Matemáticas Simplificadas PDF - Libro de Pearson
Document Details
Uploaded by IdolizedChalcedony5227
2009
Arturo Aguilar Márquez, Fabián Valapái Bravo Vázquez, Herman Aurelio Gallegos Ruiz, Miguel Cerón Villegas, Ricardo Reyes Figueroa
Tags
Summary
Esta es una guía práctica de matemáticas que cubre aritmética, álgebra, geometría, trigonometría, geometría analítica, cálculo diferencial e integral para estudiantes de nivel medio superior o superior. El libro destaca por su enfoque práctico con ejemplos desarrollados paso a paso y ejercicios al final de cada tema. Los autores, miembros del Colegio Nacional de Matemáticas, buscan hacer que el aprendizaje de la materia sea más fácil y accesible.
Full Transcript
CONTENIDO Matemáticas simplificadas I Matemáticas simplificadas ARTURO AGUILAR MÁRQUEZ FABIÁN VALAPAI BRAVO VÁZQUEZ HERMAN AURELIO GALLEGOS RUIZ MIGUEL CERÓN VILLEGAS RICARDO REY...
CONTENIDO Matemáticas simplificadas I Matemáticas simplificadas ARTURO AGUILAR MÁRQUEZ FABIÁN VALAPAI BRAVO VÁZQUEZ HERMAN AURELIO GALLEGOS RUIZ MIGUEL CERÓN VILLEGAS RICARDO REYES FIGUEROA REVISIÓN TÉCNICA Ing. Carlos Lozano Sousa (M.Sc.) Ing. Agustín Vázquez Sánchez (M. en C.) Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Estado de México Prentice e Hall a Méxicoo Argentinaa Brasil Colombia C Costa C Rica Chile Ecuador u España Guatemala G Panamá Perú P Puerto o Rico Uruguay u VVenezuela ne COLEGIO NACIONAL DE MATEMÁTICAS Matemáticas simplificadas Segunda edición PEARSON EDUCACIÓN, México, 2009 ISBN: 978-607-442-348-8 Área: Matemáticas Formato: 20 25.5 cm Páginas: 1640 Todos los derechos reservados Editor: Lilia Moreno Olvera e-mail: [email protected] Editor de desarrollo: Alejandro Gómez Ruiz Supervisores de producción: Juan José García Guzmán Rodrigo Romero Villalobos José Hernández Garduño SEGUNDA EDICIÓN, 2009 D.R. © 2009 por Pearson Educación de México, S.A. de C.V. Atlacomulco 500-5° piso Industrial Atoto 53519 Naucalpan de Juárez, Estado de México Cámara Nacional de la Industria Editorial Mexicana. Reg. núm. 1031 Prentice-Hall es marca registrada de Pearson Educación de México, S.A. de C.V. Reservados todos los derechos. Ni la totalidad ni parte de esta publicación pueden reproducirse, registrarse o transmitirse, por un sistema de recuperación de información, en ninguna forma ni por ningún medio, sea electrónico, mecánico, fotoquímico, magnético o electroóptico, por fotocopia, grabación o cualquier otro, sin permiso previo por escrito del editor. El préstamo, alquiler o cualquier otra forma de cesión de uso de este ejemplar requerirá también la autorización del editor o de sus representantes. ISBN: 978-607-442-348-8 4VIRXMGI,EPP IWYREQEVGEHI Impreso en México. Printed in Mexico. Para los que enseñan y para los que aprenden ING. ARTURO SANTANA PINEDA El poder de las matemáticas El que domina las matemáticas piensa, razona, analiza y por ende actúa con lógica en la vida cotidiana, por tanto, domina al mundo. ING. ARTURO SANTANA PINEDA Prefacio E l Colegio Nacional de Matemáticas es una institución que, desde su fundación, ha impartido cursos de regularización en las áreas de Matemáticas, Física y Química, con resultados altamente satisfac- torios. Es por ello que su fundador y director general, el Ingeniero Arturo Santana Pineda, decidió plasmar y compartir la experiencia adquirida en este libro que recopila lo aprendido en todos estos años y cuyo principio fundamental es que la persona que aprende matemáticas, piensa, razona, analiza y por tanto actúa con lógica. A través de esta institución y sus docentes, se ha logrado no sólo resolver el problema de reprobación con el que llega el estudiante sino, también, cambiar su apreciación sobre la materia, de tal forma, que se va convencido de que es fácil aprender matemáticas y que puede incluso dedicarse a ellas. De ahí que jóvenes que han llegado con serios problemas en el área, una vez que descubren su potencial han decidido estudiar alguna carrera afín. De esta forma, se decide unir a los docentes con mayor experiencia y trayectoria dentro de la institución para que conjuntamente escriban un libro que lejos de presunciones formales, muestre la parte práctica que requiere un estudiante al aprender matemáticas y que le sirva de refuerzo para los conocimientos adquiridos en el aula. Enfoque El libro tiene un enfoque 100% práctico, por lo que la teoría que se trata es lo más básica posible, sólo se abordan los conceptos básicos para que el estudiante comprenda y se ejercite en la aplicación de la teoría analizada en el aula, en su libro de texto y con su profesor. De esta manera, se pone mayor énfasis en los ejemplos, en donde el estudiante tendrá la referencia para resolver los ejercicios que vienen al final de cada tema y poder así reafirmar lo aprendido. Estamos conven- cidos de que es una materia en la cual el razonamiento es fundamental para su aprendizaje, sin embargo, la práctica puede lograr que este razonamiento se dé más rápido y sin tanta dificultad. Estructura Matemáticas simplificadas está formado por seis áreas básicas de las matemáticas: Aritmética, Álgebra, Geometría y Trigonometría, Geometría Analítica, Cálculo Diferencial y Cálculo Integral. Cada una de ellas está dividida en capítulos, los cuales llevan un orden específico, siempre tomando en cuenta que el estudio de las matemáticas se va construyendo, es decir, cada tema siempre va ligado con los conocimientos adquiridos en los apartados anteriores. Cada capítulo está estructurado a base de teoría, ejemplos y ejercicios propuestos. Los ejemplos son de- sarrollados paso a paso, de tal forma que el lector pueda entender el procedimiento y posteriormente resolver los ejercicios correspondientes. La solución a los ejercicios se encuentran al final del libro organizados por área, de tal forma que el estudiante puede verificar si los resolvió correctamente y comprobar su aprendizaje. En esta edición se identifican las secciones que corresponden a los problemas de aplicación, los cuales tienen como objetivo hacer una vinculación con casos de la vida cotidiana en donde se pueden aplicar los conoci- mientos adquiridos en cada tema. La primera parte del libro está dividida en once capítulos que corresponden al área de Aritmética, materia clave para el estudio de las demás áreas, donde se inicia con los conceptos básicos, para dar paso al estudio de IX PREFACIO los números enteros y racionales con sus respectivas operaciones, teoría de números, potenciación y radica- ción, notación científica, logaritmos, razones y proporciones, sistemas de numeración y al final, un capítulo de razonamiento matemático, donde el lector podrá verificar lo aprendido en esta área. El estudio del Álgebra corresponde a la segunda parte del libro, siendo fundamental para poder aprender cualquier otra materia o tema relacionado con las matemáticas. Está dividida en 17 capítulos, donde se en- cuentran temas como: Lógica y conjuntos, conceptos básicos de Álgebra, productos notables, factorización, fracciones algebraicas, ecuaciones de primer y segundo grado con aplicaciones, función lineal, sistemas de ecuaciones, potenciación, radicación, números complejos, desigualdades, logaritmos, progresiones, matrices y raíces de una ecuación. Cada tema está desarrollado con la teoría justa y siguiendo con la idea de brindar al lector