCommonsense4097
Tags
Summary
This is a mathematics past paper for class VIII. The paper contains questions on various mathematical topics, including polynomials, simplification of expressions, ratios, factorisation, and more. Some questions ask for the solutions of equations, and others for the calculation of compound interest.
Full Transcript
class (d{kk) % VIII MATHEMATICS (xf.kr) PAPER I section - 'a' ([kaM&^v*) Max. Marks...
class (d{kk) % VIII MATHEMATICS (xf.kr) PAPER I section - 'a' ([kaM&^v*) Max. Marks 90 1. Write the degree of polynomial (x2 + 1)(x + 2). 1 cgqin (x2 + 1)(x + 2) dh ?kkr fyf[k,A 1 2. Simplify (50 + 60 + 7 0 + 80 )2 1 1 ljy dhft, (50 + 60 + 70 + 80 )2 3. Name the geometrical shape which has unlimited lines of symmetry. 1 ml T;kfefr vkÑfr dk uke crkb,] ftlesa vlhfer js[kkvksa dh lefefr gSA 4. In the word 'MATHS' which letter shows rotational symmetry of order 2 ? 1 fn, x, 'kCn 'MATHS' esa dkSu&lk v{kj ?kw.kZu lefefr dk ?kw.kZu Øe 2 n'kkZrk gS\ SECTIon - 'b' ([kaM&^c*) 1 −5 1 7 1 2 x −1 5. Find x so that × = 2 3 3 3 1 −5 1 7 1 2 x −1 x Kkr dhft,] rkfd × = 3 3 3 2 Evaluate : (0.01024 ) − 6. 5 2 2 eku Kkr dhft, % (0.01024 ) − 5 VIII-MATHEMATICS (1) 7. Divide 2 2 x 4 + 6 2 x 3 + x 2 by 2 2x 2 2 2 2 x 4 + 6 2 x3 + x 2 dks 2 2x 2 ls Hkkx dhft,A 8. Using factor method, divide the polynomial (y2 – y – 42) by (y – 7). 2 xq.ku[kaM fofèk dk iz;ksx djds cgqin (y2 – y – 42) dks (y – 7) ls Hkkx dhft,A 9. The sum of two positive integers is 120. The integers are in the ratio 2 : 3. Find the integers. 2 nks le iw.kk±dksa dk ;ksx 120 gSA mu iw.kk±dksa esa vuqikr 2 % 3 gSA iw.kk±d Kkr dhft,A 10. Write the order and angle of rotational symmetry of equilateral triangle. 2 leckgq f=kHkqt dk ?kw.kZu lefefr Øe vkSj ?kw.kZu lefefr dks.k fyf[k,A section - 'c' ([kaM&^l*) 11. Rehana received a sum of Rs. 40,000 as a loan from a finance company at the rate of 7% p.a. Find the compound interest paid by Rehana after 2 years. 3 jsgkuk dks ,d foRr daiuh ls 40]000 :i;s dk dtZ 7% okf"kZd C;kt nj ls feykA Kkr dhft, fd nks lky esa jsgkuk n~okjk fdruk pØo`f¼ C;kt fn;k tk,xk\ 1 1 1 34 12. Evaluate : 7 64 + 27 3 3 3 1 1 1 34 eku Kkr dhft, % 7 64 3 + 27 3 13. Using long division method, show that x+2 is a factor of x3 + 8. 3 yach Hkkx fofèk dk iz;ksx djds] n'kkZb, fd x+2] x3 + 8 dk xq.ku[kaM gSA 14. Solve the following equation and verify your answer. 3 fn;k x;k lehdj.k gy dhft, vkSj vius mÙkj dk lR;kiu dhft, & 2 − 7x 3 + 7x = 1 − 5x 4 + 5x VIII-MATHEMATICS (2) 15. The sum of the digits of a two digit number is 10. The number obtained by interchanging the digits exceeds the original number by 36. Find the original number. 3 nks vadksa dh la[;k esa vadksa dk ;ksx 10 gSA vadksa ds ijLij iyVus ls izkIr la[;k ewy la[;k ls 36 cydrs gSa\ 27. A pair of adjacent sides of a rectangle is in the ratio of 5 : 12. If the length of the diagonal is 26 cm. Find the lengths of sides and perimeter of the rectangle. 