Summary

This document provides a lesson on limits, covering definitions, examples, and properties related to the concept in calculus. It includes solved examples, practice problems, and homework exercises to understand and apply these concepts. The content is suitable for students studying calculus.

Full Transcript

Okay, here is the transcription of the text in the image, formatted in markdown. ### Lesson: Limits MAPMON **Definition of limits** Let $f$ be a function defined on an open interval containing $c$ (except possibly at $c$) and let $L$ be a real number. The statement $\lim_{x \to c} f(x) = L$ mea...

Okay, here is the transcription of the text in the image, formatted in markdown. ### Lesson: Limits MAPMON **Definition of limits** Let $f$ be a function defined on an open interval containing $c$ (except possibly at $c$) and let $L$ be a real number. The statement $\lim_{x \to c} f(x) = L$ means that for each $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x - c| < \delta $, then $|f(x) - L| < \epsilon$ **Some Basic Limits** Let $b$ and $c$ be real numbers and let $n$ be a positive integer ($n \in \mathbb{Z}$). 1. $\lim_{x \to c} b = b$ 2. $\lim_{x \to c} x = c$ 3. $\lim_{x \to c} x^n = c^n$ **Examples** 1. $\lim_{x \to 2} 3 = 3$ 2. $\lim_{x \to 4} x = -4$ 3. $\lim_{x \to 2} x^2= 2^2 = 4$ **Properties of limits** Let $b$ and $c$ be real numbers, let $n$ be a positive integer, and let $f$ and $g$ be functions with the following limits. $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ 1. Scalar multiple: $\lim_{x \to c} b f(x)= b \lim_{x \to c} f(x)$ 2. Sum or difference: $\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$ 3. Product: $\lim_{x \to c} [f(x) \times g(x)]= \lim_{x \to c} f(x) \times \lim_{x \to c} g(x)$ 4. Quotient: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$, $\lim_{x \to c} g(x) \neq 0$ 5. Power: $\lim_{x \to c} [f(x)]^n = [\lim_{x \to c} f(x)]^n$, where $n \in \mathbb{Z}$ 6. Radical: $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$ **Examples** $\lim_{x \to a} f(x) = 4$ $ \lim_{x \to a} g(x) = -3$ 1. $\lim_{x \to a} 4 f(x) = 4 \lim_{x \to a} f(x) = 4(4) = 16$ 2. $\lim_{x \to a} [3 f(x) + 5 g(x)] = 3 \lim_{x \to a} f(x) + 5 \lim_{x \to a} g(x) = 3(4) + (5)(-3) = 12 - 15 = -3$ 3. $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = 4(-3) = -12$ 4. $\lim_{x \to a} [g(x)]^4 \cdot \sqrt{f(x)} = [\lim_{x \to a} g(x)]^4 \cdot \sqrt{\lim_{x \to a} f(x)} = (-3)^4 \cdot \sqrt{4} = 81 \cdot (2) = 162$ 5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{4}{-3}= -\frac{4}{3}$ **Examples:** 1. $\lim_{x \to 2} (x^2 + x) = \lim_{x \to 2} x^2 + \lim_{x \to 2} x = 2^2 + 2 = 6$ 2. $\lim_{x \to 2} [(x+1)(x-3)] = \lim_{x \to 2} (x+1) \cdot \lim_{x \to 2} (x-3) = (2+1) \cdot (2-3) = 3 \cdot (-1) = -3$ 3. $\lim_{x \to 3} [2(x-1)] = 2\lim_{x \to 3} (x-1)$ or $\lim_{x \to 3} [2x-2] = \lim_{x \to 3} 2x - \lim_{x \to 3} 2 = 2(3) - 2 =4 = 2(3 - 1) = 2 \cdot 2 = 4$ 4. $\lim_{x \to 1} \frac{2x^2 + x - 3}{x^2 + 4} = \frac{\lim_{x \to 1} 2x^2 + x - 3}{\lim_{x \to 1} x^2 + 4} = \frac{2(1)^2 + (1) - 3}{(1)^2 + 4} = \frac{0}{5} = 0$ **Rationalizing Technique (Conjugate method)** **Examples:** 1. $\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}$ By direct substitution, you obtain the indeterminate form $\frac{0}{0}$ $= \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} \cdot \frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1}$ $= \lim_{x \to 0} \frac{x+1 - 1}{x(\sqrt{x+1} + 1)}$ $= \lim_{x \to 0} \frac{x}{x(\sqrt{x+1} + 1)}$ $= \frac{1}{\sqrt{0+1} + 1} = \frac{1}{2}$ 2. $\lim_{x \to 2} \frac{\sqrt{4x+1} - 3}{x - 2} \qquad + (x-2) \qquad \frac{2}{3}$ 3. $\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \qquad 1$ **Homework** 4. $\lim_{x \to -2} \frac{x+2}{\sqrt{x^2 + 5} - 3} \qquad \frac{3}{2}$ 5. $\lim_{x \to 0} (\frac{1}{x \sqrt{1+x}} - \frac{1}{x}) \qquad \frac{1}{2}$ 6. $\lim_{x \to 0} \frac{\sqrt{x+5} - \sqrt{5}}{x} \qquad \frac{\sqrt{5}}{10}$ **Evaluating limit by factoring** **Examples:** 1. $\lim_{x \to 0} \frac{5x}{x^2 +2x} = \lim_{x \to 0} \frac{5x}{x(x+2)}= \lim_{x \to 0} \frac{5}{x+2} = \frac{5}{0+2}= \frac{5}{2}$ **Homework** 2. $\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2} \qquad 7$ 3. $\lim_{x \to 3} \frac{\text{Cim } x^2 - 9}{x - 3} \qquad 8$ 4. $\lim_{x \to 2} \frac{x^3 - 8}{x - 2} \qquad 12$ 5. $\lim_{x \to 4} \frac{4-x}{x^2 - 16} \qquad \frac{-1}{8}$ 6. $\lim_{x \to 4} \frac{x^2 - x - 12}{x^2 - x - 20} \qquad \frac{7}{9}$