Summary

This document discusses production and costs in economics. It explains concepts like production functions, costs, and returns to scale. The article contains questions and exercises.

Full Transcript

mRiknu rFkk ykxr iwoZ vè;k; esa geus miHkksDrk osQ O;ogkj osQ lacaèk esa ppkZ dh gSA bl vè;k; rFkk vxys vè;k; esa ge mRiknd osQ O;ogkj dh tk¡p djsaxsA ,d mRiknd vFkok iQeZ fofHkUu vkxrksa tSls& Je] e'khu] Hkwfe] dPpk eky vkfn dks izkIr djrk gSA bu vkxrksa osQ esy ls og fu...

mRiknu rFkk ykxr iwoZ vè;k; esa geus miHkksDrk osQ O;ogkj osQ lacaèk esa ppkZ dh gSA bl vè;k; rFkk vxys vè;k; esa ge mRiknd osQ O;ogkj dh tk¡p djsaxsA ,d mRiknd vFkok iQeZ fofHkUu vkxrksa tSls& Je] e'khu] Hkwfe] dPpk eky vkfn dks izkIr djrk gSA bu vkxrksa osQ esy ls og fuxZr dk mRiknu djrk gSA mRiknu og izfd;k gS ftlosQ }kjk vkxrksa dks ^fuxZr* esa ifjofrZr fd;k tkrk gSA mRiknu] mRikn dk vFkok iQeksZ }kjk fd;k tkrk gSA ,d iQeZ fofHkUu vkxrksa tSls e'khusa] Hkwfe] dPpk eky vkfn dks de djrh gSA og bu vkxrksa dks ^fuxZr* mRiUu djus esa mi;ksx djrh gSA ;g fuxZr miHkksxrkvksa }kjk mi;ksx fd;k tk ldrk gS] vFkok vU; iQeksZa }kjk vkSj vkxs mRiknu djus osQ fy;s mi;ksx fd;k tk ldrk gSA mnkgj.kkFkZ] ,d nthZ ,d flykbZ e'khu] diM+k /kxk vkSj vius Loa; osQ Je dks dehtsa cukus osQ fy, mi;ksx djrk gSA ,d o`Q"kd viuh Hkwfe] Je] VªSDVj] cht] [kkn] ikuh vkfn dks xsagw mRiUu djus esa mi;ksx djrk gSA ,d dkj fuekZrk Hkwfe dk iQSDVjh osQ fy;s mi;ksx djrk gS rFkk e'khuksa] Je vkSj nwljs fofHkUu vkxrksa (LVhy] ,Y;wehfu;e] jcj vkfn) dk dkjksa osQ mRiknd osQ fy;sA ,d fjD'kkpkyd fjD'ks vkSj Lo;a Oks Q Je dk mi;ksx djrk gSA ,d ?kjsyw lgk;d vius Je dk mi;ksx liQkbZ lsok,a mRiUu djus es djrk gSA izkjEHk djus osQ fy;s ge OkqQN ljy ekU;rk,¡ ysdj pyrs gSaA mRiknu rkRdkfyd gS% vius ljy mRiknu&ekWMy esa] vkxrksa osQ la;ksxksa vkSj fuxZrksa osQ mRiknu esa dksbZ le; ugha chrrkA ge ^mRiknu* ,oa ^iwfrZ* 'kCnksa dks lekukFkhZ rFkk cgq/k variZfjorZuh; ekudj mi;ksx djrs gSaA vkxrksa dks izkIr djus osQ fy;s ,d iQeZ dks muosQ fy, oqQN nsuk iM+rk gSA bls mRiknu ykxr dgrs gSaA ,d ckj tc ^fuxZr* mRiUu gks tkrk gS] iQeZ mls ck”kkj esa csp nsrh gS vkSj ^vkxe* izkIr djrh gSA ^vkxe* rFkk ^ykxr* osQ chp vUrj dks ^iQeZ dk ykHk* dgrs gSA ge ;g ekurs gSa fd ,d iQEkZ dk mís'; vf/dre ykHk] ftruk og dj losQ] izkIr djuk gSA bl vè;k; esa] ge vkxrksa rFkk fuxZrksa osQ chp laca/ dh ppkZ djsxsaA ge iQeZ osQ ykxr 1) xq.kk nksuksa vkxrksa esa] rks gesa uohu fuxZr izkIr gksrk gS% q1 = (t x 1 )a (t x 2 )b = t a + b x1 a x 2 b tc α + β = 1] gekjs ikl gS q1 = tq0 bldk vfHkizk; gS fd fuxZr esa t xq.kk o`f¼ gksrh gSA vr% mRiknu iQyu fLFkj iSekuk dk izfriQy fLFkj vuqekih izfriQy dks iznf'kZr djrk gSA blh izdkj ls tc α + β > 1] mRiknu iQyu ckb,A 6- vYidky rFkk nh?kZdky osQ ladYiukvksa dks le>kb,A 7- ßkleku lhekar mRikn dk fu;e D;k gS\ 8- ifjorhZ vuqikr dk fu;e D;k gS\ 9- ,d mRiknu iQyu fLFkj iSekuk dk izfriQy dks dc larq"V djrk gS\ 10- ,d mRiknu iQyu o/Zeku iSekuk dk izfriQy dks dc larq"V djrk gS\ 11- ,d mRiknu iQyu ßkleku iSekuk dk izfriQy dks dc