4 ,d vk;r dh vklUu Hkqtkvksa ds ,d ;qXe esa 5 % 12 dk vuqikr gSA ;fn bldk fod.kZ 26 ls-eh- gS rks vk;r dh Hkqtkvksa dh yEckbZ vkSj ifjeki Kkr dhft,A VIII-MATHEMATICS (5) 28. ABCD is a rectangle in which DP D C and BQ are perpendiculars from Q D and B respectively on diagonal AC. Show that : 4 (i) DADP @ DCBQ P (ii) ∠ADP = ∠CBQ A B (iii) DP = BQ ABCD ,d vk;r gS ftlds fod.kZ AC ij D vkSj B ls Øe'k% yEc DP vkSj BQ [khaps x;s gSa n'kkZb, % (i) DADP @ DCBQ (ii) ∠ADP = ∠CBQ (iii) DP = BQ 29. Using ruler and compass, construct a quadrilateral ABCD in which AB = CD = 5 cm, BC = 4.5 cm, B = 60, C = 120. Which type of quadrilateral is this? 4 iqQVs vkSj ijdkj dk iz;ksx djds prqHkqZt ABCD dh jpuk dhft, ftlesa AB = CD = 5 cm, BC = 4.5 cm, B = 60, C = 120 gSA ;g fdl izdkj dk prqHkqZt gS\ Alternate question for visually challenged students in lieu of Q. No. 29 ç-la- 29 ds LFkku ij n`f"V ckfèkr fo|kfFkZ;ksa ds fy, oSdfYid iz'u A money box contains one rupee and 2 rupee coins in ratio 3 : 5. If the total value of coins in the money box is Rs. 78, find the number of one rupee coins. ,d xqYyd esa ,d #i;s vkSj 2 #i;s ds flDds 3 % 5 ds vuqikr esa gSA ;fn xqYyd esa iwjs flDdksa dk eku 78 #i;s gS] mlesa ,d #i;s ds flDdksa dh la[;k Kkr dhft,A 30. A card is drawn from a well shuffled deck of cards, find the probability that 4 the card drawn is (i) a black 9 (ii) a king of spade (iii) an ace (iv) a diamond VIII-MATHEMATICS (6) 52 iRrksa dh rk'k dh xM~Mh esa ls ,d iRrk ;kn`PN;k fudkyk tkrk gS] izkf;drk Kkr dhft, fd fudkyk x;k iRrk gS (i) ,d dkyk (ii) ,d gqdqe dk ckn'kkg (iii) ,d bDdk (iv) ,d b±V 31. A box contains 24 marbles of different colours. The following table shows number of marbles of these different colours. Draw a pie chart for the data. Colour of marble Red Green Yellow Blue No. of marbles 5 3 6 10 ,d cDls esa 24 fofHkUu jax ds iRFkj gS] fuEufyf[kr lkj.kh esa fofHkUu jaxksa ds iRFkjksa dh la[;k nh xbZ gS bls ,d o`Rr fp=k ls n'kkZb, & iRFkj dk jax yky gjk ihyk uhyk iRFkkjksa dh la[;k 5 3 6 10 4 or (vFkok) The following is the distribution of weights (in kg) of 50 persons. Weight (in kg) 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 No. of persons 8 5 12 4 5 7 6 3 Draw the histogram. (i) How many persons have weight more than 80 Kg? (ii) In which group, maximum no. of persons exit? fuEufyf[kr rkfydk esa 50 yksxksa ds Hkkj (fdyksxzke esa) fn;s x, gSa & otu (fd-xzk- esa) 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 yksxksa dh la[;k 8 5 12 4 5 7 6 3 ,d vk;r fp=k cukb, (i) fdrus yksxksa dk Hkkj 80 fd-xzk- ls T;knk gS\ (ii) fdl lewg esa T;knk yksx gSa\ VIII-MATHEMATICS (7) Alternate question for visually challenged students in lieu of Q. No. 31 ç-la- 31 ds LFkku ij n`f"V ckfèkr fo|kfFkZ;ksa ds fy, oSdfYid iz'u Divide 3x(5x2+3x3+2) – (2x2+8–x) by (–2+3x). Write quotient and remainder. 3x(5x2+3x3+2) – (2x2+8–x) dks (–2+3x) ls Hkkx dhft,A HkkxiQy o 'ks"kiQy fyf[k,A VIII-MATHEMATICS (8) PAPER II Max. Marks 90 section - 'a' ([kaM&^v*) Question numbers 1 to 4 carry 1 mark each. ç'u la[;k 1 ls 4 rd izR;sd iz'u 1 vad dk gSA −2 1. Find the value of 3 × (64 ) 3 1 −2 3 × (64 ) 3 dk eku Kkr dhft,A 2. Write the polynomial x 5 − 7 x9 + x 7 + 6 in standard form. Also write its degree. 1 cgqin x5 − 7 x9 + x 7 + 6 dks ekud :i esa fyf[k,A bldh ?kkr Hkh fyf[k,A 3. Name a triangle which has line symmetry but do not have rotational symmetry. 1 ,d ,sls f=kHkqt dk uke crk,¡ ftlesa js[kk lefefr rks gksrh gS ijarq ?kw.kZu lefefr ugha gksrhA 4. In the word 'STUDENT' which letters show rotational symmetry of order 2? 