Algebra 10th Grade Exam 1 - Functions Level A1 PDF
Document Details
Uploaded by Deleted User
Tags
Related
- 10th Grade Algebra Exam #1: Functions PDF
- Algebra 2 Unit 4 Part 2 Homework Key PDF
- Quadratic Functions Assignment 2023 PDF
- Algebra II: Unit 3: Lesson 4: Properties of Quadratics Part 2 PDF
- IB Math Analysis & Approaches SL Chapter 3: Linear and Quadratic Functions PDF
- IB Math Analysis & Approaches SL Linear and Quadratic Functions PDF
Summary
This is an algebra exam covering functions, including quadratic functions, odd functions, domain, and function composition. Includes multiple choice and problem-solving questions targeted at 10th-grade students.
Full Transcript
1\. The table of values shows below. The values of the quadratic function [*f*]{.math.inline} for several values of [*x*]{.math.inline}. Which one of the following best represents [*f*]{.math.inline}? **[(1 point)]** ----------------------------- ------------------------- -----------------------...
1\. The table of values shows below. The values of the quadratic function [*f*]{.math.inline} for several values of [*x*]{.math.inline}. Which one of the following best represents [*f*]{.math.inline}? **[(1 point)]** ----------------------------- ------------------------- ------------------------- ------------------------- -------------------------- \ \ \ \ \ [*x*]{.math.display}\ [ − 1]{.math.display}\ {.math.display}\ {.math.display}\ {.math.display}\ \ \ \ \ \ [*f*(*x*)]{.math.display}\ [ − 5]{.math.display}\ [ − 3]{.math.display}\ [ − 5]{.math.display}\ [ − 11]{.math.display}\ ----------------------------- ------------------------- ------------------------- ------------------------- -------------------------- A\) [*f*(*x*) = − 2*x*^2^]{.math.inline} B\) [*f*(*x*) = *x*^2^ + 3]{.math.inline} C\) [*f*(*x*) = − *x*^2^ + 3]{.math.inline} D\) [*f*(*x*) = − 2*x*^2^ − 3]{.math.inline} 2\. Find the odd function. **[(1 point)]** A\) [*f*(*x*) = 2*x*^4^ + 6*x*^2^ − 4*x*]{.math.inline}\ B) [*f*(*x*) = − *x*^4^ + *x*^2^ − 1]{.math.inline}\ C) [*f*(*x*) = *x*^3^ + *x*]{.math.inline} D\) [*f*(*x*) = 2*x*^3^ + *x* − 2]{.math.inline} 3\. Find the domain of the function: [\$f\\left( x \\right) = \\frac{3x - 1}{7}\$]{.math.inline} **[(1 point)]** 4\. Given that [*f*(*x*) = *x*^2^]{.math.inline} and [*g*(*x*) = 4 − 2*x*]{.math.inline}. Find [*f*(*g*(−1)) + *g*(*f*(1))]{.math.inline}. **[(3 points)]** 5\. Find the domain and range of the given function: [\$f(x) = \\sqrt{16 - x\^{2}}\$]{.math.inline} **[(4 points)]** 6\. If [*f*(*x*) = *x* + 1]{.math.inline} and [\$g\\left( x \\right) = \\frac{x - 1}{x + 1}\$]{.math.inline} , then find composition [(*f* ∘ *g*)(*x*)]{.math.inline} **[(2 points)]** 7\. Find inverse of [\$f\\left( x \\right) = \\frac{3x + 7}{7}\$]{.math.inline} **[(3 points)]**