Life Assurance Contracts PDF
Document Details
Uploaded by TopSugilite9462
National University of Science and Technology, Bulawayo
Tags
Summary
This document details calculations for various life insurance products, including whole life, term, and endowment policies. It provides formulas for present value (PV), expected present value (EPV), and variance calculations, which are essential in actuarial science.
Full Transcript
# Whole Life Assurance Contracts | Product | PV | EPV | Variance | |---|---|---|---| | Benefits payable at the end of death year (Discrete) | $V_Kx_t$ for all $K_x$ | $\sum_{k=0}^\infty V_{k+1} k_{12}^*x$ | $2A_x - (A_x)^2$ | | $A_x$ | | | | | Benefits payable immediately on death (Continuous)...
# Whole Life Assurance Contracts | Product | PV | EPV | Variance | |---|---|---|---| | Benefits payable at the end of death year (Discrete) | $V_Kx_t$ for all $K_x$ | $\sum_{k=0}^\infty V_{k+1} k_{12}^*x$ | $2A_x - (A_x)^2$ | | $A_x$ | | | | | Benefits payable immediately on death (Continuous) | $V^tx$ for all $T_x$ | $\int_0^\infty v^t {}_tp_x \mu_{x+t} dt$ | $2A_x - (A_x)^2$ | | $A_x$ | | | | | Deferred Whole (Benefits at the end) (Discrete) | $S_0$ if $k \le n$ \ $V_k{x + k}_t$ if $k > n$ | $\sum_{k=n}^\infty V_{k+1}k_{12}^*x$ | $n^2A_x - (nA_x)^2$ | | $n|A_x$ | | $V^n {}n p_x A_{x+n}$ | | | Deferred Whole (Benefits payable immediately (Continuous) | $S_0$ if $T_x \le n$ $V^t_x$ if $T_x > n$| $\int_n^\infty v^t {}_tp_x \mu_{x+t} dt$ | $n^2A_x - (nA_x)^2$ | | $n|A_x$ | | | | # Term Assurance Contract | Product | PV | EPV | Variance | |---|---|---|---| | Benefits payable at the end of death year (Discrete) | $S_0$ if $k \le n$ \ $V_k{x + k}_t$ if $k > n$ | $\sum_{k=0}^n V_{k+1}k_{12}^*x$ | $2A_{x:n} - (A_{x:n})^2$ | | $A_{x:n}$ | | | | | Benefits payable immediately on death (Continuous) | $S_0$ if $T_x \le n$ \ $V^t_x$ if $T_x > n$| $\int_0^n v^t {}_tp_x \mu_{x+t} dt$ | $2A_{x:n} - (A_{x:n})^2$ | | $A_{x:n}$ | | | | | 'Deferred' benefits payable end of death year (Discrete) | $S_0$ if $0 \le k \le m$ $V_k{x + k}_t$ if $m \le k \le m+n$ \ $0$ if $k \ge m+n$ | $\sum_{k=m}^{m+n-1} V_{k+1}k_{12}^*x$ | $m^2A_{x:m}^2 - (mA_{x:m})^2$ | | $m|A_{x:m}$ | | $V^m {}mp_x A_{x+m:n}$ | | | 'Deferred' benefits payable immediately (Continuous) | $S_0$ if $T_x \le m$ $V^t_x$ if $m \le T_x \le m+n$ \ $0$ if $T_x \ge m+n$ | $\int_m^{m+n} v^t {}_tp_x \mu_{x+t} dt$ | $2A_{x:m} - (A_{x:m})^2$ | | $m|A_{x:m}$ | | $V^m {}mp_x A_{x+m:n}$| | # Endowment Life Assurance Contracts | Product | PV | EPV | Variance | |---|---|---|---| | Benefits payable at the end of death year (Discrete) | $S_0$ if $k \le n$ \ $V_k{x + k}_t$ if $k > n$ OR \ $V_n(min(k_x t_n))$ | $\sum_{k=0}^n V_{k+1}k_{12}^*x$ OR \ $V_nx + V_n{n}p_x(A_{x+n})$ | $2A_{x:n} - (A_{x:n})^2$ | | $A_{x:n}$ | $\overline{A}_x + \frac{1}{\delta}A_{x:n}$ | | | | Benefits payable immediately on death (Continuous) | $S_0$ if $T_x \le n$ \ $V^t_x$ if $T_x > n$ OR \ $V_n(min(T_x,n))$ | $\int_0^n v^t {}_tp_x \mu_{x+t} dt$ OR \ $V^nA_x + V^n{n}p_x A_{x+n\bar{n}}$ | $2A_{x:n} - (A_{x:n})^2$ | | $A_{x:n}$ | $\overline{A}_x + \frac{1}{\delta}A_{x:n}$ | | | | 'Deferred' benefits payable at the end of death year (Discrete) | $S_0$ if $k \le m$ \ $V_k{x + k}_t$ if $m \le k \le m+n$ $V_n$ if $k > m+n$ | $\sum_{k=m}^{m+n-1} V_{k+1}k_{12}^*x$ + $V^m{m}p_xA_{x+m:n}$ OR \ $(m^2A_{x:m}) + (A_{x+m:n})$ | $m^2A_{x:m} - (mA_{x:m})^2$ | | $m|A_{x:n}$ | | | | | 'Deferred' benefits payable immediately (Continuous) | $S_0$ if $T_x \le m$ \ $V^t_x$ if $m\le T_x \le m+n$ \ $V^n$ if $T_x \ge m+n$ OR \ $(m^2A_{x:m}) + (A_{x+m:n})$ | $\int_m^{m+n} v^t {}_tp_x \mu_{x+t} dt$ + ${n+m}p_x A_{x+m:n}$ OR \ $(m^2A_{x:m}) + (A_{x+m:n})$ | $m^2A_{x:m} - (mA_{x:m})^2$ | | $m|A_{x:n}$ | | | | # Pure Endowment Assurance Contract | Product | PV | EPV | Variance | |---|---|---|---| | Benefits payable at the end of death year (Discrete) | $S_0$ if $k \le n$ \ $V_n$ if $k> n$ | $V^n{n}p_x$ | $2A_{x:n} - (A_{x:n})^2$ | | $A_{x:n}$ | | | | **Note**: The benefits under pure endowment assurance is paid at fixed time period, it doesn't depend on the survival of life. So, the benefits can't be paid earlier than the maturity date. So, there is no need for a random variable of 'benefits paid immediately'. Also, there is no need to derive the 'deferred pure endowment assurance' separately as it would be the same as 'Pure Endowment'.