larq"V djrk gS\ 12- ykxr iQyu dh ladYiukvksa dks laf{kIr esa le>kb,A 13- ,d iQeZ dk oqQy fLFkj ykxr] oqQy ifjorhZ ykxr rFkk oqQy ykxr D;k gS] os fdl izdkj lacafèkr gS\ 14- ,d iQeZ dh vkSlr fLFkj ykxr] vkSlr ifjorhZ ykxr rFkk vkSlr ykxr D;k gS] os fdl izdkj lacafèkr gSa\ 15- D;k nh?kZdky esa oqQN fLFkj ykxr gks ldrh gS\ ;fn ugha rks D;ksa\ 16- vkSlr ykxr oØ oSQlk fn[krk gS\ ;g ,slk D;ksa fn[krk gS\ 17- vYidkyhu lhekar ykxr] vkSlr ifjorhZ ykxr rFkk vYidkyhu vkSlr ykxr oØ oSQls fn[kkbZ nsrs gSa\ 18- D;ksa vYidkyhu lhekar ykxr oØ vkSlr ifjorhZ ykxr oØ dks dkVrk gS] vkSlr ifjorhZ ykxr oØ osQ U;wure fcanq ij\ 19- fdl fcanq ij vYidkyhu lhekar ykxr oØ vYidkyhu vkSlr ykxr dks dkVrk gSA 59 vius mÙkj osQ leFkZu esa dkj.k crkb,A mRiknu rFkk ykxr 20- vYidkyhu lhekar ykxr oØ 'U' vkdkj dk D;ksa gksrk gS\ 21- nh?kZdkyhu lhekar ykxr rFkk vkSlr ykxr oØ oSQls fn[krs gSa\ 22- fuEufyf[kr rkfydk] Je dk oqQy mRiknu vuqlwph nsrh gSA L oqQy mRikn L rnuq:i Je dk vkSlr mRikn rFkk lhekar mRikn vuqlwph 0 0 fudkfy,A 1 15 2 35 3 50 4 40 5 48 23- uhps nh gqbZ rkfydk] Je dk vkSlr mRikn vuqlwph crkrh gSA L vkSlr mRiknL oqQy mRikn rFkk lhekar mRikn vuqlwph fudkfy,] tcfd Je 1 2 iz;ksxrk osQ 'kwU; Lrj ij ;g fn;k x;k gS fd oqQy mRikn 'kwU; 2 3 3 4 gS] 4 4-25 5 4 6 3-5 2024-25 24- fuEufyf[kr rkfydk Je dk lhekar mRikn vuqlwph nsrh gSA ;g L lhekar mRiknL Hkh fn;k x;k gS fd Je dk oqQy mRikn 'kwU; gSA iz;ksx osQ 'kwU; 1 3 Lrj ij Je osQ oqQy mRikn rFkk vkSlr mRikn vuqlwph dh x.kuk 2 5 3 7 dhft,A 4 5 5 3 6 1 25- uhps nh xbZ rkfydk ,d iQeZ dh oqQy ykxr vuqlwph n'kkZrh gSA Q oqQy ykxr bl iQeZ dk oqQy fLFkj ykxr D;k gSA iQeZ osQ oqQy ifjorhZ 0 10 1 30 ykxr] oqqQy fLFkj ykxr] vkSlr ifjorhZ ykxr] vYidkyhu 2 45 vkSlr ykxr rFkk vYidkyhu lhekar ykxr vuqlwph dh x.kuk 3 55 dhft,A 4 70 5 90 6 120 26- fuEufyf[kr rkfydk ,d iQeZ osQ fy, oqQy ykxr vuqlwph nsrh Q oqQy ykxr gSA ;g Hkh fn;k x;k gS fd vkSlr fLFkj ykxr fuxZr dh 4 bdkb;ksa 1 50 ij 5 #i, gSA oqQy ifjorhZ ykxr] oqQy fLFkj ykxr] vkSlr ifjorhZ 2 65 3 75 ykxr] vkSlr fLFkj ykxr] vYidkyhu vkSlr ykxr] vYidkyhu 4 95 lhekar ykxr vuqlp w h iQeZ osQ fuxZr osQ rn~uq:i ewY;ksa osQ fy, 5 130 fudkfy,] 6 185 27- ,d iQeZ dk vYidkyhu lhekar ykxr vuqlwph fuEufyf[kr Q oqQy ykxr rkfydk esa fn;k x;k gSA iQeZ dh oqQy fLFkj ykxr 100 #i, gSA 0 - 60 iQeZ osQ oqQy ifjorhZ ykxr] oqQy ykxr] vkSlr ifjorhZ ykxr 1 500 2 300 O;f"V vFkZ'kkL=k rFkk vYidkyhu vkSlr ykxr vuqlwph fudkfy,A ,d ifjp; 3 200 4 300 5 500 28- eku yhft,] ,d iQeZ dk mRiknu iQyu gS] 6 800 1 1 Q = 5L 2 K 2 fudkfy,] vfèkdre laHkkfor fuxZr ftldk mRiknu iQeZ dj ldrh gS 100 bdkb;k¡ L rFkk 100 bdkb;k¡ K }kjkA 29- eku yhft,] ,d iQeZ dk mRiknu iQyu gS] Q = 2L2 K 2 vfèkdre laHkkfor fuxZr Kkr dhft,] ftldk iQeZ mRiknu dj ldrh gS] 5 bdkb;k¡ L rFkk 2 bdkb;k¡ K }kjkA vfèkdre laHkkfor fuxZr D;k gS] ftldk iQeZ mRiknu dj ldrh gS 'kwU; bdkbZ L rFkk 10 bdkbZ K }kjk\ 30- ,d iQeZ osQ fy, 'kwU; bdkbZ L rFkk 10 bdkb;k¡ K }kjk vfèkdre laHkkfor fuxZr fudkfy,] tc bldk mRiknu iQyu gS% ? Q = 5L + 2K 2024-25

Use Quizgecko on...
Browser
Browser