Probability and Statistics for Engineers (STAT 301& 305) - Taibah University
Document Details
Uploaded by VersatileJadeite6911
Taibah University
Tags
Related
- Probability, Random Variables, and Distributions (BMF5324) PDF
- Random Variables - Statistics & Probability - SY 2024-2025 PDF
- Probabilidad y Estadistica para Ingeniería y Ciencias PDF
- Random Variable Lecture Notes PDF
- Probability & Statistics for Engineers & Scientists PDF
- Statistics Unit 2: Random Variables PDF
Summary
These lecture notes cover probability and statistics for engineers, focusing on linear combinations of random variables, including their means and variances. The document is a set of lecture notes from Taibah University and includes examples to demonstrate various concepts.
Full Transcript
TAIBAH UNIVERSITY جامعة طيبة Faculty of Science كلية العلوم Department of Math. قسم الرياضيات Probability and Statistics for Engineers STAT 301& 305 First Semester 1445 H Teacher : Lesson 21 Mean...
TAIBAH UNIVERSITY جامعة طيبة Faculty of Science كلية العلوم Department of Math. قسم الرياضيات Probability and Statistics for Engineers STAT 301& 305 First Semester 1445 H Teacher : Lesson 21 Means and Variances of Linear Combinations of Random Variables Linear Combination of random variables If X1, X2, …, Xn are n random variables and a1, a2, …, an are constants, then the random variable : n Y = ai X i = a1 X 1 + a2 X 2 + + an X n i =1 is called a linear combination of the random variables X1,X2,…,Xn. 3 Linear Combination of random variables Theorem 1: If 𝑋 is a random variable with mean 𝜇𝑋 = 𝐸(𝑋), and if 𝑎 and 𝑏 are constants, then: 𝑬(𝒂 𝑿 𝒃) = 𝒂 𝑬(𝑿) 𝒃 𝒂 𝑿 𝒃 = 𝒂 𝑿 ± 𝒃 4 Linear Combination of random variables Corollary 1: Setting 𝑎 = 0 in Theorem 4.5 , we see that 𝐸(𝑏) = 𝑏. Corollary 2: Setting 𝑏 = 0 in Theorem 4.5 , we see that 𝐸(𝑎 𝑋) = 𝑎 𝐸(𝑋). 5 Linear Combination of r.v. (Example 1) Let 𝑋 be a random variable with the following probability density function: 1 2 x ; −1 x 2 f ( x) = 3 0 ; elsewhere Find 𝐸(4𝑋 + 3). 6 Linear Combination of r.v. (Example 1) Solution: 2 1 2 1 2 μ = E(X) = x f ( x) dx = x [ x ] dx = x 3 dx = − −1 3 3 −1 1 1 4 x = 2 x = 5/4 3 4 x = −1 𝐸(4𝑋 + 3) = 4 𝐸(𝑋) + 3 5 = 4 + 3=8 4 7 Linear Combination of r.v. (Example 1) Another solution: E[g(X)] = g ( x) f ( x) dx ; g(X) = 4X+3 − E(4X+3) = (4 x + 3) f ( x) dx − 2 1 2 = (4 x + 3) [ x ] dx = = 8 −1 3 8 Linear Combination of random variables Theorem 2: If 𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑛 random variables and 𝑎1, 𝑎2, … , 𝑎𝑛 are constants, then: 𝐸 𝑎1 𝑋1 + 𝑎2 𝑋2 + … + 𝑎𝑛 𝑋𝑛 = 𝑎1𝐸 𝑋1 + 𝑎2𝐸 𝑋2 + ⋯ + 𝑎𝑛 𝐸(𝑋𝑛 ) n n E ( ai X i ) = ai E ( X i ) i =1 i =1 9 Linear Combination of random