un gran número de ejemplos para facilitar el aprendizaje de esta materia. La tercera parte corresponde a las áreas de Geometría Euclidiana y Trigonometría, se divide en 17 capítulos. En Geometría se estudian conceptos básicos y temas esenciales como: ángulos, rectas, triángulos, cuadriláteros y polígonos en general, circunferencia y como tema nuevo en esta edición, se agregó el tema de transformacio- nes (escala, rotación simetría axial, simetría central). Cada apartado con sus respectivas definiciones, teoremas y aplicaciones. También se analiza conceptos como perímetros, áreas y volúmenes de figuras geométricas. Para Trigonometría se estudian las funciones trigonométricas, desde su definición, su cálculo, sus gráficas, identidades, ecuaciones con dichas funciones y, aplicaciones a la solución de triángulos rectángulos y obli- cuángulos. Además, se da como un elemento extra la forma trigonométrica de los números complejos. La Geometría Analítica se estudia en la cuarta parte de este libro, a través de trece capítulos que ofrecen las herramientas básicas para abordar los temas de distancia, punto medio, punto de división pendiente, etc., para posteriormente tratar los principales lugares geométricos como: la recta, circunferencia, parábola, elipse e hipérbola. Continúa con un extenso capítulo sobre coordenadas polares y finaliza con el estudio de las ecuaciones paramétricas. Cálculo Diferencial e Integral son los dos apartados con los que concluye el libro. En el primero, se estudia todo lo correspondiente a los conceptos básicos del cálculo diferencial, analizando temas como: funciones, límites (tema que en esta edición fue modificado en su parte teórica), continuidad, la derivada y sus aplicacio- nes, los cuales son desarrollados de manera amplia y práctica. Algunos de estos temas han sido enriquecidos en su teoría o ejercicios. Para el apartado de Cálculo Integral se estudia desde sumas de Riemann, pasando por integrales inmediatas, métodos de integración, área bajo la curva, volúmenes y algunas aplicaciones en la economía (temas también enriquecidos en esta edición). El libro tiene la ventaja de contener el material necesario para aprender y verificar el conocimiento ad- quirido, así como tener la referencia para desarrollar temas, que en el caso de no contar con los elementos necesarios, el lector podrá recurrir a ellos buscando en alguna de las áreas previas a las que está estudiando. Todo lo anterior hace de este texto una referencia total para que el estudiante de nivel medio superior tenga un material de consulta durante todo su bachillerato, o para aquel que inicie estudios superiores, así como para los profesores que en función de necesidades especificas estén en posibilidad de realizar desde una consulta, hasta contar un apoyo para la parte práctica de su curso empleando los ejercicios propuestos. Cabe mencionar que para esta edición se tomaron en cuenta las observaciones hechas por estudiantes y profesores que con su colaboración enriquecieron y mejoraron este material. X Agradecimientos Según Benjamín Franklin, invertir en conocimientos produce siempre los mejores intereses, por lo que espero que obtengas, a través de este libro, las más grandes ganancias para tu futuro profesional. ARTURO SANTANA DIRECTOR GENERAL DE CONAMAT A mi madre por darme la vida y enseñarme a vivirla, Andrey por ser y estar conmigo, Chema e Hiram los alumnos que se volvieron mis hermanos, a mi familia (Echeverría, Pineda y Sánchez), a la UNAM, al ingeniero Santana, Rox llegaste a tiempo, a los cuatro fantásticos: Herman, Fabián, Ricardo y Miguel, fue un placer compartir este trabajo. A mis alumnos que fueron y serán. ARTURO AGUILAR A mis padres María Elena y Álvaro, por brindarme la vida, por sus enseñanzas y consejos; a mi esposa e hijos (Ana, Liam y Daniel), porque son la razón de mi vida y mi inspiración; a mis hermanos Belem, Adalid y Tania por apoyarme incondicionalmente y sobre todo a mis compañeros y amigos: Ricardo, Miguel, Arturo y Herman. FABIÁN VALAPAI BRAVO Una vez mi padre me dijo que “un hombre triunfador no es el que acumula riquezas o títulos, sino es aquel que se gana el cariño, admiración y respeto de sus semejantes”, agradezco y dedico esta obra a la memoria de mi padre el Sr. Herman Gallegos Bartolo que me dio la vida y que por azares del destino ya no se encuentra con nosotros. A Eli y José Fernando que son el motor de mi vida. HERMAN A. GALLEGOS RUIZ A toda mi familia muy en especial a Lupita y Agustín, por haberme dado la vida y ser un ejemplo a seguir; a mis hermanos Elizabeth y Hugo por quererme y soportarme. Quiero además, reconocer el esfuerzo de mis amigos y compañeros Arturo, Fabián, Herman y Ricardo con quien tuve la oportunidad de ver cristalizado este sueño. MIGUEL CERÓN A mis padres Rosa y Gerardo, por darme la vida; a mis hermanos Javier, Gerardo y Arturo; un especial agradecimiento a mi esposa Ma. Mercedes; a mis hijos Ricardo y Allan por su sacrificio, comprensión y tolerancia; un reconocimiento a mis amigos Herman, Arturo A., Fabián, Miguel, Roxana y Arturo S. por hacer realidad nuestro sueño. RICARDO REYES Un agradecimiento especial a los alumnos que tomaron clase con alguno de nosotros, ya que gracias a ellos logramos adquirir la experiencia para poder escribir este libro. LOS AUTORES XI Acerca de los autores Arturo Aguilar Márquez. Llegó como estudiante a Colegio Nacional de Matemáticas, desarrolló habilidades y aptitudes que le permitieron incorporarse a la plantilla de docentes de la Institución. Realizó estudios de Actuaría en la Facultad de Ciencias de la Universidad Nacional Autónoma de México y ha impartido clases de Matemáticas por más de 11 años en CONAMAT. Fabián Valapai Bravo Vázquez. Desde muy temprana edad, con la preparación de profesores de CONAMAT, participó en concursos de matemáticas a nivel nacional. Posteriormente, se incorporó a la plantilla docente de la misma institución donde ha impartido la materia de Matemáticas durante 12 años. Al mismo tiempo, estudió la carrera de Diseño Gráfico en la Escuela Nacional de Artes Plásticas. Herman Aurelio Gallegos Ruiz. Se inició como profesor en CONAMAT. Realizó estudios en la Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional y Actuaría en la Facultad de Ciencias de la Universidad Nacional Autónoma de México. Ha impartido clases de Matemáticas y Física por más de 15 años en Colegio Nacional de Matemáticas. Miguel Cerón Villegas. Es egresado de la Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas del Instituto Politécnico Nacional, realizó estudios de Ingeniería Industrial y tiene más de 15 años de experiencia en docencia. Ricardo Reyes Figueroa. Inició su trayectoria en la disciplina de las Matemáticas tomando cursos en CONAMAT. Dejando ver su gran capacidad para transmitir el conocimiento, se incorpora como docente en la misma institución donde ha impartido la materia de Matemáticas y Física durante 19 años. Realizó sus estudios de Matemáticas en la Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, y de Matemáticas Puras en la Universidad Autónoma Metropolitana. XIII Contenido ARITMÉTICA CAPÍTULO 1 Números reales Clasificación, 4. Propiedades, 4. Lectura y escritura, 5. Orden, 8. Valor absoluto de un número, 11. Valor absoluto y relativo del sistema posicional decimal, 12. CAPÍTULO 2 