Document Details

BelovedSulfur

Uploaded by BelovedSulfur

Tags

mathematical statistics normal approximation binomial distribution probability

Summary

These are notes on mathematical statistics, specifically focusing on normal approximation to binomial distribution. Calculations and examples are shown for a binomial distribution with n=25 and p=0.6

Full Transcript

Missing Thursday notes Normal Approximation to Binomial...

Missing Thursday notes Normal Approximation to Binomial O page 10s tru gamma (Y)p x B(n , p) + p)n - EX 3 3 2 pg 105 y ( , p(x) · - = -.... nur X ~Bin (n = 25p = 0. 6) : n(X) 13-K (p P(x113) [ (1)0 6kx0 4 0 267 = = =... K 0 S p* = ~ using normal approximation · want to exp gas = N(15 6) , , where approximate · EX = np = 25x0. 6 = 15 · VarX = np(1 - p) = 15x0. 4 = c * try poisson · inen , Plz Example where is not an exponential family P(z = 82) X ~un(0, f(x) [(0 X has a better approximation. log(1-pP 1 - * In general-p(X = X) = p(X = X +0. 5) = wp = 10g(p) = log(1 p) - = =p + - Tp - P (N(np p)) (ep X) =p. = np(1 n = - =. , E * np = 5 · p(X = X) = P(X = X-0 5). E(X) = n - p n(1 p)15 P(N(np np(1 p)) - = - , · Exponential Family · f(x10) = n(X)c(0) exp[ti(x) - , X support does not depend on a EX. XwEXp(x) , f(x(x) = Je * 5 exp) Y x) = - - a n(x) = - =X. X-N(U , 0) , f(x 14 , 0-5" expl- (X= = - 24x + y2)3 > - = expl -02X2 + X) - c(y , 5) Location and scale family e.. Let9(x) g = (*) Location P( 0. P(q(X)[r) 1 # : P(g(X) Ir) = S 1) fx (x)dx = + (g(x)f(x)dX (X g(x)2r) : (X g(x)2r) : - Eg(X) =g(x) = z(X -4x)2A(X-EX) = var Bivariate distribution (X , Y) X jf(xax Siexdx 1 1 · Discrete = = 3 Sty() 01 2 total ① dy = S. 3y2 1 = O 0 1. 0 2. O g 0. 3 T O 05 0 0 5 Y 0 0 25 marginal... 2 0 o 05 0 05 0 025 0 125 put for Y.... z O ⑧. 0 025 0. 05 0. 075 total 0. 3 0. 5 0. 125 0. 05 1 Il Il II Il =O D =PIX y) X][P(X p(X x) y [P(X X = p(x) + 0+ y) = = = · = = , , pm , P(y = P(X y p(y) y) X y) Y · = = put = = , , of = 4 0 S X 0 = = 1 P(y) = 2 ins = 0. 125 y = 2 everything 0. 075 = 3 0 025. y = 3 * know now to calculate marginal mean Continuous : FC) Area under the curve · P(X += 1)] Ex , y (x, 4) ayay S(tx y Y)dxdy -Size vomme (X / = , N -Stea 3 "IIIIIIIIII => = 1 C'yz/y - 0 Y11 A fx y (x < Gxy2 = Ex · , , y) = , 0x T x - 1 = · fx (x) J: exy2 dy = x dy · = oX3 2x 3((2y3 = fy(y) -Sooxy2dX yz)dy - = = = 42 zy 3[ - ) = = = 3[' -]

Use Quizgecko on...
Browser
Browser