variables Corollary : If 𝑋, and 𝑌 are random variables, then: 𝐸(𝑋 ± 𝑌) = 𝐸(𝑋) ± 𝐸(𝑌) 10 Linear Combination of random variables Theorem 3 : If 𝑋 is a random variable with variance Var ( X ) = X2 and if 𝑎 and 𝑏 are constants, then: Var(aX b) = a Var( X ) 2 aX + b 2 =a X 22 11 Linear Combination of random variables Corollary 1: Setting 𝑎 = 1 in Theorem 4.9 , we see that 2 X +b = 2 X Corollary 2: Setting 𝑏 = 0 in Theorem 4.9 , we see that 2 aX =a 2 2 X 12 Linear Combination of random variables Theorem 4: If 𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑛 independent random variables and 𝑎1, 𝑎2, … , 𝑎𝑛 are constants, then: Var (a1 X 1 + a2 X 2 +..... + an X n ) = a12Var ( X 1 ) + a22Var ( X 2 ) +... + an2Var ( X n ) n n Var ( ai X i ) = ai Var ( X i ) 2 i =1 i =1 σ 2 a1 X 1 + a2 X 2 ++ an X n =a σ +a σ 2 1 2 X1 2 2 2 X2 ++ a σ 2 n 2 Xn 13 Linear Combination of random variables Corollary : If 𝑋, and 𝑌 are independent random variables, then:· Var (aX + bY ) = a Var (X ) + b Var (Y ) 2 2 Var (aX − bY ) = a Var (X ) + b Var (Y ) 2 2 Var (aX bY ) = a Var (X ) + b Var (Y ) 2 2 14 Linear Combination of r.v. (Example 2) If 𝑋, and 𝑌 are independent random variables, with σ 2 X = 2., σ 2 Y =4 Find the variance of the random variable Z = 3X − 4Y + 8 15 Linear Combination of r.v. (Example 2) Solution: Var (Z ) = Var (3 X − 4Y + 8) = 9Var ( X ) + 16Var (Y ) + 0 = 9 2 + 16 4 = 82 16 Linear Combination of r.v. (Example 3) If X, and Y are independent random variables, with. X = 2 , σ = 4 , Y = 7 , σ = 1 2 X 2 Y Find: 1. E (3 X + 7 ) Var (3 X + 7 ) 2. E (5 X + 2Y − 2 ) Var (5 X + 2Y − 2 ) 17 Linear Combination of r.v. (Example 3) Solution: 1. E (3 X + 7 ) = 3E ( X ) + 7 = 3 2 + 7 = 13 Var(3 X + 7 ) = (3) Var( X ) = 9 4 = 36 2 2. E (5 X + 2Y − 2 ) = 5E ( X ) + 2 E (Y ) − 2 = 5 2 + 2 7 − 2 = 22 Var (5 X + 2Y − 2 ) = (5) Var ( X ) + (2 ) Var (Y ) 2 2 = 25 4 + 4 1 = 104 18 Linear Combination of Random Variables Theorem 4.8: Let X, and Y be two independent random variables, then: 𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌 Example : If X, and Y are independent random variables with 𝜇𝑋 = 2 and 𝜇𝑌 = 7 , Find the following 𝐸(𝑋𝑌 + 2𝑋 − 3𝑌) ? Solution: 𝐸 𝑋𝑌 + 2𝑋 − 3𝑌 = E X E Y + 2E X − 3E Y = 2 7 + 2 2 − 3 7 = −3 19 Exercise: Q1: Given the following probability distribution (mass) function for the discrete random variable X. X 0 1 2 3 4 𝑇𝑜𝑡𝑎𝑙 𝑓(𝑥) 0.41 0.37 0.16 0.05 0.01 1 1- Find the Cumulative Distribution Function ? 2- Find the expected value of X? 3-Find the variance of X? 4- Fin P(X=6) ? 5- Find P ( X 2 22 Q4: If X is a random variable has the cumulative distribution 0 ; 𝑥2 1- Find 𝑓(𝑥) ? 1 2- Find the value of 𝑎 if 𝑃 𝑋 ≤ 𝑎 = ? 4 23