Números enteros Suma, 16. Resta, 18. Suma y resta con signos de agrupación, 21. Multiplicación, 23. Multiplicación con signos de agrupación, 26. División, 29. Algoritmo de la división, 29. CAPÍTULO 3 Teoría de números Divisibilidad, 34. Criterios de divisibilidad, 34. Números primos, 36. Descomposición de un número en sus factores primos, 37. Máximo común divisor (MCD), 38. Mínimo común múltiplo (mcm), 40. CAPÍTULO 4 Números racionales Fracción común, 46. Clasificación, 47. Conversiones, 48. Fracciones equivalentes, 49. Propiedades, 50. Ubicación en la recta numérica, 51. Suma y resta con igual denominador, 52. Suma y resta con diferente denominador, 53. Multiplicación, 56. División, 59. Operaciones con signos de agrupación, 61. Fracciones complejas, 64. CAPÍTULO 5 Números decimales Definición, 68. Lectura y escritura, 68. Suma y resta, 71. Multiplicación, 74. División, 77. Conversiones, 81. CAPÍTULO 6 Potenciación y radicación Potenciación, 86. Teoremas, 87. Radicación, 91. Teoremas, 92. Simplificación, 94. Suma y resta, 95. Multiplicación, 97. División, 99. Racionalización, 101. Raíz cuadrada, 104. Raíz cúbica, 107. Jerarquía de operaciones, 108. CAPÍTULO 7 Notación científica y logaritmos Notación científica, 114. Suma y resta, 117. Multiplicación y división, 118. Potencias y raíces, 120. Logaritmo de un número, 122. Antilogaritmo, 124. Propiedades de los logaritmos, 125. Cambios de base, 128. CAPÍTULO 8 Razones y proporciones Cantidades proporcionales, 132. Proporción, 132. Media proporcional (media geométrica), 134. Cuarta proporcional, 135. Tercera proporcional, 136. Regla de tres simple, 136. Regla de tres compuesta, 140. Tanto por ciento, 141. Interés simple, 147. Fórmulas para determinar el interés simple, 147. Fórmulas para el cálculo del capital, el tiempo y la tasa, 149. XV CONTENIDO CAPÍTULO 9 Sistemas de numeración Definición, 152. Conversiones, 154. Conversión de un número en base “B” a base 10 N(B) → N(10 ), 154. Conversión de un número en base 10 a otra base N(10 ) → N(B), 157. Conversión de un número binario a octal N(2) → N(8), 160. Conversión de un número octal a binario N(8) → N(2), 160. Conversión de un número binario a hexadecimal N(2) → N(16), 161. Conversión de un número hexadecimal a binario N(16) → N(2), 162. Suma con números en base distinta de 10, 164. Resta con números en base distinta de 10, 169. Multiplicación con números en base distinta de 10, 173. División con números en base distinta de 10, 176. Sistemas antiguos de numeración, 178. Sistema de numeración maya, 178. Sistema de numeración babilónico, 182. Sistema de numeración romano, 185. Sistema de numeración egipcio, 187. CAPÍTULO 10 Sistema métrico decimal y números denominados Sistema métrico decimal, 194. Unidades de longitud, 194. Equivalencias de longitud en el sistema métrico decimal, 194. Unidades de superficie, 195. Equivalencias de superficie en el sistema métrico decimal, 195. Unidades de volumen, 196. Equivalencias de volumen en el sistema métrico decimal, 196. Unidades de masa, 197. Equivalencias de masa en el sistema métrico decimal, 197. Números denominados, 198. Equivalencias de medidas de tiempo, 198. Equivalencias de medidas angulares, 198. Suma, 200. Resta, 201. Multiplicación, 202. División, 203. CAPÍTULO 11 Razonamiento aritmético Problemas con números enteros, 206. Problemas con fracciones, 209. Problemas de agrupación, 212. Suma de los divisores de un número, 215. Problemas de repartimientos proporcionales, 217. ÁLGEBRA CAPÍTULO 1 Conjuntos y lógica Simbología, 224. Conjuntos, 225. Conjuntos de números, 226. Tipos de números, 226. Escritura y repre- sentación de conjuntos, 227. Cardinalidad, 228. Conjuntos equivalentes, 229. Conjuntos iguales, 230. Conjuntos disjuntos, 230. Subconjuntos, 231. Conjunto potencia, 231. Conjunto universo, 232. Diagramas de Venn, 232. Unión de conjuntos, 234. Intersección de conjuntos, 235. Conjunto complemento, 237. Dife- rencia de conjuntos, 239. Operaciones de conjuntos con diagramas de Venn, 241. Álgebra de conjuntos, 248. Lógica, 249. Tipos de proposiciones, 250. Proposiciones compuestas, 250. Leyes de De Morgan, 253. Proposiciones condicionales, 253. Relación de proposiciones abiertas con conjuntos, 254. Cálculo proposicional, 258. Construcción de las tablas de verdad, 260. Producto cartesiano de conjuntos, 263. CAPÍTULO 2 Conceptos básicos de álgebra Álgebra, 266. Expresiones algebraicas, 266. Reducción de términos semejantes, 266. Valor numérico, 268. Lenguaje algebraico, 270. Polinomios, 272. Suma, 272. Resta, 274. Signos de agrupación, 276. Reglas para suprimir los signos de agrupación, 276. Multiplicación, 278. División, 283. Ley de los expo- nentes para la división, 284. CAPÍTULO 3 Productos notables Definición, 294. Cuadrado de un binomio, 294. Cuadrado de un trinomio, 295. Binomios conjugados, 297. Productos donde se aplican binomios conjugados, 298. Binomios con término común, 300. Cubo de un binomio, 303. Multiplicaciones que se resuelven con la aplicación de productos notables, 304. CAPÍTULO 4 Factorización Definición, 308. Factor común, 308. Factor común por agrupación de términos, 309. Diferencia de cua- drados, 311. Trinomio cuadrado perfecto, 312. Pasos para factorizar un trinomio cuadrado perfecto, 312. XVI CONTENIDO Trinomio de la forma x2 + bx + c, 315. Trinomio de la forma a x2 + bx + c, 318. Por agrupación de términos, 319. Casos especiales, 320. Suma o diferencia de cubos, 322. Suma o diferencia de potencias impares iguales, 324. Factorización que combina un trinomio cuadrado perfecto y una diferencia de cuadrados, 325. Factorización para completar el trinomio cuadrado perfecto, 326. Expresiones algebraicas donde se utilizan dos o más casos, 327. Descomposición en factores de un polinomio por división sintética, 328. CAPÍTULO 5 Fracciones algebraicas Máximo común divisor (MCD), 332. Mínimo común múltiplo (mcm), 332. Simplificación de fracciones algebraicas, 334. Suma y resta de fracciones con denominador común, 336. Suma y resta de fraccio- nes con denominadores diferentes, 337. Multiplicación de fracciones algebraicas, 341. División de frac- ciones algebraicas, 343. Combinación de operaciones con fracciones, 345. Fracciones complejas, 347. CAPÍTULO 6 Ecuaciones de primer grado Conceptos generales, 352. Ecuaciones de primer grado con una incógnita, 352. Con signos de agru- pación y productos indicados, 355. Fraccionarias, 357. Con valor absoluto, 360. Con literales, 362. Problemas sobre números, 363. Problemas sobre edades, 366. Problemas sobre mezclas, 367. Problemas sobre monedas, 369. Problemas sobre costos, 370. Problemas sobre el tiempo requerido para realizar un trabajo, 372. Problemas sobre comparación de distancias y tiempos, 374. Problemas de aplicación a la geometría plana, 376. Despejes de fórmulas, 378. CAPÍTULO 7 Función lineal Plano cartesiano, 382. Localización de puntos, 382. Función, 383. Constante, 383. Ecuación x = k, 383. Lineal, 384. Generalidades, 385. CAPÍTULO 8 Sistemas de ecuaciones Ecuación lineal, 394. Solución de una ecuación lineal, 394. Gráfica, 396. Sistema de dos ecuaciones lineales con dos variables, 398. Métodos de solución, 400. Sistema de dos ecuaciones que se reducen a lineales, 412. Métodos para resolver un sistema de tres ecuaciones lineales con tres variables, 421. Reducción (suma y resta), 