1 fn, x, 'kCn 'STUDENT' esa dkSu ls v{kj ?kw.kZu lefefr dk ?kw.kZu Øe 2 n'kkZrs gSa\ SECTIon - 'b' ([kaM&^c*) Question numbers 5 to 10 carry 2 marks each. 2 ç'u la[;k 5 ls 10 rd izR;sd iz'u 2 vad dk gSA Find the value of (3 + 4 )× 2 0 −1 2 5. (30 + 4−1 )× 22 dk eku Kkr dhft,A 6. Find the value of x, if 22x–1 = 8x–3 2 ;fn 22x–1 = 8x–3 gks rks] x dk eku Kkr dhft,A VIII-MATHEMATICS (1) 7. Divide 3a 4 + 2a 3 − 6a by 3a. 2 3a 4 + 2a 3 − 6a dks 3a ls Hkkx dhft,A 8. Using factor method, divide the polynomial a 2 + 14a + 48 by (a+8). 2 xq.ku[kaM fofèk dk iz;ksx djds cgqin a 2 + 14a + 48 dks (a+8) ls Hkkx dhft,A 9. Solve the following equation : 2 fuEu lehdj.k dks gy dhft, % 11(7 y + 2 ) =5 (6 y − 2 ) 10. Write the order and angle of rotation of a regular hexagon.. 2 ,d fu;fer "kV~Hkqt dk ?kw.kZu lefefr Øe rFkk ?kw.kZu lefefr dks.k fyf[k,A section - 'c' ([kaM&^l*) Question numbers 11 to 20 carry 3 marks each. ç'u la[;k 11 ls 20 rd izR;sd iz'u 3 vad dk gSA 11. Evaluate (ljy dhft,) % 3 12. Compute the Amount for H 65,536 invested for 1½ years at 12½% p.a., the interest being compounded Semi-annually. 3 H 65]536dh jkf'k ds fy, 1½ o"kZ dk 12½% okf"kZd nj ls fuos'k djus ij feJ/u Kkr dhft, tcfd C;kt vèkZokf"kZd la;ksftr gksrk gSA 13. Using long division method, show that (x–3) is a factor of 6+x–4x2+x3. 3 yEch Hkkxfofèk dk ç;ksx djds n'kkZb;s fd (x–3)] 6+x–4x2+x3 dk xq.ku[k.M gSA 14. A number consists of two digits whose sum is 8. If 18 is added to the number, its digits are reversed. Find the number. 3 nks vadksa dh ,d la[;k ds nksuksa vadksa dk ;ksx 8 gSA ;fn bl la[;k esa 18 tksM+k tkrk gS rks blds vadksa dk LFkku iyV tkrk gSA ewy la[;k Kkr dhft,A or (vFkok) VIII-MATHEMATICS (2) The numerator of a fraction is 4 less than the denominator. If 1 is added to both its numerator and denominator, it becomes ½. Find the fraction. 3 ,d fHkUu dk va'k mlds gj ls 4 de gSA ;fn ml fHkUu ds va'k rFkk gj nksuksa esa 1 tksM+k tk, rks ;g ½ cu tkrh gSA og fHkUu Kkr dhft,A 15. Arvind has a piggy bank. It is full of one rupee and fifty paise coins. It contains 3 times as many fifty paise coins as one rupee coins. The total amount of the money in the piggy bank is H 35. How many coins of each kind are there in the piggy bank? 3 vjfoan ds ikl ,d fiXxh cSad gSA ;g ,d :i;s rFkk ipkl iSls ds flDdksa ls Hkjk gqvk gSA blesa ipkl iSls ds flDdksa dh la[;k] ,d #i;s ds flDdksa dh la[;k ls rhu xquh gSA fiXxh cSad esa j[kh dqy /ujkf'k 35 #i;s gSA izR;sd izdkj ds fdrus flDds fiXxh cSad esa j[ks gq, gSa\ 16. In the given figure ABCD is a parallelogram. D C If ∠DAB= 750 and ∠DBC= 600, Calculate ∠CDB and ∠ADB 3 nh xbZ vkÑfr esa] ABCD ,d lekarj prqHkqZt gSA vxj ∠DAB= 750, ∠DBC= 600 gS rks ∠CDB rFkk 600 750 ∠ADB ds eku Kkr dhft,A A B 17. The lengths of one pair of adjacent sides of a D C rectangle ABCD are in the ratio 3 : 4. If one of its diagonal measures 10 cm, find the lengths 10 cm of the sides of rectangle. 3 ,d vk;r dh nks layXu Hkqtkvksa dh yackbZ 3 % 4 ds vuqikr esa gSaA ;fn blds ,d fod.kZ dh eki A B 10 cm gS rks bldh Hkqtkvksa dh yackbZ Kkr dhft,A 18. Construct a quadrilateral ABCD in which sides AB = 4 cm, BC = 5 cm, CD = 4.5 cm, AD = 5.5 cm and diagonal AC = 7.5 cm. 3 ,d prqHkqZt ABCD dh jpuk dhft, ftlesa AB = 4 cm, BC = 5 cm, CD = 4.5 cm, AD = 5.5 cm rFkk fod.kZ AC = 7.5 cm gSA VIII-MATHEMATICS (3) Alternate question for visually challenged students in lieu of Q. No. 18 ç-la- 18 ds LFkku ij n`f"V ckfèkr fo|kfFkZ;ksa ds fy, oSdfYid iz'u In a factory, the production of scooters has risen to 48400 from 40000 in 2 years. Find the rate of growth per annum. ,d dkj[kkus esa 2 o"kks± esa LdwVjksa dk mRiknu 40000 ls c