421. Determinantes, 426. Descomposición de una fracción algebraica en suma de fracciones parciales, 429. CAPÍTULO 9 Potenciación Definición, 438. Teoremas de los exponentes, 438. Potencia de un binomio, 447. Factorial de un número, 447. Binomio de Newton, 447. Cálculo del i-ésimo término, 450. Triángulo de Pascal, 451. CAPÍTULO 10 Radicación Radical, 454. Elementos de un radical, 454. Raíz principal de un radical, 454. Radical como exponente, 454. Teoremas, 455. Representación de un exponente fraccionario como radical, 456. Teoremas, 457. Cálculo de raíces, 458. Simplificación, 460. Introducción de factores, 462. Suma y resta, 464. Multiplica- ción, 466. Con índices diferentes, 468. División, 469. Con índices iguales, 469. Con índices diferentes, 470. Racionalización, 471. Racionalización del denominador de una fracción, 471. Racionalización del numerador de una fracción, 474. CAPÍTULO 11 Números complejos Números imaginarios, 478. Número imaginario puro, 478. Suma y resta, 479. Potencias de i, 480. Mul- tiplicación y división, 481. Números complejos, 483. Suma y resta, 484. Multiplicación por un escalar, 485. Multiplicación, 487. División, 489. Representación gráfica, 490. Valor absoluto o módulo, 492. Conjugado, 493. XVII CONTENIDO CAPÍTULO 12 Ecuaciones de segundo grado Definición, 498. Solución de una ecuación de segundo grado completa, 498. Fórmula general, 501. Factorización, 504. Solución de una ecuación de segundo grado incompleta, 506. Mixtas, 506. Puras, 507. Función cuadrática, 513. Análisis de una función cuadrática, 513. Relación entre las raíces de una ecuación de segundo grado, 516. Deducción de una ecuación de segundo grado dadas las raíces, 518. Ecuaciones con radicales, 519. Sistema de ecuaciones cuadráticas, 521. Procedimiento para la resolución de un sistema de ecuaciones cuadrático-lineal con dos incógnitas, 521. Procedimiento para la resolución de un sistema de dos ecuaciones cuadráticas, 522. Procedimiento para la resolución de un sistema cuadrático mixto, 522. CAPÍTULO 13 Desigualdades Definición, 526. Propiedades de las desigualdades, 526. Desigualdad lineal con una variable, 527. Desigualdad cuadrática con una variable, 530. Método por casos, 530. Método por intervalos, 530. Método gráfico, 533. Desigualdad racional, 535. Método por casos, 535. Método por intervalos, 538. Desigualdad que tiene la expresión ( x – a) ( x – b) ( x – c)..., 540. Desigualdades con valor absoluto, 541. Casos especiales de desigualdades con valor absoluto, 542. Gráfica de una desigualdad lineal con dos variables, 544. Sistema de desigualdades lineales con dos variables, 546. CAPÍTULO 14 Logaritmos Definición, 550. Aplicación de la definición de logaritmo, 551. Propiedades, 552. Aplicación de las pro- piedades para el desarrollo de expresiones, 553. Ecuaciones logarítmicas, 558. Ecuaciones exponenciales, 560. CAPÍTULO 15 Progresiones Sucesión infinita, 572. Suma, 574. Progresión aritmética o sucesión aritmética, 575. Fórmula para deter- minar el n-ésimo término en una progresión aritmética, 576. Fórmulas para determinar el primer término, número de términos y la razón, 577. Suma de los n primeros términos en una progresión aritmética, 580. Interpolación de medios aritméticos, 583. Media aritmética o promedio aritmético, 584. Progresión geomé- trica o sucesión geométrica, 585. Fórmula para obtener el n-ésimo término en una progresión geométrica, 586. Fórmulas para obtener el 1er término, número de términos y la razón, 588. Suma de los n primeros términos de una progresión geométrica, 591. Progresión geométrica infinita, 594. Interpolación de medios geométricos, 596. Interés compuesto, 598. Depreciación, 601. CAPÍTULO 16 Matrices Definición, 604. Orden de una matriz, 604. Número de elementos de una matriz, 605. Tipos de matrices, 605. Multiplicación por un escalar, 608. Suma, 609. Resta, 611. Multiplicación, 613. Propiedades de las matrices, 614. Determinantes, 615. Sea la matriz de orden 2, 615. Sea la matriz de orden 3, 616. Propiedades, 616. Matriz inversa, 618. Método de Gauss-Jordan, 618. Inversa de una matriz para resolver sistemas de ecuaciones, 620. CAPÍTULO 17 Raíces de un polinomio Teorema del factor y del residuo, 624. Raíces, 625. Cálculo de las raíces por división sintética, 628. Regla de los signos de Descartes, 628. XVIII CONTENIDO GEOMETRÍA Y TRIGONOMETRÍA CAPÍTULO 1 Conceptos básicos Conceptos básicos, 636 CAPÍTULO 2 Ángulos Definición, 640. Medidas, 640. Sistema sexagesimal, 640. Sistema cíclico o circular, 642. Conversión de grados a radianes y de radianes a grados, 642. Operaciones, 644. Clasificación de acuerdo con su medida, 646. Convexos, 646. Llano o de lados colineales, 647. Cóncavo o entrante, 647. Perigonal o de vuelta entera, 647. Complementarios, 647. Suplementarios, 647. Conjugados, 648. CAPÍTULO 3 Rectas perpendiculares y paralelas Perpendicularidad, 654. Paralelismo, 654. Ángulos opuestos por el vértice, 655. Ángulos contiguos, 655. Ángulos adyacentes, 655. Rectas paralelas cortadas por una recta secante, 655. CAPÍTULO 4 Triángulos Definición, 662. Clasificación de los triángulos, 662. Por sus lados, 662. Por sus ángulos, 662. Rectas y puntos notables, 663. Teoremas, 664. Triángulos congruentes, 669. Teoremas de congruencia, 669. Proporciones, 676. Teoremas de proporciones, 677. Semejanza, 678. Propiedades fundamentales, 678. Teoremas de semejanza, 679. Teorema de Tales, 681. Teorema de Pitágoras, 686. Naturaleza del triángulo a partir del teorema de Pitágoras, 688. Teoremas de semejanza en triángulos rectángulos, 689. CAPÍTULO 5 Cuadriláteros Definición, 694. Clasificación, 694. Teorema, 695. Propiedades de los paralelogramos, 695. Demostraciones, 697. Paralelogramos especiales, 698. Propiedades de los trapecios, 700. Propiedades de los trapecios isósceles, 700. CAPÍTULO 6 Polígonos Definición, 704. Clasificación, 704. Por sus lados, 704. Por sus ángulos, 704. Elementos, 705. Número de diagonales, 705. Número de diagonales trazadas desde un mismo vértice, 705. Número de diagonales totales, 705. Ángulos de un polígono, 707. CAPÍTULO 7 Transformaciones Escala, 714. Figuras a escala, 714. Transformaciones de figuras en el plano, 716. Traslación, 716. Rotación, 719. Simetría axial, 723. Simetría central, 728. CAPÍTULO 8 Circunferencia y círculo Circunferencia, 734. Rectas notables, 734. Porciones de un círculo, 734. Circunferencia y polígonos, 735. Ángulos notables, 735. Teoremas, 739. Tangente a una circunferencia, 744. Longitud de una tangente, 744. Propiedades de las tangentes, 744. Posiciones relativas, 745. XIX CONTENIDO CAPÍTULO 9 Perímetros y superficies Definiciones, 750. Perímetro y área de una figura plana, 750. Triángulos, 750. Cuadriláteros, 751. Polígonos regulares, 753. Circunferencia y círculo, 754. Sector y segmento circular, 754. Área de figuras combinadas, 757. CAPÍTULO 10 Cuerpos geométricos, áreas y volúmenes Ángulo diedro, 764. Clasificación, 764. Ángulo triedro, 764. Clasificación, 765. Ángulo poliedro, 766. Clasificación, 766. Poliedro, 767. Elementos, 767. Clasificación, 767. Poliedros regulares, 768. Clasificación, 768. Desarrollo, 769. Área y volumen de un poliedro regular, 769. Prisma, 772. Clasificación, 772. Área y volumen, 774. Pirámides, 776. Área y volumen, 777. Cuerpos con superficies no planas, 779. Cilindro circular, 780. Cono circular, 780. Esfera, 783. Figuras esféricas y zonas esféricas, 783. Área de figuras esféricas y volumen de cuerpos esféricos, 784. CAPÍTULO 11 Funciones trigonométricas Funciones trigonométricas, 790. Definiciones, 790. Cofunciones, 791. Rango numérico, 792. Valor, 792. Signos de las funciones trigonométricas en el plano cartesiano, 794. Tabla de signos, 794. Funciones trigonométricas para ángulos mayores que 90°, 796. Funciones trigonométricas de ángulos negativos, 798. Valores numéricos de las funciones trigonométricas circulares, 799. CAPÍTULO 12 Funciones trigonométricas para ángulos notables Valor de las funciones trigonométricas de los ángulos de 0°, 90°, 180°, 270° y 360°, 804. Valor de las funciones trigonométricas de los ángulos de 30°, 45° y 60°, 805. Aplicación de los valores trigonomé- tricos de los ángulos notables, 807. CAPÍTULO 13 Representación gráfica de las funciones trigonométricas Gráficas de las funciones trigonométricas, 812. Gráfica de y = sen x, 812. Gráfica de y = cos x, 813. Gráfica de y = tan x, 813. Gráfica de y = ctg x, 814. Gráfica de y = sec x, 814. Gráfica de y = csc x, 815. Resumen, 815. Amplitud, periodo y desplazamiento de fase, 816. Gráficas de y = sen–1 x, y = cos–1 x, y = tan–1 x, 819. CAPÍTULO 14 Identidades y ecuaciones trigonométricas Identidades trigonométricas, 824. Obtención de las identidades trigonométricas básicas, 824. Demostración de identidades trigonométricas, 825. Obtención de las identidades trigonométricas de la suma y la diferencia de ángulos, 830. Valor de una función trigonométrica para la suma y la diferencia de ángulos , 832. Aplicación de las funciones trigonométricas de la suma y la diferencia de ángulos, 833. Funciones trigonométricas del ángulo doble, 837. Seno del ángulo doble sen (2a), 837. Coseno del ángulo doble cos (2a), 837. Tangente del ángulo doble tan (2a), 838. Funciones trigonométricas de la mitad de un ángulo, 839. Seno de la mitad de un ángulo: sen , 839. Coseno de la mitad de un ángulo: cos , 839. Tangente de la mitad 2 2 de un ángulo: tan , 839. Identidades trigonométricas para transformar un producto en suma o resta, 844. 2 Demostración de identidades, 846. Identidades para transformar sumas o restas de funciones trigonométricas en un producto, 848. Demostración de identidades, 851. Ecuaciones trigonométricas, 852. CAPÍTULO 15 Triángulos rectángulos Solución de triángulos rectángulos, 858. XX CONTENIDO CAPÍTULO 16 Triángulos oblicuángulos Solución de triángulos oblicuángulos, 868. Ley de senos, 868. Ley de cosenos, 870. Ley de tangentes, 872. CAPÍTULO 17 Forma trigonométrica de los números complejos Forma trigonométrica o polar, 882. Operaciones fundamentales, 883. GEOMETRÍA ANALÍTICA CAPÍTULO 1 Geometría analítica unidimensional Segmento de recta, 892. Distancia entre dos puntos, 892. Distancia dirigida, 892. División de un segmento en una razón dada, 894. Punto medio, 896. CAPÍTULO 2 Geometría analítica bidimensional Plano cartesiano, 900. Localización de puntos, 900. Distancia entre dos puntos, 901. División de un segmento en una razón dada, 903. Punto medio de un segmento de recta, 907. Puntos de trisección de un segmento de recta, 908. Área de un triángulo, 909. Área de un polígono, 910. CAPÍTULO 3 Pendiente de una recta Definiciones, 914. Pendiente de una recta que pasa por dos puntos, 914. Condición de paralelismo, 917. Condición de perpendicularidad, 918. Ángulo entre dos rectas, 920. CAPÍTULO 4 Lugar geométrico Problemas fundamentales de la geometría analítica, 926. Primer problema (discusión de un lugar geométrico), 926. Segundo problema (dadas las condiciones del lugar geométrico, encontrar su ecuación), 931. CAPÍTULO 5 Línea recta Definición, 936. Ecuaciones de la recta, 936. Ecuación general, 936. Ecuación punto – pendiente, 936. Ecuación de la recta que pasa por dos puntos, 936. Formas de la ecuación de una recta, 941. Ecuación de la recta en su forma pendiente-ordenada al origen (forma ordinaria o reducida), 941. Ecuación de la recta en su forma simétrica, 946. Familia de rectas, 949. Ecuación de la recta en su forma normal, 951. Rectas notables en el triángulo, 961. Mediatriz, 961. Mediana, 961. Altura, 962. Bisectriz, 965. CAPÍTULO 6 Circunferencia Definición, 970. Ecuaciones de la circunferencia, 970. Ecuación en su forma ordinaria, 970. Ecuación en su forma general, 970. Ecuación en su forma canónica, 970. Transformación de la ecuación general a la forma ordinaria, 976. Familia o haz de circunferencias, 980. CAPÍTULO 7 Transformación de coordenadas Traslación de ejes, 982. Traslación de un punto a un nuevo sistema de coordenadas, 982. Transformación de una curva trasladando el origen, 983. Transformación de una ecuación, 985. XXI CONTENIDO CAPÍTULO 8 Parábola Definición, 990. Ecuación de la parábola con vértice en el origen, 992. Elementos y ecuación de una parábola con vértice en el origen, 992. Ecuación de la parábola con vértice en el punto (h, k), 998. Elementos y ecuación de una parábola con vértice en (h, k), 999. Ecuación de la parábola que pasa por tres puntos, 1004. Ecuación de una recta tangente a una parábola, 1007. CAPÍTULO 9 Elipse Definición, 1010. Ecuación de una elipse con centro en el origen, 1011. Elementos y ecuación, 1012. Dados sus elementos obtener la ecuación de la elipse con centro en el origen, 1015. Ecuación de una elipse con centro en el punto (h, k), 1018. Dada la ecuación, obtener sus elementos, 1019. Dados sus elementos, obtener la ecuación, 1022. Casos especiales, 1025. Ecuación de la elipse que pasa por cuatro puntos, 1026. Ecuación de una recta tangente a una elipse, 1030. CAPÍTULO 10 Hipérbola Definición, 1032. Ecuación de una hipérbola con centro en el origen, 1034. Elementos y ecuación, 1035. Dada la ecuación, obtener sus elementos, 1036. Dados sus elementos, obtener la ecuación, 1039. Ecuación de una hipérbola con centro en el punto (h, k), 1041. Elementos y ecuación, 1041. Dada la ecuación obtener sus elementos, 1043. Dados sus elementos obtener la ecuación, 1046. Casos especiales, 1049. Ecuación de una recta tangente a una hipérbola en un punto cualquiera, 1051. CAPÍTULO 11 Ecuación general de cónicas Rotación de ejes, 1054. Ángulo de rotación, 1055. Transformación de la ecuación general de segundo grado, 1056. Transformación aplicando las identidades trigonométricas, 1057. Transformación de la ecuación de una cónica por rotación y traslación de los ejes, 1059. Identificación de una cónica, 1061. Identificación de cónicas degeneradas, 1063. Definición general de cónicas, 1065. Ecuaciones de las directrices de la elipse y de la hipérbola, 1067. Tangente a una cónica, 1069. Dado el punto de tangencia, 1069. Dada la pendiente de la recta tangente, 1071. Dado un punto exterior a la curva, 1073. CAPÍTULO 12 Coordenadas polares Sistema polar, 1076. Gráfica de un punto en coordenadas polares, 1076. Conversión de un punto en coordenadas polares, 1078. Relación entre las coordenadas rectangulares y polares, 1078. Transformación de un punto en coordenadas polares a rectangulares, 1079. Transformación de un punto en coordenadas rectangulares a polares, 1079. Distancia entre dos puntos en coordenadas polares, 1081. Área de un triángulo en coordenadas polares, 1081. Transformación de una ecuación rectangular a polar, 1082. Trans- formación de una ecuación polar a rectangular, 1084. Identificación de una cónica en su forma polar, 1087. Gráfica de una ecuación en coordenadas polares, 1088. Análisis de una ecuación en coordenadas polares, 1088. Ecuación polar de la recta, 1093. Ecuación polar de la circunferencia, 1095. Intersección de curvas en coordenadas polares, 1095. CAPÍTULO 13 Ecuaciones paramétricas Definición, 1100. Transformación de ecuaciones paramétricas a rectangulares, 1100. Sistemas paramétricos algebraicos, 1100. Sistemas de ecuaciones paramétricas que contienen funciones trigonométricas, 1103. XXII CONTENIDO CÁLCULO DIFERENCIAL CAPÍTULO 1 Relaciones y funciones Relación, 1110. Función, 1110. Notación, 1113. Clasificación, 1113. Valor de una función, 1113. Dominio, contradominio y rango de una función, 1116. Algunos tipos de funciones, 1119. Función constante, 1119. Función lineal, 1120. Función identidad, 1122. Función cuadrática, 1122. La función f(x) 5 xn, 1123. Función racional, 1124. Función raíz cuadrada, 1127. Función valor absoluto, 1129. Función mayor entero, 1132. Función característica, 1135. Gráfica de una función a partir de otra conocida, 1136. Desplazamientos, 1136. Alargamientos, 1136. Reflexiones verticales y horizontales, 1137. Funciones creciente y decreciente, 1140. Funciones inyectiva, suprayectiva y biyectiva, 1140. Función inyectiva (uno a uno), 1140. Función suprayectiva, 1142. Función biyectiva, 1143. Operaciones con funciones, 1144. Función composición (Función de funciones), 1147. Funciones par e impar, 1150. Función inversa, 1151. Propiedades, 1152. Funciones trascendentes, 1153. Función exponencial, 1153. Funciones trigonométricas, 1156. Las funciones como modelos matemáticos, 1158. CAPÍTULO 2 Límites Definición intuitiva de límite, 1162. Definición formal de límite, 1166. Teoremas, 1168. Límites cuando x tiende al infinito, 1176. Asíntotas horizontales, 1178. Asíntotas oblicuas, 1180. Límites laterales, 1183. Límites de funciones trigonométricas, 1186. CAPÍTULO 3 Continuidad Continuidad puntual, 1194. Discontinuidad evitable o removible, 1196, Continuidad de una función en un intervalo, 1201. Continuidad por la derecha, 1201. Continuidad por la izquierda, 1201. Continuidad de una función en un intervalo abierto, 1201. Continuidad en un intervalo cerrado, 1202. Continuidad en un intervalo semiabierto, 1204. Teorema del valor intermedio, 1206. CAPÍTULO 4 La derivada Definición, 1210. Interpretación geométrica, 1210. Regla de los cuatro pasos, 1211. Fórmulas para determinar la derivada de una función algebraica, 1213. Derivadas de funciones trascendentes, 1220. Derivadas de funciones implícitas, 1233. Derivadas de orden superior, 1237. Derivadas de ecuaciones polares, 1240. Derivada de ecuaciones paramétricas, 1241. CAPÍTULO 5 Aplicaciones de la derivada Rectas tangente y normal a una curva, 1246. Tangente, 1246. Normal, 1246. Ecuación de la recta tangente, 1247. Ecuación de la recta normal, 1247. Ángulo entre dos curvas, 1251. Curvatura, 1254. Radio de curvatura, 1254. Círculo de curvatura, 1256. Centro de curvatura, 1256. Radio de curvatura en coordenadas paramétricas, 1258. Radio de curvatura en coordenadas polares, 1259. Máximos y mínimos de una función, 1261. Criterio de la primera derivada para encontrar puntos máximos y mínimos, 1261. Criterio de la segunda derivada para encontrar puntos máximos y mínimos, 1265. Optimización, 1268. Movimiento rectilíneo uniforme, 1276. Aceleración media, 1277. Razón de cambio, 1278. Aplicaciones a la economía, 1287. Regla de L9Hôpital, 1293. Teorema de Rolle, 1299. Teorema del valor medio, 1301. Diferenciales, 1303. Aplicaciones de la diferencial, 1306. XXIII CONTENIDO CÁLCULO INTEGRAL CAPÍTULO 1 Sumas Definición, 1314. Propiedades, 1314. Suma de Riemann (rectángulos inscritos y circunscritos), 1316. CAPÍTULO 2 Integrales inmediatas Definición, 1322. Integrales por cambio de variable, 1323. CAPÍTULO 3 Integrales de diferenciales trigonométricas Integrales de la forma: ° sen m v dv, ° cos n v dv, con m y n impar, 1344. Integrales de la forma: ° tan n v dv, n ° cot v dv con n par o impar, 1346. Integrales de la forma: ° sec n v dv, ° csc n v dv con n par, 1348. Integrales de la forma: ° tan v sec n v dv, ° cot m v ? csc n v dv con n par y m par o impar, 1349. Integrales m de la forma: ° sen m v dv y ° cos n v dv, con m y n par, 1351. Integrales de la forma ° sen mx cos nx dx, ° sen mx sen nx dx, ° cos mx cos nx dx, 1354. CAPÍTULO 4 Métodos de integración Sustitución trigonométrica, 1358. Integración por partes, 1361. Integración por fracciones parciales, 1365. Integración por sustitución de una nueva variable, 1375. Diferenciales que contienen potencias fraccionarias de x, 1375. Diferenciales que contienen potencias fraccionarias de a 1 bx, 1376. Integración de las diferenciales binomias, 1379. Transformaciones de diferenciales trigonométricas, 1382. CAPÍTULO 5 Aplicaciones de la integral Constante de integración, 1388. Integral definida, 1391. Cálculo de una integral definida, 1391. Propiedades de la integral definida, 1391. Área bajo la curva, 1393. Fórmula de trapecios, 1397. Fórmula 1 de Simpson , 1401. Área entre curvas planas, 1402. Rectángulos de base dx, 1402. Rectángulos de 3 base dy, 1402. Volumen de sólidos de revolución, 1406. Método de discos, 1406. Método de las arandelas, 1408. Método de capas, 1410. Longitud de arco, 1415. Aplicaciones a la economía, 1417. Función de costos, 1417. Función de ingresos, 1418. CAPÍTULO 6 Ecuaciones diferenciales Introducción, 1422. Definición, 1422. Ecuación diferencial de primer orden, 1424. Variables separables, 1424. Ecuaciones homogéneas, 1434. Solución a los ejercicios de aritmética, 1441. Solución a los ejercicios de álgebra, 1455. Solución a los ejercicios de geometría y trigonometría, 1497. Solución a los ejercicios de geometría analítica, 1525. Solución a los ejercicios de cálculo diferencial, 1553. Solución a los ejercicios de cálculo integral, 1587. Tablas, 1603. XXIV Aritmética CAPÍTULO 1 NÚMEROS REALES HISTÓRICA Reseña L os números naturales tienen su origen en una necesidad tan antigua como lo son las primeras civilizaciones: la necesidad de contar. El hombre primitivo identificaba objetos con características iguales y podía distinguir entre uno y otro; pero no le era posible captar la cantidad a simple vista. Por ello empezó a representar las cantidades mediante marcas en huesos, trozos de madera o piedra; cada marca representaba un objeto observado, así concibió la idea del número. Para el siglo X d. C. el matemático y poeta Omar Khayyam estableció una teoría general de número y añadió algunos elementos a los números racio- nales, como son los irracionales, para que pudieran ser medidas todas las magnitudes. Sólo a finales del siglo XIX se formalizó la idea de continuidad y se dio una definición satisfactoria del conjunto de los números reales; los trabajos de Cantor, Dedekind, Weierstrass, Heine y Meray, entre otros, destacan en esta labor. Omar Khayyam (1048-1122) 1 CAPÍTULO MATEMÁTICAS SIMPLIFICADAS Clasificación El hombre ha tenido la necesidad de contar desde su aparición sobre la Tierra hasta nuestros días, para hacerlo se auxilió de los números 1, 2, 3, 4, 5,…, a los que llamó números naturales. Números que construyó con base en el principio de adición; sin embargo, pronto se dio cuenta de que este principio no aplicaba para aquellas situaciones en las que necesitaba descontar. Es entonces que creó los números negativos, así como el elemento neutro (cero), que con los números naturales forman el conjunto de los números enteros, los cuales son: …, − 5, − 4, − 3, − 2, −1, 0, 1, 2, 3, 4, 5, … Asimismo, se percató que al tomar sólo una parte de un número surgían los números racionales, que se expresan 2 1 0 6 8 como el cociente de 2 números enteros, con el divisor distinto de cero, ejemplo: , − , , , − , … 3 4 5 1 2 Aquellos números que no es posible expresar como el cociente de 2 números enteros, se conocen como números irracionales: 3 , 3 2 , 5 81 , π, … Al unir los números anteriores se forman los números reales, los cuales se representan en la recta numérica. − −3 −2 −1 0 1 2 3 Propiedades Los números reales son un conjunto cerrado para la suma y la multiplicación, lo que significa que la suma o multiplicación de números reales da como resultado otro número real. De lo anterior se desprenden las siguientes propiedades: Propiedad Suma Multiplicación Ejemplos 3+5=8苸R Cerradura a+b苸R a⋅b苸R (2)(− 3) = − 6 苸 R 1 3 3 1 + = + 2 7 7 2 Conmutativa a+b=b+a a⋅b=b⋅a (2)冠15冡 = 冠15冡(2) 兹5 + (3 + 4) = (兹5 + 3) + 4 Asociativa a + (b + c) = (a + b) + c a(b ⋅ c) = (a ⋅ b)c 3 ⋅ (2 ⋅ 5) = (3 ⋅ 2) ⋅ 5 5+0=5 Elemento neutro a+0=a a⋅1=a 7⋅1=7 2 + (− 2) = 0 1 Inverso a + ( − a) = 0 a⋅ =1 1 a 5⋅ =1 5 2(7 + 3) = 2 ⋅ 7 + 2 ⋅ 3 Distributiva a(b + c) = ab + ac 5 ⋅ 4 + 5 ⋅ 8 = 5(4 + 8) 4 CAPÍTULO 1 ARITMÉTICA Números reales EJERCICIO 1 Identifica y escribe el nombre de la propiedad a la que se hace referencia. 1. 3 + (− 3) = 0 ⎛ 1⎞ ⎛ 1⎞ 2. ⎜ ⎟ ( 4 ) = ( 4 ) ⎜ ⎟ ⎝ 3⎠ ⎝ 3⎠ 3. (8)(− 3) = − 24 苸 R ⎛ 1 ⎞ ⎛ 1⎞ 4. 7 ⋅ ⎜ ⋅ 4 ⎟ = ⎜ 7 ⋅ ⎟ ⋅ 4 ⎝ 3 ⎠ ⎝ 3⎠ 3 3 5. − +0=− 4 4 6. 4(− 3 + 5) = 4(− 3) + 4(5) 1 ⎛ 1 ⎞ 7. + ⎜− ⎟ =0 7 ⎝ 7⎠ 8. (− 3) + (− 8) = −11 苸 R 2 5 5 ⎛ 2⎞ 9. − + = + ⎜− ⎟ 4 9 9 ⎝ 4⎠ ( 10. 3 + −2 + 7 = ( 3 + ( −2 )) + 7 ) 11. 2 ⋅ 3 + 2 ⋅ 7 = 2 ( 3+7 ) 12. − 8 ⋅ 1 = − 8 1 1 13. ⋅ =1 4 1 4 14. − 2 + 1 1 = + − 2 6 6 ( ) 15. (8)(4) = (4)(8) 16. 5 ⋅ (3 ⋅ 6) = (5 ⋅ 3) ⋅ 6 ⁄ Verifica tus resultados en la sección de soluciones correspondiente Lectura y escritura Un número en el sistema decimal se escribe o se lee con base en la siguiente tabla: Billones Millares de millón Millones Millares Unidades Centenas de millares Unidades de millares Decenas de millares Centenas de billón Centenas de millón Unidades de millón Unidades de billón Centenas de millar Unidades de millar Decenas de billón Decenas de millón Decenas de millar Centenas Unidades de millón de millón de millón Decenas En la tabla, los billones, millares de millón, millones, millares y unidades reciben el nombre de periodos, los que a su vez se dividen en clases y cada una de éstas se forma por unidades, decenas y centenas. 5 1 CAPÍTULO MATEMÁTICAS SIMPLIFICADAS EJEMPLOS Ejemplos 1 Lee el número 37. Solución 37 se acomoda de derecha a izquierda en el periodo de las unidades. Unidades Centenas Unidades Decenas 3 7 Al número dado lo forman 3 decenas y 7 unidades y se lee: “treinta y siete”. 2 Lee el número 824. Solución 824 se acomoda de derecha a izquierda en el periodo de las unidades. Unidades Centenas Unidades Decenas 8 2 4 Al número lo forman 8 centenas, 2 decenas y 4 unidades. Se lee: “ochocientos veinticuatro”. 3 Lee el número 37 643. Solución Se acomoda en los periodos de los millares y las unidades. Millares Unidades Centenas Unidades Centenas Unidades de millar de millar de millar Decenas Decenas 3 7 6 4 3 El número se lee: “treinta y siete mil seiscientos cuarenta y tres”. 4 Lee el número 52 384 273. Solución Se acomoda en los periodos de los millones, millares y unidades. Millones Millares Unidades Centenas Unidades Centenas Unidades Centenas Unidades de millón de millón de millón de millar de millar de millar Decenas Decenas Decenas 5 2 3 8 4 2 7 3 Se lee: “cincuenta y dos millones trescientos ochenta y cuatro mil doscientos setenta y tres”. 6 CAPÍTULO 1 ARITMÉTICA Números reales 5 Lee el número 962 384 502 936 114. Solución Se acomodan en los periodos desde las unidades a los billones. Billón Millar de millón Millón Millares Unidades Centenas de millón Unidades de millón Centenas de billón Unidades de billón Centenas de millar Unidades de millar Centenas de millar Unidades de millar Decenas de millón Decenas de billón Decenas de millar Decenas de millar de millón Centenas Unidades de millón de millón Decenas 9 6 2 3 8 4 5 0 2 9 3 6 1 1 4 Se lee: “novecientos sesenta y dos billones, trescientos ochenta y cuatro mil quinientos dos millones, novecientos treinta y seis mil ciento catorce”. EJERCICIO 2 Escribe con letras las siguientes cifras. 1. 45 7. 9 016 13. 34 480 2. 80 8. 20 018 14. 108 214 3. 523 9. 11 011 15. 3 084 000 4. 770 10. 9 072 16. 1 215 364 5. 597 11. 12 103 17. 5 683 040 6. 8 302 12. 22 500 18. 13 000 075 ⁄ Verifica tus resultados en la sección de soluciones correspondiente Para escribir numéricamente una cantidad, se identifican los periodos y las clases de dicho número como lo ilustran los siguientes ejemplos. EJEMPLOS Ejemplos 1 Expresa cuatrocientos ochenta y siete numéricamente. Solución Este número sólo abarca el periodo de las unidades y se forma por cuatro centenas (400), ocho decenas (80) y siete unidades (7), al aplicar el principio aditivo el número es: cuatrocientos 400 ochenta + 80 siete 7 487 7 1 CAPÍTULO MATEMÁTICAS SIMPLIFICADAS 2 Escribe con número: siete mil cuatrocientos treinta y cinco. Solución La cantidad abarca hasta el periodo de los millares, entonces: siete mil 7 000 cuatrocientos 400 + treinta 30 cinco 5 7 435 3 Expresa numéricamente: doscientos noventa y nueve millones setecientos ocho. Solución La cantidad abarca hasta el periodo de los millones, entonces: doscientos millones 200 000 000 noventa millones 90 000 000 nueve millones + 9 000 000 setecientos 700 ocho 8 299 000 708 EJERCICIO 3 Representa numéricamente: 1. Quinientos veintiuno. 2. Dieciséis mil. 3. Mil doscientos noventa y nueve. 4. Treinta y cinco mil. 5. Ocho mil cuatrocientos. 6. Seiscientos uno. 7. Setecientos mil ciento treinta y ocho. 8. Un millón quinientos veintisiete mil cuatrocientos veintiocho. 9. Un millón ciento ocho mil doce. 10. Ciento cuarenta y cuatro millones, ciento cuarenta y cuatro. 11. Ciento dieciséis millones, trescientos ochenta y seis mil quinientos catorce. 12. Quinientos cinco millones doscientos diez. ⁄ Verifica tus resultados en la sección de soluciones correspondiente Orden Este conjunto se ordena con base en las siguientes relaciones de orden: < menor que > mayor que = igual que 8 CAPÍTULO 1 ARITMÉTICA Números reales Ejemplos 18 18 3 < 8; 3 es menor que 8 12 > − 7; 12 es mayor que − 7 = 9; es igual que 9 2 2 ⁄ Postulado de tricotomía Si a, b 苸 R, entonces al compararlos se pueden presentar los siguientes casos: a>b a b y b > c entonces: a>c ⁄ Postulado aditivo Para a, b, c 苸 R, si a > b, entonces: a+c>b+c ⁄ Postulado multiplicativo Sean a, b, c 苸 R, con a > b, si c > 0 (c es positivo), entonces ac > bc. si c < 0 (c es negativo), entonces ac < bc. Otra forma para comparar los números reales es colocarlos en la recta numérica. Si el número a se encuentra a la derecha de b, entonces a > b, pero, si se encuentra a la izquierda, entonces a < b. Ejemplos Observe la siguiente recta numérica: − −4 −3 −2 −1 0 1 2 3 4 Se puede afirmar que: 4 > 1, “4” se encuentra a la derecha de “1” 2 > − 2, “2” está a la derecha de “− 2” − 3 < −1, “− 3” está a la izquierda de “−1” − 3 < 0, “− 3” está a la izquierda de “0” En general, cualquier número negativo es menor que cero o que cualquier positivo, ya que se encuentran a la izquierda de estos números en la recta real o numérica. EJERCICIO 4 Compara las siguientes cantidades y coloca los símbolos: >, < o =, según corresponda. 1. 28 y 35 5. 5 397 y −1 284 9. −1 000 000 y −100 000 121 44 2. 1 125 y 1 105 6. − 844.5 y 0 10. y 11 4 8 7 3. − 372 y 372 7. y2 11. − y 1.5 4 3 1273 4. − 483 y − 840 8. 12 000 y 120 000 12. 0.5 y − 9 ⁄ Verifica tus resultados en la sección de soluciones correspondiente 9 1 CAPÍTULO MATEMÁTICAS SIMPLIFICADAS Para comparar dos números racionales se realiza un producto cruzado, como se ejemplifica a continuación: EJEMPLOS Ejemplos 7 5 1 Compara y. 8 6 Solución Se realiza el siguiente procedimiento: Se multiplica el numerador 7 de la primera fracción por el denominador 6 de la segunda y el producto se coloca debajo de la primera fracción; enseguida se realiza la multiplicación del denominador 8 de la primera fracción por el numerador 5 de la segunda y el producto se coloca debajo de la segunda fracción, el resultado de los productos y se coloca el signo correspondiente. 7 5 y 8 6 (7)(6) (5)(8) 42 > 40 7 5 El signo entre 42 y 40 es el mismo para los números racionales, por tanto: > 8 6 2 1 2 Compara − y −. 3 8 Solución Se realizan los pasos del ejemplo anterior y se obtiene: 2 1 − y− 3 8 (8)(− 2) (3)(−1) −16 < − 3 2 1 Por tanto: − , < o = , según corresponda. 2 1 7 1. ___ 7. − ___ 0 3 4 7 3 7 5 13 2. ___ 8. − ___ 5 8 10 26 1 1 5 3. − ___ − 9. ___ 1 6 2 2 7 21 17 4. ___ 10. ___ 3 9 27 6 11 12 39 5. ___ 11. − 3 ___ − 4 5 13 6 18 4 4 6. ___ 12. ___ 4 12 3 9 ⁄ Verifica tus resultados en la sección de soluciones correspondiente 10 CAPÍTULO 1 ARITMÉTICA Números reales Valor absoluto de un número Es la distancia que existe desde cero hasta el punto que representa a dicha cantidad en la recta numérica. El valor absoluto de un número a se representa como a. EJEMPLOS Ejemplos 1 Determina el valor absoluto de − 3. Solución Se representa − 3 en la recta numérica: − −4 −3 −2 −1 0 1 2 3 4 3 unidades De cero a − 3 se observa que hay 3 unidades de distancia, por tanto, el valor absoluto de − 3 es igual a 3 y se representa como: − 3 = 3. 2 Encuentra el valor de 8. Solución En la recta numérica la distancia entre el origen y 8 es de 8 unidades, por consiguiente, 8 = 8 − 0 1 2 3 4 5 6 7 8 8 unidades 7 3 ¿Cuál es el valor absoluto de − ? 2 Solución 7 7 En la recta numérica hay siete medios de distancia entre el cero y el punto dado, por tanto: − = 2 2 7 − 2 − −4 −3 −2 −1 0 EJERCICIO 6 Determina: 5 13 1. −10 4. 7. − 10. − 6.8 2 9 7 1 9 2. 5. − 8. 11. 0 4 3 3 3. −9 6. −2.5 9. 3.2 12. − 0.0001 ⁄ Verifica tus resultados en la sección de soluciones correspondiente 11 1 CAPÍTULO MATEMÁTICAS SIMPLIFICADAS Valor absoluto y relativo del sistema posicional decimal El sistema decimal emplea los dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, que al combinarlos mediante ciertas reglas pueden repre- sentar cualquier cantidad. En este sistema las unidades se agrupan de 10 en 10, razón por la cual recibe su nombre. Para nombrar cifras mayores que 9 se emplea el principio posicional y aditivo. En el principio posicional el valor absoluto de un dígito es el número que representa, y su valor relativo es el que adquiere de acuerdo con la posición que tiene en el número. Ejemplo En el número 4 342, el valor absoluto y relativo de cada dígito es: Dígito Valor absoluto Valor relativo 2 2 2 4 4 40 3 3 300 4 4 4 000 En la tabla anterior se observa que el dígito 4 tiene distintos valores relativos, como consecuencia de la posición que ocupa en el número. EJERCICIO 7 Determina cuál es el valor absoluto y relativo de los dígitos que se indican en los siguientes números: Número Valor absoluto Valor relativo 1. 13 2. 89 3. 372 4. 1 524 5. 7 893 6. 15 278 7. 42 939 8. 153 975 9. 794 568 10. 1 502 734 11. 12 364 568 12. 157 103 000 ⁄ Verifica tus resultados en la sección de soluciones correspondiente 12 CAPÍTULO 1 ARITMÉTICA Números reales De acuerdo con el principio aditivo toda cantidad o número mayor que 9, en el sistema decimal, se expresa como la suma de los valores relativos, la cual se denomina forma desarrollada. Analicemos los siguientes ejemplos. EJEMPLOS Ejemplos 1 Expresa en forma desarrollada 72 435. Solución Se obtienen los valores relativos de cada uno de los dígitos que conforman el número: Dígito Valor relativo 5 5 3 30 4 400 2 2 000 7 70 000 Por lo tanto, su forma desarrollada es: 72 435 = 70 000 + 2 000 + 400 + 30 + 5 2 Expresa el número 1 023 000 en forma desarrollada. Solución 1 023 000 = 1 000 000 + 20 000 + 3 000 3 Expresa en forma desarrollada el número 373 894. Solución 373 894 = 300 000 + 70 000 + 3 000 + 800 + 90 + 4 EJERCICIO 8 Expresa en forma desarrollada los siguientes números: 1. 75 9. 49 835 2. 132 10. 246 932 3. 428 11. 300 000 4. 510 12. 475 314 5. 3 002 13. 120 983 6. 7 491 14. 1 320 865 7. 15 204 15. 3 742 958 8. 32 790 ⁄ Verifica tus resultados en la sección de soluciones correspondiente 13 CAPÍTULO 2 NÚMEROS ENTEROS HISTÓRICA Reseña D urante los siglos VI y VII, los hindúes fue- ron los pioneros en usar las cantidades negativas como un medio para repre- sentar las deudas. No obstante su uso en esos siglos, la acepta- ción del concepto de número negativo en Occidente fue un proceso de una lentitud sorprendente, ya que, por varios siglos, los números negativos no fueron considerados como cantidades verdaderas, debido a la imposibili- dad de representarlos en el mundo físico. Finalmente, y con mucha dificultad, los números negativos fueron conside- rados en la resolución de ecuaciones, según se refleja en los escritos del matemático italiano Gerónimo Cordano: “Olvidad las torturas mentales que esto os producirá e introducid estas cantidades en la ecuación”. En el siglo XIX aún existía entre los matemáticos de Occidente una gran desconfianza en el manejo de las cantidades matemáticas, hasta que en el mismo siglo Weierstrass hizo la construcción formal de los números enteros a partir de los números naturales. Karl Weierstrass (1815-1897) 2 CAPÍTULO MATEMÁTICAS SIMPLIFICADAS Suma En esta operación los elementos reciben el nombre de sumandos y el resultado suma o adición. La suma o adición de números enteros se efectúa sólo si los signos de los números son iguales. EJEMPLOS Ejemplos 1 ¿Cuál es el resultado de 3 + 9? Solución En esta operación ambos sumandos tienen el mismo signo (+), por lo tanto, se suman sus valores absolutos y el signo del resultado es el mismo (+). 3 + 9 = 12 2 Realiza − 5 − 1 − 3. Solución Los números tienen el mismo signo (−), por consiguiente, se suman sus valores absolutos y el signo del resultado es el mismo que el de los sumandos (−). −5 − 1 − 3 = −9 Para sumar números de dos o más dígitos, los sumandos se ordenan en forma vertical para hacer coincidir las respectivas clases y se realiza la operación, columna por columna y de derecha a izquierda. EJEMPLOS Ejemplos 1 Efectúa la operación 325 + 63. Solución Se acomodan de manera vertical y se realiza la operación: 325 + 63 388 Por tanto, el resultado de la operación es 388 2 El resultado de −1 533 − 2 980 − 537 es: Solución